这是一篇来自已证抗体库的有关人类 RORC的综述,是根据61篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合RORC 抗体。
RORC 同义词: IMD42; NR1F3; RORG; RZR-GAMMA; RZRG; TOR

赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化; 小鼠
赛默飞世尔 RORC抗体(Invitrogen, PA5-23,148)被用于被用于免疫组化在小鼠样本上. Sci Rep (2021) ncbi
大鼠 单克隆(AFKJS-9)
  • 免疫印迹; 人类; 1:500; 图 4a
赛默飞世尔 RORC抗体(Ebioscience, 14-6988-82)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Cancers (Basel) (2021) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 1:100; 图 s6-2
赛默飞世尔 RORC抗体(eBioscience, AFKJS-9)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6-2). elife (2020) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 图 5c, 5d
赛默飞世尔 RORC抗体(Invitrogen, AFKJS-9)被用于被用于流式细胞仪在小鼠样本上 (图 5c, 5d). BMC Biol (2020) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 人类; 图 10b
赛默飞世尔 RORC抗体(eBioscience, 17-6988-80)被用于被用于流式细胞仪在人类样本上 (图 10b). Cell Mol Gastroenterol Hepatol (2020) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 1:100; 图 4c, 4e, s6c
赛默飞世尔 RORC抗体(Invitrogen, AFKJS-9)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4c, 4e, s6c). Science (2019) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 图 ex3b
赛默飞世尔 RORC抗体(eBioscience, AFKJS-9)被用于被用于流式细胞仪在小鼠样本上 (图 ex3b). Nature (2019) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 图 s2j
赛默飞世尔 RORC抗体(Invitrogen, AFKJS-9)被用于被用于流式细胞仪在小鼠样本上 (图 s2j). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:4000; 图 4b
  • 免疫细胞化学; 小鼠; 1:500; 图 s4d
  • 免疫组化; 小鼠; 1:4000; 图 4i
  • 免疫印迹; 小鼠; 图 s4h
赛默飞世尔 RORC抗体(Thermo Fisher, PA5-23148)被用于被用于免疫组化在人类样本上浓度为1:4000 (图 4b), 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s4d), 被用于免疫组化在小鼠样本上浓度为1:4000 (图 4i) 和 被用于免疫印迹在小鼠样本上 (图 s4h). Cell (2019) ncbi
大鼠 单克隆(AFKJS-9)
  • 免疫组化-冰冻切片; 小鼠; 1:30; 图 1a
赛默飞世尔 RORC抗体(eBioscience, AFKJS-9)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:30 (图 1a). J Exp Med (2019) ncbi
大鼠 单克隆(AFKJS-9)
  • 免疫印迹; 小鼠; 1:1000; 图 s6
赛默飞世尔 RORC抗体(eBioscience, 14-6988-82)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6). Nat Commun (2019) ncbi
大鼠 单克隆(AFKJS-9)
  • 染色质免疫沉淀 ; 小鼠; 图 1b
赛默飞世尔 RORC抗体(eBioscience, AKFS9)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 1b). Nat Commun (2018) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔 RORC抗体(eBioscience, AFKJS-9)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Eur J Immunol (2018) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 RORC抗体(eBioscience, AFKJS-501 9)被用于被用于流式细胞仪在人类样本上 (图 1b). Cancer Res (2018) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 RORC抗体(ebioscience, AFKJS-9)被用于被用于流式细胞仪在人类样本上 (图 1b). J Immunol (2017) ncbi
大鼠 单克隆(AFKJS-9)
  • 免疫印迹; 小鼠; 1:200; 图 2b
赛默飞世尔 RORC抗体(eBioscience, AFKJS-9)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2b). Nat Commun (2017) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 图 5f
赛默飞世尔 RORC抗体(Thermo Fisher Scientific, 12-6988-82)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Immunity (2017) ncbi
大鼠 单克隆(AFKJS-9)
  • 免疫组化; 人类; 1:25; 图 3a
赛默飞世尔 RORC抗体(eBioscience, 14-6988)被用于被用于免疫组化在人类样本上浓度为1:25 (图 3a). J Immunol (2017) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 图 4c
  • 流式细胞仪; 人类; 图 s3c
赛默飞世尔 RORC抗体(eBioscience, 17-6988)被用于被用于流式细胞仪在小鼠样本上 (图 4c) 和 被用于流式细胞仪在人类样本上 (图 s3c). Cell (2017) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 1:400; 图 4a
赛默飞世尔 RORC抗体(eBioscience, AFKJS-9)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 4a). Nat Commun (2017) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 图 7k
赛默飞世尔 RORC抗体(eBioscience, 12-698880)被用于被用于流式细胞仪在小鼠样本上 (图 7k). J Immunol (2017) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 RORC抗体(eBioscience, AFKJS-9)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Exp Med (2017) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 图 6b
赛默飞世尔 RORC抗体(eBioscience, AFKJS-9)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Mucosal Immunol (2017) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 图 3g
赛默飞世尔 RORC抗体(eBioscience, AFKJS-9)被用于被用于流式细胞仪在小鼠样本上 (图 3g). Oncotarget (2017) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 图 s3g
赛默飞世尔 RORC抗体(eBioscience, AFKJS-9)被用于被用于流式细胞仪在小鼠样本上 (图 s3g). Immunity (2016) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 RORC抗体(eBioscience, AFKJS-9)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Nature (2016) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 RORC抗体(eBioscience, AFKJ-9)被用于被用于流式细胞仪在小鼠样本上 (图 5). Sci Rep (2016) ncbi
大鼠 单克隆(AFKJS-9)
  • 免疫组化; 小鼠; 1:100; 图 2
赛默飞世尔 RORC抗体(eBioscience, AFKJS-9)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Nat Commun (2016) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 猕猴; 图 3b
赛默飞世尔 RORC抗体(eBiosciences, AFKJS-9)被用于被用于流式细胞仪在猕猴样本上 (图 3b). J Immunol (2016) ncbi
大鼠 单克隆(AFKJS-9)
  • 免疫细胞化学; 人类; 图 4e
  • 免疫印迹; 人类; 图 4b
赛默飞世尔 RORC抗体(eBiosciences, AFKJS-9)被用于被用于免疫细胞化学在人类样本上 (图 4e) 和 被用于免疫印迹在人类样本上 (图 4b). J Leukoc Biol (2016) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 RORC抗体(e-Bioscience, 12-6988)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 RORC抗体(eBioscience, AFKJS-9)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Intern Med (2016) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 RORC抗体(eBioscience, 17-6988-82)被用于被用于流式细胞仪在小鼠样本上 (图 7). Eur J Immunol (2016) ncbi
大鼠 单克隆(AFKJS-9)
  • 免疫组化-冰冻切片; 小鼠; 图 2e
赛默飞世尔 RORC抗体(eBioscience, AFKJS-9)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2e). Nat Immunol (2016) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 图 s6
赛默飞世尔 RORC抗体(eBiosciences, AFKJs-9)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Nat Immunol (2015) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 图 s2c
赛默飞世尔 RORC抗体(Thermo Fisher Scientific, AFKJS-9)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). Immunity (2015) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 RORC抗体(Ebioscience, AFKJS-9)被用于被用于流式细胞仪在小鼠样本上 (图 5). Mucosal Immunol (2015) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 RORC抗体(eBiosciences, AFKJS-9)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Cancer Res (2014) ncbi
大鼠 单克隆(AFKJS-9)
  • 免疫印迹; 人类; 图 5b
赛默飞世尔 RORC抗体(eBioscience, 14-6988)被用于被用于免疫印迹在人类样本上 (图 5b). J Biol Chem (2014) ncbi
大鼠 单克隆(AFKJS-9)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 人类
赛默飞世尔 RORC抗体(eBioscience, AFKJS-9)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在人类样本上. J Exp Med (2014) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠
赛默飞世尔 RORC抗体(eBioscience, clone AFKJS-9)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠
赛默飞世尔 RORC抗体(eBioscience, AFKJS-9)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠
赛默飞世尔 RORC抗体(ebioscience, 17-6988-80)被用于被用于流式细胞仪在小鼠样本上. Exp Parasitol (2014) ncbi
大鼠 单克隆(AFKJS-9)
  • 免疫细胞化学; 人类; 表 1
赛默飞世尔 RORC抗体(eBioscience, AFKJS-9)被用于被用于免疫细胞化学在人类样本上 (表 1). Nat Immunol (2014) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠
  • 免疫细胞化学; 小鼠
赛默飞世尔 RORC抗体(eBioscience, AFKJS-9)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠
赛默飞世尔 RORC抗体(eBioscience, AFKJS-9)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2013) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 人类
赛默飞世尔 RORC抗体(eBioscience, AFKJS-9)被用于被用于流式细胞仪在人类样本上. Immun Ageing (2013) ncbi
大鼠 单克隆(AFKJS-9)
  • 流式细胞仪; 小鼠
赛默飞世尔 RORC抗体(eBioscience, AFKJS-9)被用于被用于流式细胞仪在小鼠样本上. Immunity (2012) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR20006)
  • 免疫印迹; 小鼠; 图 2d
艾博抗(上海)贸易有限公司 RORC抗体(Abcam, ab207082)被用于被用于免疫印迹在小鼠样本上 (图 2d). Mediators Inflamm (2021) ncbi
domestic rabbit 单克隆(EPR20006)
  • 免疫组化-石蜡切片; 小鼠; 1:3000; 图 3d
艾博抗(上海)贸易有限公司 RORC抗体(AbCam, ab207082)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:3000 (图 3d). Pulm Circ (2018) ncbi
美天旎
人类 单克隆(REA278)
  • 免疫组化-冰冻切片; 小鼠; 图 s6
美天旎 RORC抗体(Miltenyi Biotec, 130-123-248)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s6). Sci Rep (2022) ncbi
碧迪BD
小鼠 单克隆(Q21-559)
  • 流式细胞仪; 人类; 图 4a-4d
碧迪BD RORC抗体(BD Biosciences, 563081)被用于被用于流式细胞仪在人类样本上 (图 4a-4d). elife (2020) ncbi
小鼠 单克隆(Q21-559)
  • 流式细胞仪; 人类; 图 s2u
  • 流式细胞仪; 小鼠; 图 s2u
碧迪BD RORC抗体(BD Biosciences, 563081)被用于被用于流式细胞仪在人类样本上 (图 s2u) 和 被用于流式细胞仪在小鼠样本上 (图 s2u). Cell (2020) ncbi
小鼠 单克隆(Q21-559)
  • 流式细胞仪; 人类; 图 s3b
碧迪BD RORC抗体(BD Biosciences, 563081)被用于被用于流式细胞仪在人类样本上 (图 s3b). Cell (2020) ncbi
小鼠 单克隆(Q21-559)
  • 流式细胞仪; 人类; 图 7a
碧迪BD RORC抗体(BD, Q21-559)被用于被用于流式细胞仪在人类样本上 (图 7a). Front Immunol (2018) ncbi
小鼠 单克隆(O21-404)
  • 流式细胞仪; 人类; 图 5c
碧迪BD RORC抗体(BD Biosciences, 564242)被用于被用于流式细胞仪在人类样本上 (图 5c). Cell Rep (2018) ncbi
小鼠 单克隆(Q21-559)
  • 流式细胞仪; 人类; 图 s2a
碧迪BD RORC抗体(BD Biosciences, Q21-559)被用于被用于流式细胞仪在人类样本上 (图 s2a). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(Q21-559)
  • 流式细胞仪; 人类; 图 4d
碧迪BD RORC抗体(BD Biosciences, Q21-559)被用于被用于流式细胞仪在人类样本上 (图 4d). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(Q21-559)
  • 流式细胞仪; 人类; 图 3b
碧迪BD RORC抗体(BD Biosciences, Q21-559)被用于被用于流式细胞仪在人类样本上 (图 3b). J Immunol (2017) ncbi
小鼠 单克隆(O21-404)
  • 流式细胞仪; 人类; 图 s10c
碧迪BD RORC抗体(BD, O21-404)被用于被用于流式细胞仪在人类样本上 (图 s10c). J Clin Invest (2016) ncbi
小鼠 单克隆(Q21-559)
  • 流式细胞仪; 人类; 图 2
碧迪BD RORC抗体(BD Biosciences, Q21-559)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS Pathog (2015) ncbi
文章列表
  1. Kinkhabwala A, Herbel C, Pankratz J, Yushchenko D, R xfc berg S, Praveen P, et al. MACSima imaging cyclic staining (MICS) technology reveals combinatorial target pairs for CAR T cell treatment of solid tumors. Sci Rep. 2022;12:1911 pubmed 出版商
  2. Kong W, Tsuyama N, Inoue H, Guo Y, Mokuda S, Nobukiyo A, et al. Long-chain saturated fatty acids in breast milk are associated with the pathogenesis of atopic dermatitis via induction of inflammatory ILC3s. Sci Rep. 2021;11:13109 pubmed 出版商
  3. Chen J, Yang F, Shi S, Liu X, Qin F, Wei X, et al. The Severity of CVB3-Induced Myocarditis Can Be Improved by Blocking the Orchestration of NLRP3 and Th17 in Balb/c Mice. Mediators Inflamm. 2021;2021:5551578 pubmed 出版商
  4. Zhang X, Huang Z, Wang J, Ma Z, Yang J, Corey E, et al. Targeting Feedforward Loops Formed by Nuclear Receptor RORγ and Kinase PBK in mCRPC with Hyperactive AR Signaling. Cancers (Basel). 2021;13: pubmed 出版商
  5. Jensen I, Jensen S, Sjaastad F, Gibson Corley K, Dileepan T, Griffith T, et al. Sepsis impedes EAE disease development and diminishes autoantigen-specific naive CD4 T cells. elife. 2020;9: pubmed 出版商
  6. Bhattacharya P, Ellegård R, Khalid M, Svanberg C, Govender M, Keita A, et al. Complement opsonization of HIV affects primary infection of human colorectal mucosa and subsequent activation of T cells. elife. 2020;9: pubmed 出版商
  7. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  8. Zhang S, Liang W, Luo L, Sun S, Wang F. The role of T cell trafficking in CTLA-4 blockade-induced gut immunopathology. BMC Biol. 2020;18:29 pubmed 出版商
  9. Lee J, Hall J, Kroehling L, Wu L, Najar T, Nguyen H, et al. Serum Amyloid A Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease. Cell. 2020;180:79-91.e16 pubmed 出版商
  10. Di Blasi D, Boldanova T, Mori L, Terracciano L, Heim M, De Libero G. Unique T-Cell Populations Define Immune-Inflamed Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol. 2020;9:195-218 pubmed 出版商
  11. Ansaldo E, Slayden L, Ching K, Koch M, Wolf N, Plichta D, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science. 2019;364:1179-1184 pubmed 出版商
  12. Ardain A, Domingo Gonzalez R, Das S, Kazer S, Howard N, Singh A, et al. Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. Nature. 2019;: pubmed 出版商
  13. Di Pilato M, Kim E, Cadilha B, Prüßmann J, Nasrallah M, Seruggia D, et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature. 2019;570:112-116 pubmed 出版商
  14. Lytle N, Ferguson L, Rajbhandari N, Gilroy K, Fox R, Deshpande A, et al. A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma. Cell. 2019;177:572-586.e22 pubmed 出版商
  15. Melo Gonzalez F, Kammoun H, Evren E, Dutton E, Papadopoulou M, Bradford B, et al. Antigen-presenting ILC3 regulate T cell-dependent IgA responses to colonic mucosal bacteria. J Exp Med. 2019;216:728-742 pubmed 出版商
  16. Cho J, Xu Z, Parthasarathy U, Drashansky T, Helm E, Zuniga A, et al. Hectd3 promotes pathogenic Th17 lineage through Stat3 activation and Malt1 signaling in neuroinflammation. Nat Commun. 2019;10:701 pubmed 出版商
  17. Richardson J, Armbruster N, Günter M, Henes J, Autenrieth S. Staphylococcus aureus PSM Peptides Modulate Human Monocyte-Derived Dendritic Cells to Prime Regulatory T Cells. Front Immunol. 2018;9:2603 pubmed 出版商
  18. Kim C, Hu B, Jadhav R, Jin J, Zhang H, Cavanagh M, et al. Activation of miR-21-Regulated Pathways in Immune Aging Selects against Signatures Characteristic of Memory T Cells. Cell Rep. 2018;25:2148-2162.e5 pubmed 出版商
  19. Dias J, Boulouis C, Gorin J, van den Biggelaar R, Lal K, Gibbs A, et al. The CD4-CD8- MAIT cell subpopulation is a functionally distinct subset developmentally related to the main CD8+ MAIT cell pool. Proc Natl Acad Sci U S A. 2018;115:E11513-E11522 pubmed 出版商
  20. Singh A, Khare P, Obaid A, Conlon K, Basrur V, Depinho R, et al. SUMOylation of ROR-γt inhibits IL-17 expression and inflammation via HDAC2. Nat Commun. 2018;9:4515 pubmed 出版商
  21. Jones R, Cosway E, Willis C, White A, Jenkinson W, Fehling H, et al. Dynamic changes in intrathymic ILC populations during murine neonatal development. Eur J Immunol. 2018;48:1481-1491 pubmed 出版商
  22. Hu X, Majchrzak K, Liu X, Wyatt M, Spooner C, Moisan J, et al. In Vitro Priming of Adoptively Transferred T Cells with a RORγ Agonist Confers Durable Memory and Stemness In Vivo. Cancer Res. 2018;78:3888-3898 pubmed 出版商
  23. Maston L, Jones D, Giermakowska W, Resta T, Ramiro Diaz J, Howard T, et al. Interleukin-6 trans-signaling contributes to chronic hypoxia-induced pulmonary hypertension. Pulm Circ. 2018;8:2045894018780734 pubmed 出版商
  24. Kyoizumi S, Kubo Y, Kajimura J, Yoshida K, Hayashi T, Nakachi K, et al. Fate Decision Between Group 3 Innate Lymphoid and Conventional NK Cell Lineages by Notch Signaling in Human Circulating Hematopoietic Progenitors. J Immunol. 2017;199:2777-2793 pubmed 出版商
  25. Dias J, Leeansyah E, Sandberg J. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc Natl Acad Sci U S A. 2017;114:E5434-E5443 pubmed 出版商
  26. Hasan Z, Koizumi S, Sasaki D, Yamada H, Arakaki N, Fujihara Y, et al. JunB is essential for IL-23-dependent pathogenicity of Th17 cells. Nat Commun. 2017;8:15628 pubmed 出版商
  27. Miyazaki M, Miyazaki K, Chen K, Jin Y, Turner J, Moore A, et al. The E-Id Protein Axis Specifies Adaptive Lymphoid Cell Identity and Suppresses Thymic Innate Lymphoid Cell Development. Immunity. 2017;46:818-834.e4 pubmed 出版商
  28. Zanin Zhorov A, Weiss J, Trzeciak A, Chen W, Zhang J, Nyuydzefe M, et al. Cutting Edge: Selective Oral ROCK2 Inhibitor Reduces Clinical Scores in Patients with Psoriasis Vulgaris and Normalizes Skin Pathology via Concurrent Regulation of IL-17 and IL-10. J Immunol. 2017;198:3809-3814 pubmed 出版商
  29. Lim A, Li Y, Lopez Lastra S, Stadhouders R, Paul F, Casrouge A, et al. Systemic Human ILC Precursors Provide a Substrate for Tissue ILC Differentiation. Cell. 2017;168:1086-1100.e10 pubmed 出版商
  30. Barthels C, Ogrinc A, Steyer V, Meier S, Simon F, Wimmer M, et al. CD40-signalling abrogates induction of RORγt+ Treg cells by intestinal CD103+ DCs and causes fatal colitis. Nat Commun. 2017;8:14715 pubmed 出版商
  31. Szabo P, Goswami A, Mazzuca D, Kim K, O Gorman D, Hess D, et al. Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology. J Immunol. 2017;198:2805-2818 pubmed 出版商
  32. Webb L, Amici S, Jablonski K, Savardekar H, Panfil A, Li L, et al. PRMT5-Selective Inhibitors Suppress Inflammatory T Cell Responses and Experimental Autoimmune Encephalomyelitis. J Immunol. 2017;198:1439-1451 pubmed 出版商
  33. Chen S, Cai C, Li Z, Liu G, Wang Y, Blonska M, et al. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity. J Exp Med. 2017;214:475-489 pubmed 出版商
  34. Hashimoto Hill S, Friesen L, Kim M, Kim C. Contraction of intestinal effector T cells by retinoic acid-induced purinergic receptor P2X7. Mucosal Immunol. 2017;10:912-923 pubmed 出版商
  35. Wei Y, Lu C, Chen J, Cui G, Wang L, Yu T, et al. High salt diet stimulates gut Th17 response and exacerbates TNBS-induced colitis in mice. Oncotarget. 2017;8:70-82 pubmed 出版商
  36. Wang S, Xia P, Chen Y, Huang G, Xiong Z, Liu J, et al. Natural Killer-like B Cells Prime Innate Lymphocytes against Microbial Infection. Immunity. 2016;45:131-44 pubmed 出版商
  37. Ibiza S, García Cassani B, Ribeiro H, Carvalho T, Almeida L, Marques R, et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature. 2016;535:440-443 pubmed 出版商
  38. Xu Y, Chaudhury A, Zhang M, Savoldo B, Metelitsa L, Rodgers J, et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J Clin Invest. 2016;126:2678-88 pubmed 出版商
  39. Brandstätter O, Schanz O, Vorac J, König J, Mori T, Maruyama T, et al. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor. Sci Rep. 2016;6:26091 pubmed 出版商
  40. Li Z, Hodgkinson T, Gothard E, Boroumand S, Lamb R, Cummins I, et al. Epidermal Notch1 recruits RORγ(+) group 3 innate lymphoid cells to orchestrate normal skin repair. Nat Commun. 2016;7:11394 pubmed 出版商
  41. Rueda C, Presicce P, Jackson C, Miller L, Kallapur S, Jobe A, et al. Lipopolysaccharide-Induced Chorioamnionitis Promotes IL-1-Dependent Inflammatory FOXP3+ CD4+ T Cells in the Fetal Rhesus Macaque. J Immunol. 2016;196:3706-15 pubmed 出版商
  42. Taylor P, Roy S, Meszaros E, Sun Y, Howell S, Malemud C, et al. JAK/STAT regulation of Aspergillus fumigatus corneal infections and IL-6/23-stimulated neutrophil, IL-17, elastase, and MMP9 activity. J Leukoc Biol. 2016;100:213-22 pubmed 出版商
  43. Tosiek M, Fiette L, El Daker S, Eberl G, Freitas A. IL-15-dependent balance between Foxp3 and RORγt expression impacts inflammatory bowel disease. Nat Commun. 2016;7:10888 pubmed 出版商
  44. Frodermann V, Van Duijn J, van Puijvelde G, van Santbrink P, Lagraauw H, de Vries M, et al. Heat-killed Staphylococcus aureus reduces atherosclerosis by inducing anti-inflammatory macrophages. J Intern Med. 2016;279:592-605 pubmed 出版商
  45. Carrascal J, Carrillo J, Arpa B, Egia Mendikute L, Rosell Mases E, Pujol Autonell I, et al. B-cell anergy induces a Th17 shift in a novel B lymphocyte transgenic NOD mouse model, the 116C-NOD mouse. Eur J Immunol. 2016;46:593-608 pubmed 出版商
  46. Zhong C, Cui K, Wilhelm C, Hu G, Mao K, Belkaid Y, et al. Group 3 innate lymphoid cells continuously require the transcription factor GATA-3 after commitment. Nat Immunol. 2016;17:169-78 pubmed 出版商
  47. Guo L, Huang Y, Chen X, Hu Li J, Urban J, Paul W. Innate immunological function of TH2 cells in vivo. Nat Immunol. 2015;16:1051-9 pubmed 出版商
  48. Leeansyah E, Svärd J, Dias J, Buggert M, Nyström J, Quigley M, et al. Arming of MAIT Cell Cytolytic Antimicrobial Activity Is Induced by IL-7 and Defective in HIV-1 Infection. PLoS Pathog. 2015;11:e1005072 pubmed 出版商
  49. Kim M, Taparowsky E, Kim C. Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut. Immunity. 2015;43:107-19 pubmed 出版商
  50. Donaldson D, Bradford B, Artis D, Mabbott N. Reciprocal regulation of lymphoid tissue development in the large intestine by IL-25 and IL-23. Mucosal Immunol. 2015;8:582-95 pubmed 出版商
  51. Chatterjee S, Thyagarajan K, Kesarwani P, Song J, Soloshchenko M, Fu J, et al. Reducing CD73 expression by IL1?-Programmed Th17 cells improves immunotherapeutic control of tumors. Cancer Res. 2014;74:6048-59 pubmed 出版商
  52. Han L, Yang J, Wang X, Wu Q, Yin S, Li Z, et al. The E3 deubiquitinase USP17 is a positive regulator of retinoic acid-related orphan nuclear receptor ?t (ROR?t) in Th17 cells. J Biol Chem. 2014;289:25546-55 pubmed 出版商
  53. Longman R, Diehl G, Victorio D, Huh J, Galan C, Miraldi E, et al. CX?CR1? mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med. 2014;211:1571-83 pubmed 出版商
  54. Weitkamp J, Rosen M, Zhao Z, Koyama T, Geem D, Denning T, et al. Small intestinal intraepithelial TCR??+ T lymphocytes are present in the premature intestine but selectively reduced in surgical necrotizing enterocolitis. PLoS ONE. 2014;9:e99042 pubmed 出版商
  55. Pick J, Arra A, Lingel H, Hegel J, Huber M, Nishanth G, et al. CTLA-4 (CD152) enhances the Tc17 differentiation program. Eur J Immunol. 2014;44:2139-52 pubmed 出版商
  56. Keswani T, Bhattacharyya A. Differential role of T regulatory and Th17 in Swiss mice infected with Plasmodium berghei ANKA and Plasmodium yoelii. Exp Parasitol. 2014;141:82-92 pubmed 出版商
  57. Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15:354-364 pubmed 出版商
  58. McGuire D, Rowse A, Li H, Peng B, Sestero C, Cashman K, et al. CD5 enhances Th17-cell differentiation by regulating IFN-? response and ROR?t localization. Eur J Immunol. 2014;44:1137-42 pubmed 出版商
  59. Satpathy A, Briseño C, Lee J, Ng D, Manieri N, Kc W, et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat Immunol. 2013;14:937-48 pubmed 出版商
  60. Gironi M, Saresella M, Rovaris M, Vaghi M, Nemni R, Clerici M, et al. A novel data mining system points out hidden relationships between immunological markers in multiple sclerosis. Immun Ageing. 2013;10:1 pubmed 出版商
  61. Powell N, Walker A, Stolarczyk E, Canavan J, Gökmen M, Marks E, et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity. 2012;37:674-84 pubmed 出版商