这是一篇来自已证抗体库的有关人类 RPS27A的综述,是根据197篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合RPS27A 抗体。
RPS27A 同义词: CEP80; HEL112; S27A; UBA80; UBC; UBCEP1; UBCEP80

赛默飞世尔
小鼠 单克隆(HWA4C4)
  • 免疫印迹; 人类; 图 s3c
赛默飞世尔 RPS27A抗体(eBioscience, 14-6077-82)被用于被用于免疫印迹在人类样本上 (图 s3c). iScience (2021) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:2000; 图 6b
赛默飞世尔 RPS27A抗体(Invitrogen, 13-1600)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6b). EMBO Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:5000; 图 6b
赛默飞世尔 RPS27A抗体(Thermo Scientific, PA1-10023)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 6b). Mol Neurobiol (2018) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 大鼠; 图 4d
赛默飞世尔 RPS27A抗体(Invitrogen, 131600)被用于被用于免疫印迹在大鼠样本上 (图 4d). FEBS Open Bio (2017) ncbi
小鼠 单克隆(Ubi-1)
赛默飞世尔 RPS27A抗体(Thermo Fisher, 13-1600)被用于. Sci Rep (2017) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:500; 图 s7a
赛默飞世尔 RPS27A抗体(Invitrogen, 131600)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s7a). Nat Commun (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 RPS27A抗体(Invitrogen, 13-1600)被用于被用于免疫印迹在人类样本上 (图 5). Neurobiol Dis (2017) ncbi
domestic rabbit 重组(10H4L21)
  • 免疫细胞化学; 人类; 图 6a
赛默飞世尔 RPS27A抗体(Thermo Fisher, 701339)被用于被用于免疫细胞化学在人类样本上 (图 6a). Stem Cell Reports (2016) ncbi
小鼠 单克隆(HWA4C4)
  • 免疫印迹; 人类; 图 1c
赛默飞世尔 RPS27A抗体(eBioscience, 14-6077)被用于被用于免疫印迹在人类样本上 (图 1c). J Biol Chem (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:1000; 图 3f
赛默飞世尔 RPS27A抗体(Invitrogen, 13-1600)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 非洲爪蛙; 图 1f
赛默飞世尔 RPS27A抗体(Pierce, PA1-187)被用于被用于免疫印迹在非洲爪蛙样本上 (图 1f). Mol Cell Biol (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2
赛默飞世尔 RPS27A抗体(Invitrogen, 13.1600)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫细胞化学; fruit fly ; 1:20; 图 2
赛默飞世尔 RPS27A抗体(ThermoFisher Scientific, 13-1600)被用于被用于免疫细胞化学在fruit fly 样本上浓度为1:20 (图 2). Autophagy (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s1
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1). Eur J Immunol (2016) ncbi
domestic rabbit 重组(10H4L21)
  • 免疫印迹; brewer's yeast
赛默飞世尔 RPS27A抗体(Thermo Scientific, 701339)被用于被用于免疫印迹在brewer's yeast样本上. Nature (2015) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 5e
赛默飞世尔 RPS27A抗体(生活技术, 13-1600)被用于被用于免疫印迹在人类样本上 (图 5e). Nat Commun (2015) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫细胞化学; 人类
赛默飞世尔 RPS27A抗体(生活技术, 13-160)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上. Nat Commun (2015) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫印迹在人类样本上. Nat Commun (2014) ncbi
domestic rabbit 重组(10H4L21)
  • 免疫印迹; 人类
赛默飞世尔 RPS27A抗体(生活技术, 701339)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:1000; 图 5
赛默飞世尔 RPS27A抗体(生活技术, 13-1600)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Nat Commun (2014) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫印迹在人类样本上 (图 5). Clin Cancer Res (2013) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 RPS27A抗体(Zymed, monoclonal mix made of P4D1, SCBT and 13-1600)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2013) ncbi
小鼠 单克隆(HWA4C4)
  • 免疫印迹; 人类
赛默飞世尔 RPS27A抗体(eBioscience, 14-6077-82)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2013) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫细胞化学; 人类
  • 免疫组化; 人类
  • 免疫印迹; 人类
  • 免疫细胞化学; African green monkey
  • 免疫印迹; African green monkey
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫细胞化学在人类样本上, 被用于免疫组化在人类样本上, 被用于免疫印迹在人类样本上, 被用于免疫细胞化学在African green monkey样本上 和 被用于免疫印迹在African green monkey样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 RPS27A抗体(Invitrogen, 13-1600)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2012) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; 人类; 1:500; 图 1
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1). Acta Neuropathol (2012) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; 人类; 图 1
赛默飞世尔 RPS27A抗体(Invitrogen, 13-1600)被用于被用于免疫组化在人类样本上 (图 1). Neurobiol Dis (2012) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:2000; 图 5g
赛默飞世尔 RPS27A抗体(Zymed Laboratories, 13-1600)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5g). BMC Biol (2010) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; 小鼠; 1:250; 图 4
赛默飞世尔 RPS27A抗体(Invitrogen, 13?C1600)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 4). Neuron (2010) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫细胞化学; 人类; 1:50; 图 4
  • 免疫组化; 人类; 1:50; 图 4
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4) 和 被用于免疫组化在人类样本上浓度为1:50 (图 4). Neurobiol Dis (2011) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; fruit fly ; 1:200; 图 6
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫组化在fruit fly 样本上浓度为1:200 (图 6). Cell Death Differ (2010) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 大鼠; 图 6
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫印迹在大鼠样本上 (图 6). Proteomics (2009) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫印迹在小鼠样本上 (图 6). J Biol Chem (2009) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; 小鼠; 1:500
赛默飞世尔 RPS27A抗体(Zymed, 131600)被用于被用于免疫组化在小鼠样本上浓度为1:500. Methods Enzymol (2009) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 酵母菌目
赛默飞世尔 RPS27A抗体(Zymed laboratories, 13-1600)被用于被用于免疫印迹在酵母菌目样本上. DNA Repair (Amst) (2008) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫细胞化学; 人类; 4 mg/ml
赛默飞世尔 RPS27A抗体(Zymed Laboratories, 13-1600)被用于被用于免疫细胞化学在人类样本上浓度为4 mg/ml. Rapid Commun Mass Spectrom (2008) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类
赛默飞世尔 RPS27A抗体(Zymed Laboratories, Ubi-1)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2008) ncbi
小鼠 单克隆(Ubi-1)
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于. J Biol Chem (2007) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫印迹在小鼠样本上 (图 1). Nat Immunol (2007) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:1000; 图 7
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Biochem Pharmacol (2007) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 小鼠; 图 4d
赛默飞世尔 RPS27A抗体(Zymed, 13- 1600)被用于被用于免疫印迹在小鼠样本上 (图 4d). Nat Immunol (2007) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫印迹在人类样本上. Methods Enzymol (2005) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:1000; 图 5
赛默飞世尔 RPS27A抗体(ZYMED, 13-1600)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Biochem Biophys Res Commun (2005) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫沉淀; 人类
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫沉淀在人类样本上. Blood (2003) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫沉淀; 人类; 图 2
赛默飞世尔 RPS27A抗体(Zymed, 131600)被用于被用于免疫沉淀在人类样本上 (图 2). J Biol Chem (2002) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 8
赛默飞世尔 RPS27A抗体(Zymed, 13?C1600)被用于被用于免疫印迹在人类样本上 (图 8). J Biol Chem (2002) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; 大鼠; 1:200; 表 1
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫组化在大鼠样本上浓度为1:200 (表 1). Brain Res (2002) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 RPS27A抗体(Zymed Laboratories, 13-1600)被用于被用于免疫印迹在小鼠样本上 (图 2). J Biol Chem (2002) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫印迹在人类样本上 (图 2). Proc Natl Acad Sci U S A (2001) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 猕猴; 图 5
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫印迹在猕猴样本上 (图 5). J Biol Chem (1998) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫沉淀; domestic rabbit; 图 5d
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫沉淀在domestic rabbit样本上 (图 5d). Mol Cell Biol (1997) ncbi
Enzo Life Sciences
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:1000; 图 sy5y
Enzo Life Sciences RPS27A抗体(Enzo life sciences, P4D1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 sy5y). EMBO J (2021) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:500; 图 5a
Enzo Life Sciences RPS27A抗体(Enzo, BML-PW0930-0100)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). J Biol Chem (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 1a
Enzo Life Sciences RPS27A抗体(Enzo, BML-PW0930)被用于被用于免疫印迹在人类样本上 (图 1a). J Biomed Sci (2018) ncbi
小鼠 单克隆(P4D1)
  • 免疫沉淀; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 图 3c
Enzo Life Sciences RPS27A抗体(Enzo Life Sciences, BML-PW0930-0100)被用于被用于免疫沉淀在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 3c). Free Radic Biol Med (2018) ncbi
小鼠 单克隆(P4D1)
Enzo Life Sciences RPS27A抗体(ENZO, P4D1)被用于. Protein Sci (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:1000; 图 2f
Enzo Life Sciences RPS27A抗体(Enzo life sciences, P4D1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Sci Rep (2016) ncbi
小鼠 单克隆(P4D1)
Enzo Life Sciences RPS27A抗体(Enzo, P4D1)被用于. Viruses (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; brewer's yeast; 图 4
Enzo Life Sciences RPS27A抗体(Enzo Life Science, BML-PW0930)被用于被用于免疫印迹在brewer's yeast样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 3
Enzo Life Sciences RPS27A抗体(Enzo Life Sciences, P4D1)被用于被用于免疫印迹在人类样本上 (图 3). Glycobiology (2016) ncbi
小鼠 单克隆(P4G7-H11)
  • 免疫印迹; 大鼠; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 1
Enzo Life Sciences RPS27A抗体(Enzo, ADI-SPA-203-D)被用于被用于免疫印迹在大鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; fruit fly ; 1:2000
Enzo Life Sciences RPS27A抗体(Enzo Life Sciences, p4D1)被用于被用于免疫印迹在fruit fly 样本上浓度为1:2000. Proteomics (2011) ncbi
Novus Biologicals
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 小鼠; 图 2d
Novus Biologicals RPS27A抗体(Novus, NB300-130)被用于被用于免疫印迹在小鼠样本上 (图 2d). Cells (2021) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:1000; 图 4e
Novus Biologicals RPS27A抗体(Novus, NB300-130)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Nature (2019) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 7c
Novus Biologicals RPS27A抗体(Novus Biological, NB300-130)被用于被用于免疫印迹在人类样本上 (图 7c). J Clin Invest (2018) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 1
Novus Biologicals RPS27A抗体(novus Biologicals, NB300-130)被用于被用于免疫印迹在人类样本上 (图 1). Cell (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫细胞化学; 人类; 图 3
Novus Biologicals RPS27A抗体(Novus Biologicals, NB300-130)被用于被用于免疫细胞化学在人类样本上 (图 3). Stem Cell Reports (2015) ncbi
安迪生物R&D
小鼠 单克隆(83406)
  • 免疫印迹; 小鼠; 1:500; 图 2c
安迪生物R&D RPS27A抗体(BostonBiochem, A104)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2c). FEBS Lett (2021) ncbi
BioLegend
小鼠 单克隆(P4D1)
  • 免疫印迹; brewer's yeast; 图 7b
BioLegend RPS27A抗体(Covance, P4D1)被用于被用于免疫印迹在brewer's yeast样本上 (图 7b). Mol Biol Cell (2017) ncbi
小鼠 单克隆(P4D1)
BioLegend RPS27A抗体(Biolegend, 646302)被用于. Nature (2016) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(P4D1)
  • 免疫印迹; pigs ; 图 3a
赛信通(上海)生物试剂有限公司 RPS27A抗体(CST, 3936)被用于被用于免疫印迹在pigs 样本上 (图 3a). PLoS Pathog (2021) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:5000; 图 s3a
赛信通(上海)生物试剂有限公司 RPS27A抗体(CST, 3936)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s3a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3933S)被用于被用于免疫印迹在人类样本上 (图 1d). Sci Adv (2021) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936S)被用于被用于免疫印迹在人类样本上 (图 1d). Sci Adv (2021) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 10b
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936S)被用于被用于免疫印迹在人类样本上 (图 10b). Front Immunol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3933)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:100; 图 4a
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3933)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 4a). J Exp Med (2021) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 5a, 5c
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling Technology, 3936)被用于被用于免疫印迹在人类样本上 (图 5a, 5c). Cell Death Dis (2021) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 3k
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling Technologies, 3936)被用于被用于免疫印迹在人类样本上 (图 3k). Cell Death Dis (2020) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:1000; 图 5g
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5g). Nat Commun (2020) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 RPS27A抗体(CST, 3936)被用于被用于免疫印迹在人类样本上 (图 2f). Mol Cell Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4i
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling Technology, 3933)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4i). Nat Commun (2020) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 6f, 6g, 6h, 6i
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling Technology, P4D1)被用于被用于免疫印迹在小鼠样本上 (图 6f, 6g, 6h, 6i). PLoS Pathog (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2i
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling Technology, 3933)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2i). Nat Commun (2020) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 3a, s5b
赛信通(上海)生物试剂有限公司 RPS27A抗体(CST, P4D1)被用于被用于免疫印迹在人类样本上 (图 3a, s5b). Nature (2020) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling Technology, 3936)被用于被用于免疫印迹在人类样本上 (图 6b). Cancers (Basel) (2020) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 RPS27A抗体(CST, 3936)被用于被用于免疫印迹在人类样本上 (图 2d). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(E5T1W)
  • 免疫细胞化学; 大鼠; 1:500-1:1000; 图 4i, 4j
  • 免疫印迹; 大鼠; 1:500-1:2000; 图 3e
  • 免疫细胞化学; 人类; 1:500-1:1000; 图 3c, 6f
  • 免疫印迹; 人类; 1:500-1:2000; 图 1g, s3b
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 70973)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500-1:1000 (图 4i, 4j), 被用于免疫印迹在大鼠样本上浓度为1:500-1:2000 (图 3e), 被用于免疫细胞化学在人类样本上浓度为1:500-1:1000 (图 3c, 6f) 和 被用于免疫印迹在人类样本上浓度为1:500-1:2000 (图 1g, s3b). Cell Rep (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:1000; 图 s1e
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, P4D1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1e). Nat Commun (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫印迹在人类样本上 (图 7a). Br J Pharmacol (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:500; 图 7d, 7e
赛信通(上海)生物试剂有限公司 RPS27A抗体(CST, 3936)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7d, 7e). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling Technology, 3933)被用于被用于免疫印迹在人类样本上 (图 3b). Cells (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 4s1b
赛信通(上海)生物试剂有限公司 RPS27A抗体(CST, 3936)被用于被用于免疫印迹在人类样本上 (图 4s1b). elife (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 4e
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫印迹在小鼠样本上 (图 4e). elife (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:5000; 图 5b
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5b). elife (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 s6c
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫印迹在小鼠样本上 (图 s6c). Sci Adv (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:500; 图 2a
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2a). PLoS ONE (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 s2g
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling Technology, 3936)被用于被用于免疫印迹在人类样本上 (图 s2g). Science (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, P4D1)被用于被用于免疫印迹在人类样本上 (图 4e). Science (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 RPS27A抗体(CST, 3936)被用于被用于免疫印迹在人类样本上 (图 5b). Mol Oncol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s5b
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3933S)被用于被用于免疫印迹在小鼠样本上 (图 s5b). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 RPS27A抗体(CST, 3933)被用于被用于免疫印迹在人类样本上 (图 4e). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s8b
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3933)被用于被用于免疫印迹在人类样本上 (图 s8b). Cancers (Basel) (2018) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫印迹在人类样本上 (图 3d). J Biol Chem (2019) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, P4D1)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cell Death Differ (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3C
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling Technology, 3933)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3C). J Cell Biol (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 RPS27A抗体(CST, 3936)被用于被用于免疫印迹在人类样本上 (图 3d). PLoS ONE (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:5000; 图 4g
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, P4D1)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4g). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS Pathog (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Neurosci Lett (2017) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫印迹在小鼠样本上. elife (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 RPS27A抗体(CST, P4D1)被用于被用于免疫印迹在人类样本上 (图 5b). PLoS Pathog (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫组化; 小鼠; 1:300; 图 6j
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 6j). Exp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell signaling, 3933)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 图 10c
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell signaling, 3936)被用于被用于免疫印迹在小鼠样本上 (图 10c). J Neurosci (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 1h
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫印迹在人类样本上 (图 1h). Nat Struct Mol Biol (2016) ncbi
  • 免疫细胞化学; 人类; 1:50; 图 5c
赛信通(上海)生物试剂有限公司 RPS27A抗体(Santa Cruz, P4D1)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 5c). Nat Commun (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8). Nat Commun (2016) ncbi
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, P4D1)被用于. PLoS Genet (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫印迹在人类样本上 (图 2e). Oncotarget (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936S)被用于被用于免疫印迹在人类样本上 (图 2c). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(P4D1)
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于. J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4b
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3933)被用于被用于免疫印迹在小鼠样本上 (图 s4b). J Immunol (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling Tech, 3936)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8). Oncotarget (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫组化-冰冻切片; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 RPS27A抗体(CST, 3936)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). Stem Cell Reports (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 ev1d
赛信通(上海)生物试剂有限公司 RPS27A抗体(cell signalling, P4D1)被用于被用于免疫印迹在人类样本上 (图 ev1d). EMBO Rep (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:3000; 图 s11
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 s11). Nat Commun (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 斑马鱼; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 RPS27A抗体(cell signaling, #3936S)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000 (图 5). Int J Mol Sci (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫沉淀; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell signaling, 3936)被用于被用于免疫沉淀在大鼠样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, P4D1)被用于. Cell Death Dis (2016) ncbi
小鼠 单克隆(P4D1)
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于. Nat Protoc (2016) ncbi
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, P4D1)被用于被用于免疫印迹在小鼠样本上 (图 4). elife (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling Technology, 3936)被用于被用于免疫印迹在大鼠样本上. Int J Nanomedicine (2015) ncbi
  • 免疫印迹; pigs ; 图 4
赛信通(上海)生物试剂有限公司 RPS27A抗体(Santa Cruz, P4D1)被用于被用于免疫印迹在pigs 样本上 (图 4). J Virol (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; African green monkey; 1:1000
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫印迹在African green monkey样本上浓度为1:1000. Exp Biol Med (Maywood) (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling Technology, 3936)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Immunol (2015) ncbi
小鼠 单克隆(P4D1)
  • 其他; 小鼠; 1:500; 图 s1
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于其他在小鼠样本上浓度为1:500 (图 s1). Front Microbiol (2015) ncbi
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 RPS27A抗体(Santa Cruz, P4D1)被用于被用于免疫印迹在人类样本上 (图 3). Nat Commun (2015) ncbi
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling Technology, P4D1)被用于被用于免疫印迹在人类样本上 (图 3a). Autophagy (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3933S)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell signaling, P4D1)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2015) ncbi
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, P4D1)被用于被用于免疫印迹在小鼠样本上 (图 1). Drug Metab Dispos (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling Technology, P4D1)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Dis Model Mech (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 RPS27A抗体(CST, 3936)被用于被用于免疫印迹在人类样本上. Cell Signal (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling Technologies, 3936)被用于被用于免疫印迹在人类样本上. PLoS Pathog (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936P)被用于被用于免疫印迹在人类样本上 (图 s5). Nat Commun (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫细胞化学在人类样本上. Nucleus (2015) ncbi
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 RPS27A抗体(santa cruz, P4D1)被用于被用于免疫印迹在小鼠样本上 (图 2c). J Biol Chem (2015) ncbi
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 RPS27A抗体(Santa Cruz, P4D1)被用于被用于免疫印迹在人类样本上 (图 s1). Cell Death Dis (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫组化; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫组化在小鼠样本上 (图 7). Nat Commun (2015) ncbi
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 RPS27A抗体(Santa, P4D1)被用于被用于免疫印迹在大鼠样本上. Nat Commun (2014) ncbi
小鼠 单克隆(P4D1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s9
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s9) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Autophagy (2014) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 RPS27A抗体(Santa Cruz, P4D1)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫印迹在人类样本上 (图 5). J Cell Sci (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signalling, 3936)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Cell Biochem (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫细胞化学; roundworm ; 图 4
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling Technology, 3936s)被用于被用于免疫细胞化学在roundworm 样本上 (图 4). Autophagy (2014) ncbi
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 RPS27A抗体(Abcam, P4D1)被用于被用于免疫印迹在人类样本上 (图 3). Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling Technologies, P4D1)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling Technology, 3936)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2014) ncbi
小鼠 单克隆(P4D1)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Free Radic Biol Med (2014) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 RPS27A抗体(Cell Signaling, 3936)被用于被用于免疫印迹在人类样本上. J Appl Physiol (1985) (2012) ncbi
丹科医疗器械技术服务(上海)有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 6f
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 6f). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 4a
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4a). Am J Pathol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1c
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, z0458)被用于被用于免疫印迹在小鼠样本上 (图 1c). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫印迹在人类样本上 (图 4b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于. Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 5a
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 5a). Mol Neurobiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 2
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z 0458)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 2). Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 s2
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 s2). Mol Neurodegener (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 6
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(DAKO, Z0458)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫印迹在人类样本上 (图 5). Biochem Biophys Res Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z 0458)被用于被用于免疫印迹在人类样本上 (图 3). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 s2
  • 免疫印迹; 小鼠; 1:3000; 图 1
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s2) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1). Am J Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 4
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(DAKO, Z0458)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 4). Hum Mol Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:25,000; 图 7
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫印迹在小鼠样本上浓度为1:25,000 (图 7). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z045801-5)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
MBL International
  • 免疫细胞化学; 人类; 图 3d
MBL International RPS27A抗体(MBL, D058-3)被用于被用于免疫细胞化学在人类样本上 (图 3d). J Cell Biol (2020) ncbi
  • 免疫细胞化学; 人类; 1:100; 图 s4
MBL International RPS27A抗体(MBL, D058-3)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s4). Nat Commun (2020) ncbi
  • 免疫细胞化学; 人类; 1:500; 图 1b
  • 免疫印迹; 人类; 1:1000; 图 1g
MBL International RPS27A抗体(MBL, D0583)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1g). EMBO J (2018) ncbi
  • 免疫组化; 小鼠; 1:500; 图 4b
  • 免疫印迹; 小鼠; 1:1000; 图 4a
MBL International RPS27A抗体(MBL, D058-3)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). J Neurochem (2018) ncbi
  • 免疫印迹; 人类; 图 s5h
MBL International RPS27A抗体(MBL International, D058-3)被用于被用于免疫印迹在人类样本上 (图 s5h). Curr Biol (2017) ncbi
MBL International RPS27A抗体(MBL, D058-3)被用于. Nat Commun (2016) ncbi
  • 免疫印迹; 小鼠; 1:1000; 图 6
MBL International RPS27A抗体(Wooburn, D058-3)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Aging Cell (2016) ncbi
  • 免疫印迹; 人类; 图 3
MBL International RPS27A抗体(MBL, D058-3)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2016) ncbi
  • 免疫印迹; 小鼠; 图 4
MBL International RPS27A抗体(MBL, D058-3)被用于被用于免疫印迹在小鼠样本上 (图 4). Autophagy (2014) ncbi
碧迪BD
小鼠 单克隆(6C1.17)
  • 流式细胞仪; 小鼠; 图 4k
碧迪BD RPS27A抗体(BD Biosciences, 550944)被用于被用于流式细胞仪在小鼠样本上 (图 4k). Cell Res (2020) ncbi
小鼠 单克隆(6C1.17)
  • 免疫印迹; 人类; 图 2a
碧迪BD RPS27A抗体(BD Biosciences, 6C1.17)被用于被用于免疫印迹在人类样本上 (图 2a). PLoS Pathog (2020) ncbi
小鼠 单克隆(6C1.17)
  • 免疫印迹; 人类; 图 5
碧迪BD RPS27A抗体(BD Pharmingen, 550944)被用于被用于免疫印迹在人类样本上 (图 5). EMBO Rep (2016) ncbi
小鼠 单克隆(6C1.17)
  • 免疫细胞化学; 人类
碧迪BD RPS27A抗体(BD Transduction, 550944)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2015) ncbi
小鼠 单克隆(6C1.17)
  • 免疫印迹; 人类
碧迪BD RPS27A抗体(BD, 550944)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(6C1.17)
  • 免疫沉淀; fruit fly ; 图 5
碧迪BD RPS27A抗体(BD Biosciences, 6C1.17)被用于被用于免疫沉淀在fruit fly 样本上 (图 5). Nat Commun (2014) ncbi
小鼠 单克隆(6C1.17)
  • 免疫印迹; 人类; 图 7d
碧迪BD RPS27A抗体(BD, 550944)被用于被用于免疫印迹在人类样本上 (图 7d). Oncotarget (2014) ncbi
小鼠 单克隆(6C1.17)
  • 免疫印迹; 小鼠
碧迪BD RPS27A抗体(BD, 550944)被用于被用于免疫印迹在小鼠样本上. Oncogene (2015) ncbi
文章列表
  1. Wang Z, Chen J, Wu X, Ma D, Zhang X, Li R, et al. PCV2 targets cGAS to inhibit type I interferon induction to promote other DNA virus infection. PLoS Pathog. 2021;17:e1009940 pubmed 出版商
  2. Cui M, Atmanli A, Morales M, Tan W, Chen K, Xiao X, et al. Nrf1 promotes heart regeneration and repair by regulating proteostasis and redox balance. Nat Commun. 2021;12:5270 pubmed 出版商
  3. Yoon Y, Go G, Yoon S, Lim J, Lee G, Lee J, et al. Melatonin Treatment Improves Renal Fibrosis via miR-4516/SIAH3/PINK1 Axis. Cells. 2021;10: pubmed 出版商
  4. Ye Z, Xu S, Shi Y, Bacolla A, Syed A, Moiani D, et al. GRB2 enforces homology-directed repair initiation by MRE11. Sci Adv. 2021;7: pubmed 出版商
  5. Sun M, Li J, Mao L, Wu J, Deng Z, He M, et al. p53 Deacetylation Alleviates Sepsis-Induced Acute Kidney Injury by Promoting Autophagy. Front Immunol. 2021;12:685523 pubmed 出版商
  6. Saltykova I, Elahi A, Pitale P, Gorbatyuk O, Athar M, Gorbatyuk M. Tribbles homolog 3-mediated targeting the AKT/mTOR axis in mice with retinal degeneration. Cell Death Dis. 2021;12:664 pubmed 出版商
  7. López Doménech G, Howden J, Covill Cooke C, Morfill C, Patel J, Bürli R, et al. Loss of neuronal Miro1 disrupts mitophagy and induces hyperactivation of the integrated stress response. EMBO J. 2021;40:e100715 pubmed 出版商
  8. Iampietro M, Dumont C, Mathieu C, Spanier J, Robert J, Charpenay A, et al. Activation of cGAS/STING pathway upon paramyxovirus infection. iScience. 2021;24:102519 pubmed 出版商
  9. Rupert J, Narasimhan A, Jengelley D, Jiang Y, Liu J, Au E, et al. Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia. J Exp Med. 2021;218: pubmed 出版商
  10. Xia X, Huang C, Liao Y, Liu Y, He J, Shao Z, et al. The deubiquitinating enzyme USP15 stabilizes ERα and promotes breast cancer progression. Cell Death Dis. 2021;12:329 pubmed 出版商
  11. Cai H, Yu Y, Ni X, Li C, Hu Y, Wang J, et al. LncRNA LINC00998 inhibits the malignant glioma phenotype via the CBX3-mediated c-Met/Akt/mTOR axis. Cell Death Dis. 2020;11:1032 pubmed 出版商
  12. Zhang W, Tao S, Wang T, Zhang J, Liu X, Li Y, et al. ABRO1 stabilizes the deubiquitinase BRCC3 through inhibiting its degradation mediated by the E3 ubiquitin ligase WWP2. FEBS Lett. 2021;595:169-182 pubmed 出版商
  13. Zhou S, Zhang W, Cai G, Ding Y, Wei C, Li S, et al. Myofiber necroptosis promotes muscle stem cell proliferation via releasing Tenascin-C during regeneration. Cell Res. 2020;30:1063-1077 pubmed 出版商
  14. Vatapalli R, Sagar V, Rodriguez Y, Zhao J, Unno K, Pamarthy S, et al. Histone methyltransferase DOT1L coordinates AR and MYC stability in prostate cancer. Nat Commun. 2020;11:4153 pubmed 出版商
  15. Osei Amponsa V, Sridharan V, Tandon M, Evans C, Klarmann K, Cheng K, et al. Impact of losing hRpn13 Pru or UCHL5 on proteasome clearance of ubiquitinated proteins and RA190 cytotoxicity. Mol Cell Biol. 2020;: pubmed 出版商
  16. Yamano K, Kikuchi R, Kojima W, Hayashida R, Koyano F, Kawawaki J, et al. Critical role of mitochondrial ubiquitination and the OPTN-ATG9A axis in mitophagy. J Cell Biol. 2020;219: pubmed 出版商
  17. Liu J, Liu Z, Wu Q, Lu Y, Wong C, Miao L, et al. Long noncoding RNA AGPG regulates PFKFB3-mediated tumor glycolytic reprogramming. Nat Commun. 2020;11:1507 pubmed 出版商
  18. Wang W, Hu D, Wu C, Feng Y, Li A, Liu W, et al. STING promotes NLRP3 localization in ER and facilitates NLRP3 deubiquitination to activate the inflammasome upon HSV-1 infection. PLoS Pathog. 2020;16:e1008335 pubmed 出版商
  19. Gain C, Malik S, Bhattacharjee S, Ghosh A, Robertson E, Das B, et al. Proteasomal inhibition triggers viral oncoprotein degradation via autophagy-lysosomal pathway. PLoS Pathog. 2020;16:e1008105 pubmed 出版商
  20. Wang X, Ma M, Zhou L, Jiang X, Hao M, Teng R, et al. Autonomic ganglionic injection of α-synuclein fibrils as a model of pure autonomic failure α-synucleinopathy. Nat Commun. 2020;11:934 pubmed 出版商
  21. Park J, Burckhardt C, Lazcano R, Solis L, Isogai T, Li L, et al. Mechanical regulation of glycolysis via cytoskeleton architecture. Nature. 2020;578:621-626 pubmed 出版商
  22. Kabayama H, Takeuchi M, Tokushige N, Muramatsu S, Kabayama M, Fukuda M, et al. An ultra-stable cytoplasmic antibody engineered for in vivo applications. Nat Commun. 2020;11:336 pubmed 出版商
  23. Kwan S, Au Yeung C, Yeung T, Rynne Vidal A, Wong K, Risinger J, et al. Ubiquitin Carboxyl-Terminal Hydrolase L1 (UCHL1) Promotes Uterine Serous Cancer Cell Proliferation and Cell Cycle Progression. Cancers (Basel). 2020;12: pubmed 出版商
  24. Zhou H, Zeng H, Yuan D, Ren J, Cheng S, Yu H, et al. NQO1 potentiates apoptosis evasion and upregulates XIAP via inhibiting proteasome-mediated degradation SIRT6 in hepatocellular carcinoma. Cell Commun Signal. 2019;17:168 pubmed 出版商
  25. Wall C, Rose C, Adrian M, Zeng Y, Kirkpatrick D, Bingol B. PPEF2 Opposes PINK1-Mediated Mitochondrial Quality Control by Dephosphorylating Ubiquitin. Cell Rep. 2019;29:3280-3292.e7 pubmed 出版商
  26. Zhang Y, Thery F, Wu N, Luhmann E, Dussurget O, Foecke M, et al. The in vivo ISGylome links ISG15 to metabolic pathways and autophagy upon Listeria monocytogenes infection. Nat Commun. 2019;10:5383 pubmed 出版商
  27. Chen Z, Sun X, Chen Q, Lan T, Huang K, Xiao H, et al. Connexin32 ameliorates renal fibrosis in diabetic mice by promoting K48-linked Nox4 polyubiquitination and degradation via the inhibition of Smurf1 expression. Br J Pharmacol. 2019;: pubmed 出版商
  28. Yang Y, Willis T, Button R, Strang C, Fu Y, Wen X, et al. Cytoplasmic DAXX drives SQSTM1/p62 phase condensation to activate Nrf2-mediated stress response. Nat Commun. 2019;10:3759 pubmed 出版商
  29. Swatek K, Usher J, Kueck A, Gladkova C, Mevissen T, Pruneda J, et al. Insights into ubiquitin chain architecture using Ub-clipping. Nature. 2019;572:533-537 pubmed 出版商
  30. Dorsch L, Schuldt M, dos Remedios C, Schinkel A, de Jong P, Michels M, et al. Protein Quality Control Activation and Microtubule Remodeling in Hypertrophic Cardiomyopathy. Cells. 2019;8: pubmed 出版商
  31. Kabir S, Cidado J, Andersen C, Dick C, Lin P, Mitros T, et al. The CUL5 ubiquitin ligase complex mediates resistance to CDK9 and MCL1 inhibitors in lung cancer cells. elife. 2019;8: pubmed 出版商
  32. Lim J, Park H, Heisler J, Maculins T, Roose Girma M, Xu M, et al. Autophagy regulates inflammatory programmed cell death via turnover of RHIM-domain proteins. elife. 2019;8: pubmed 出版商
  33. An D, Fujiki R, Iannitelli D, Smerdon J, Maity S, Rose M, et al. Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons. elife. 2019;8: pubmed 出版商
  34. Yang S, Harding A, Sweeney C, Miao D, Swan G, Zhou C, et al. Control of antiviral innate immune response by protein geranylgeranylation. Sci Adv. 2019;5:eaav7999 pubmed 出版商
  35. Lee L, Seager R, Nakamura Y, Wilkinson K, Henley J. Parkin-mediated ubiquitination contributes to the constitutive turnover of mitochondrial fission factor (Mff). PLoS ONE. 2019;14:e0213116 pubmed 出版商
  36. Lee Y, Chen M, Lee J, Zhang J, Lin S, Fu T, et al. Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science. 2019;364: pubmed 出版商
  37. Brody M, Vanhoutte D, Bakshi C, Liu R, Correll R, Sargent M, et al. Disruption of valosin-containing protein activity causes cardiomyopathy and reveals pleiotropic functions in cardiac homeostasis. J Biol Chem. 2019;294:8918-8929 pubmed 出版商
  38. Sandstrom A, Mitchell P, Goers L, Mu E, Lesser C, Vance R. Functional degradation: A mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes. Science. 2019;364: pubmed 出版商
  39. Zhao Y, Yu Y, Li H, Zhang Z, Guo S, Zhu S, et al. FAM175B promotes apoptosis by inhibiting ATF4 ubiquitination in esophageal squamous cell carcinoma. Mol Oncol. 2019;13:1150-1165 pubmed 出版商
  40. Ganeshan K, Nikkanen J, Man K, Leong Y, Sogawa Y, Maschek J, et al. Energetic Trade-Offs and Hypometabolic States Promote Disease Tolerance. Cell. 2019;: pubmed 出版商
  41. Carballo Carbajal I, Laguna A, Romero Gimenez J, Cuadros T, Bove J, Martinez Vicente M, et al. Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis. Nat Commun. 2019;10:973 pubmed 出版商
  42. Majumdar T, Sharma S, Kumar M, Hussain M, Chauhan N, Kalia I, et al. Tryptophan-kynurenine pathway attenuates β-catenin-dependent pro-parasitic role of STING-TICAM2-IRF3-IDO1 signalosome in Toxoplasma gondii infection. Cell Death Dis. 2019;10:161 pubmed 出版商
  43. Qiu L, Wang M, Hu S, Ru X, Ren Y, Zhang Z, et al. Oncogenic Activation of Nrf2, Though as a Master Antioxidant Transcription Factor, Liberated by Specific Knockout of the Full-Length Nrf1α that Acts as a Dominant Tumor Repressor. Cancers (Basel). 2018;10: pubmed 出版商
  44. Signes A, Cerutti R, Dickson A, Benincá C, Hinchy E, Ghezzi D, et al. APOPT1/COA8 assists COX assembly and is oppositely regulated by UPS and ROS. EMBO Mol Med. 2019;11: pubmed 出版商
  45. Turowec J, Lau E, Wang X, Brown K, Fellouse F, Jawanda K, et al. Functional genomic characterization of a synthetic anti-HER3 antibody reveals a role for ubiquitination by RNF41 in the anti-proliferative response. J Biol Chem. 2019;294:1396-1409 pubmed 出版商
  46. Lee Y, Huang W, Lin J, Kao T, Lin H, Lee K, et al. Znf179 E3 ligase-mediated TDP-43 polyubiquitination is involved in TDP-43- ubiquitinated inclusions (UBI) (+)-related neurodegenerative pathology. J Biomed Sci. 2018;25:76 pubmed 出版商
  47. Li L, Guturi K, Gautreau B, Patel P, Saad A, Morii M, et al. Ubiquitin ligase RNF8 suppresses Notch signaling to regulate mammary development and tumorigenesis. J Clin Invest. 2018;128:4525-4542 pubmed 出版商
  48. Jena K, Kolapalli S, Mehto S, Nath P, Das B, Sahoo P, et al. TRIM16 controls assembly and degradation of protein aggregates by modulating the p62-NRF2 axis and autophagy. EMBO J. 2018;37: pubmed 出版商
  49. Deng Y, Jiang B, Rankin C, Toyo oka K, Richter M, Maupin Furlow J, et al. Methionine sulfoxide reductase A (MsrA) mediates the ubiquitination of 14-3-3 protein isotypes in brain. Free Radic Biol Med. 2018;129:600-607 pubmed 出版商
  50. Watanabe S, Komine O, Endo F, Wakasugi K, Yamanaka K. Intracerebroventricular administration of Cystatin C ameliorates disease in SOD1-linked amyotrophic lateral sclerosis mice. J Neurochem. 2018;145:80-89 pubmed 出版商
  51. Lee S, Bazick H, Chittoor Vinod V, Al Salihi M, Xia G, Notterpek L. Elevated Peripheral Myelin Protein 22, Reduced Mitotic Potential, and Proteasome Impairment in Dermal Fibroblasts from Charcot-Marie-Tooth Disease Type 1A Patients. Am J Pathol. 2018;188:728-738 pubmed 出版商
  52. Zhao T, Hong Y, Yin P, Li S, Li X. Differential HspBP1 expression accounts for the greater vulnerability of neurons than astrocytes to misfolded proteins. Proc Natl Acad Sci U S A. 2017;114:E7803-E7811 pubmed 出版商
  53. Guan W, Guyot R, Samarut J, Flamant F, Wong J, Gauthier K. Methylcytosine dioxygenase TET3 interacts with thyroid hormone nuclear receptors and stabilizes their association to chromatin. Proc Natl Acad Sci U S A. 2017;114:8229-8234 pubmed 出版商
  54. Joachim J, Razi M, Judith D, Wirth M, Calamita E, Encheva V, et al. Centriolar Satellites Control GABARAP Ubiquitination and GABARAP-Mediated Autophagy. Curr Biol. 2017;27:2123-2136.e7 pubmed 出版商
  55. Lingel H, Wissing J, Arra A, Schanze D, Lienenklaus S, Klawonn F, et al. CTLA-4-mediated posttranslational modifications direct cytotoxic T-lymphocyte differentiation. Cell Death Differ. 2017;24:1739-1749 pubmed 出版商
  56. Xu J, Kurup P, Nairn A, Lombroso P. Synaptic NMDA Receptor Activation Induces Ubiquitination and Degradation of STEP61. Mol Neurobiol. 2018;55:3096-3111 pubmed 出版商
  57. Wei X, Wang X, Zhan J, Chen Y, Fang W, Zhang L, et al. Smurf1 inhibits integrin activation by controlling Kindlin-2 ubiquitination and degradation. J Cell Biol. 2017;216:1455-1471 pubmed 出版商
  58. Defenouillère Q, Namane A, Mouaikel J, Jacquier A, Fromont Racine M. The ribosome-bound quality control complex remains associated to aberrant peptides during their proteasomal targeting and interacts with Tom1 to limit protein aggregation. Mol Biol Cell. 2017;28:1165-1176 pubmed 出版商
  59. Liu H, Wang K, Chen S, Sun Q, Zhang Y, Chen L, et al. NFATc1 phosphorylation by DYRK1A increases its protein stability. PLoS ONE. 2017;12:e0172985 pubmed 出版商
  60. Aukrust I, Rosenberg L, Ankerud M, Bertelsen V, Hollås H, Saraste J, et al. Post-translational modifications of Annexin A2 are linked to its association with perinuclear nonpolysomal mRNP complexes. FEBS Open Bio. 2017;7:160-173 pubmed 出版商
  61. Dadson K, Hauck L, Hao Z, Grothe D, Rao V, Mak T, et al. The E3 ligase Mule protects the heart against oxidative stress and mitochondrial dysfunction through Myc-dependent inactivation of Pgc-1α and Pink1. Sci Rep. 2017;7:41490 pubmed 出版商
  62. Xiang J, Yang S, Xin N, Gaertig M, Reeves R, Li S, et al. DYRK1A regulates Hap1-Dcaf7/WDR68 binding with implication for delayed growth in Down syndrome. Proc Natl Acad Sci U S A. 2017;114:E1224-E1233 pubmed 出版商
  63. Shibata Y, Tokunaga F, Goto E, Komatsu G, Gohda J, Saeki Y, et al. HTLV-1 Tax Induces Formation of the Active Macromolecular IKK Complex by Generating Lys63- and Met1-Linked Hybrid Polyubiquitin Chains. PLoS Pathog. 2017;13:e1006162 pubmed 出版商
  64. Li G, Fu R, Shen H, Zhou J, Hu X, Liu Y, et al. Polyphyllin I induces mitophagic and apoptotic cell death in human breast cancer cells by increasing mitochondrial PINK1 levels. Oncotarget. 2017;8:10359-10374 pubmed 出版商
  65. Falfushynska H, Phan T, Sokolova I. Long-Term Acclimation to Different Thermal Regimes Affects Molecular Responses to Heat Stress in a Freshwater Clam Corbicula Fluminea. Sci Rep. 2016;6:39476 pubmed 出版商
  66. Oh E, Kim J, Kim J, Kim S, Lee J, Hong S, et al. NQO1 inhibits proteasome-mediated degradation of HIF-1α. Nat Commun. 2016;7:13593 pubmed 出版商
  67. Ding X, Barodia S, Ma L, Goldberg M. Fbxl18 targets LRRK2 for proteasomal degradation and attenuates cell toxicity. Neurobiol Dis. 2017;98:122-136 pubmed 出版商
  68. Brykczynska U, Pecho Vrieseling E, Thiemeyer A, Klein J, Fruh I, Doll T, et al. CGG Repeat-Induced FMR1 Silencing Depends on the Expansion Size in Human iPSCs and Neurons Carrying Unmethylated Full Mutations. Stem Cell Reports. 2016;7:1059-1071 pubmed 出版商
  69. Myöhänen T, Norrbacka S, Savolainen M. Prolyl oligopeptidase inhibition attenuates the toxicity of a proteasomal inhibitor, lactacystin, in the alpha-synuclein overexpressing cell culture. Neurosci Lett. 2017;636:83-89 pubmed 出版商
  70. Huang Z, Her L. The Ubiquitin Receptor ADRM1 Modulates HAP40-Induced Proteasome Activity. Mol Neurobiol. 2017;54:7382-7400 pubmed 出版商
  71. McKelvey A, Lear T, Dunn S, Evankovich J, Londino J, Bednash J, et al. RING finger E3 ligase PPP1R11 regulates TLR2 signaling and innate immunity. elife. 2016;5: pubmed 出版商
  72. Yang Y, Yang C, Chan W, Wang Z, Deibel K, Pomerantz J. Molecular Determinants of Scaffold-induced Linear Ubiquitinylation of B Cell Lymphoma/Leukemia 10 (Bcl10) during T Cell Receptor and Oncogenic Caspase Recruitment Domain-containing Protein 11 (CARD11) Signaling. J Biol Chem. 2016;291:25921-25936 pubmed
  73. Hu Z, Wang J, Yu D, Soon J, de Kleijn D, Foo R, et al. Aberrant Splicing Promotes Proteasomal Degradation of L-type CaV1.2 Calcium Channels by Competitive Binding for CaVβ Subunits in Cardiac Hypertrophy. Sci Rep. 2016;6:35247 pubmed 出版商
  74. Ding S, Mooney N, Li B, Kelly M, Feng N, Loktev A, et al. Comparative Proteomics Reveals Strain-Specific β-TrCP Degradation via Rotavirus NSP1 Hijacking a Host Cullin-3-Rbx1 Complex. PLoS Pathog. 2016;12:e1005929 pubmed 出版商
  75. Fullbright G, Rycenga H, Gruber J, Long D. p97 Promotes a Conserved Mechanism of Helicase Unloading during DNA Cross-Link Repair. Mol Cell Biol. 2016;36:2983-2994 pubmed 出版商
  76. Wu Q, Yang X, Zhang Y, Zhang L, Feng L. Chronic mild stress accelerates the progression of Parkinson's disease in A53T ?-synuclein transgenic mice. Exp Neurol. 2016;285:61-71 pubmed 出版商
  77. Damgaard R, Walker J, Marco Casanova P, Morgan N, Titheradge H, Elliott P, et al. The Deubiquitinase OTULIN Is an Essential Negative Regulator of Inflammation and Autoimmunity. Cell. 2016;166:1215-1230.e20 pubmed 出版商
  78. Baumann C, Liu H, Thompson L. Denervation-Induced Activation of the Ubiquitin-Proteasome System Reduces Skeletal Muscle Quantity Not Quality. PLoS ONE. 2016;11:e0160839 pubmed 出版商
  79. Hjerpe R, Bett J, Keuss M, Solovyova A, McWilliams T, Johnson C, et al. UBQLN2 Mediates Autophagy-Independent Protein Aggregate Clearance by the Proteasome. Cell. 2016;166:935-949 pubmed 出版商
  80. Alves S, Marais T, Biferi M, Furling D, Marinello M, El Hachimi K, et al. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener. 2016;11:58 pubmed 出版商
  81. Rousseau A, Bertolotti A. An evolutionarily conserved pathway controls proteasome homeostasis. Nature. 2016;536:184-9 pubmed
  82. Villarroel Campos D, Henríquez D, Bodaleo F, Oguchi M, Bronfman F, Fukuda M, et al. Rab35 Functions in Axon Elongation Are Regulated by P53-Related Protein Kinase in a Mechanism That Involves Rab35 Protein Degradation and the Microtubule-Associated Protein 1B. J Neurosci. 2016;36:7298-313 pubmed 出版商
  83. Mo Z, Zhang Q, Liu Z, Lauer J, Shi Y, Sun L, et al. Neddylation requires glycyl-tRNA synthetase to protect activated E2. Nat Struct Mol Biol. 2016;23:730-7 pubmed 出版商
  84. Wijdeven R, Janssen H, Nahidiazar L, Janssen L, Jalink K, Berlin I, et al. Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway. Nat Commun. 2016;7:11808 pubmed 出版商
  85. Lin W, Zhang J, Lin H, Li Z, Sun X, Xin D, et al. Syndecan-4 negatively regulates antiviral signalling by mediating RIG-I deubiquitination via CYLD. Nat Commun. 2016;7:11848 pubmed 出版商
  86. Bento C, Ashkenazi A, Jimenez Sanchez M, Rubinsztein D. The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway. Nat Commun. 2016;7:11803 pubmed 出版商
  87. Li W, Yao A, Zhi H, Kaur K, Zhu Y, Jia M, et al. Angelman Syndrome Protein Ube3a Regulates Synaptic Growth and Endocytosis by Inhibiting BMP Signaling in Drosophila. PLoS Genet. 2016;12:e1006062 pubmed 出版商
  88. Trousil S, Kaliszczak M, Schug Z, Nguyen Q, Tomasi G, Favicchio R, et al. The novel choline kinase inhibitor ICL-CCIC-0019 reprograms cellular metabolism and inhibits cancer cell growth. Oncotarget. 2016;7:37103-37120 pubmed 出版商
  89. Bayram Weston Z, Jones L, Dunnett S, Brooks S. Comparison of mHTT Antibodies in Huntington's Disease Mouse Models Reveal Specific Binding Profiles and Steady-State Ubiquitin Levels with Disease Development. PLoS ONE. 2016;11:e0155834 pubmed 出版商
  90. Maure J, Moser S, Jaffray E, F Alpi A, Hay R. Loss of ubiquitin E2 Ube2w rescues hypersensitivity of Rnf4 mutant cells to DNA damage. Sci Rep. 2016;6:26178 pubmed 出版商
  91. Emmerich C, Bakshi S, Kelsall I, Ortiz Guerrero J, Shpiro N, Cohen P. Lys63/Met1-hybrid ubiquitin chains are commonly formed during the activation of innate immune signalling. Biochem Biophys Res Commun. 2016;474:452-461 pubmed 出版商
  92. Zhang J, Lachance V, Schaffner A, Li X, Fedick A, Kaye L, et al. A Founder Mutation in VPS11 Causes an Autosomal Recessive Leukoencephalopathy Linked to Autophagic Defects. PLoS Genet. 2016;12:e1005848 pubmed 出版商
  93. Swiader A, Nahapetyan H, Faccini J, D Angelo R, Mucher E, Elbaz M, et al. Mitophagy acts as a safeguard mechanism against human vascular smooth muscle cell apoptosis induced by atherogenic lipids. Oncotarget. 2016;7:28821-35 pubmed 出版商
  94. Surana P, Das R. Observing a late folding intermediate of Ubiquitin at atomic resolution by NMR. Protein Sci. 2016;25:1438-50 pubmed 出版商
  95. Rodriguez Ortiz C, Flores J, Valenzuela J, Rodriguez G, Zumkehr J, Tran D, et al. The Myoblast C2C12 Transfected with Mutant Valosin-Containing Protein Exhibits Delayed Stress Granule Resolution on Oxidative Stress. Am J Pathol. 2016;186:1623-34 pubmed 出版商
  96. Basisty N, Dai D, Gagnidze A, Gitari L, Fredrickson J, Maina Y, et al. Mitochondrial-targeted catalase is good for the old mouse proteome, but not for the young: 'reverse' antagonistic pleiotropy?. Aging Cell. 2016;15:634-45 pubmed 出版商
  97. Jo S, Lee Y, Kim S, Lee H, Chung H. PCGF2 negatively regulates arsenic trioxide-induced PML-RARA protein degradation via UBE2I inhibition in NB4 cells. Biochim Biophys Acta. 2016;1863:1499-509 pubmed 出版商
  98. Ranjan K, Pathak C. FADD regulates NF-κB activation and promotes ubiquitination of cFLIPL to induce apoptosis. Sci Rep. 2016;6:22787 pubmed 出版商
  99. Di X, Wang Y, Han D, Fu Y, Duerfeldt A, Blagg B, et al. Grp94 Protein Delivers γ-Aminobutyric Acid Type A (GABAA) Receptors to Hrd1 Protein-mediated Endoplasmic Reticulum-associated Degradation. J Biol Chem. 2016;291:9526-39 pubmed 出版商
  100. Naik E, Dixit V. Usp9X Is Required for Lymphocyte Activation and Homeostasis through Its Control of ZAP70 Ubiquitination and PKCβ Kinase Activity. J Immunol. 2016;196:3438-51 pubmed 出版商
  101. Yu L, Wu W, Gu C, Zhong D, Zhao X, Kong Y, et al. Obatoclax impairs lysosomal function to block autophagy in cisplatin-sensitive and -resistant esophageal cancer cells. Oncotarget. 2016;7:14693-707 pubmed 出版商
  102. Polyzos A, Holt A, Brown C, Cosme C, Wipf P, Gomez Marin A, et al. Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes. Hum Mol Genet. 2016;25:1792-802 pubmed 出版商
  103. Li M, Lu G, Hu J, Shen X, Ju J, Gao Y, et al. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy. Stem Cell Reports. 2016;6:396-410 pubmed 出版商
  104. Olsen C, Markussen T, Thiede B, Rimstad E. Infectious Salmon Anaemia Virus (ISAV) RNA Binding Protein Encoded by Segment 8 ORF2 and Its Interaction with ISAV and Intracellular Proteins. Viruses. 2016;8: pubmed 出版商
  105. Liu X, Tan Y, Zhang C, Zhang Y, Zhang L, Ren P, et al. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2. EMBO Rep. 2016;17:349-66 pubmed 出版商
  106. Lei Y, Kansy B, Li J, Cong L, Liu Y, Trivedi S, et al. EGFR-targeted mAb therapy modulates autophagy in head and neck squamous cell carcinoma through NLRX1-TUFM protein complex. Oncogene. 2016;35:4698-707 pubmed 出版商
  107. Tai D, Liu Y, Hsu W, Ma Y, Cheng S, Liu S, et al. MeCP2 SUMOylation rescues Mecp2-mutant-induced behavioural deficits in a mouse model of Rett syndrome. Nat Commun. 2016;7:10552 pubmed 出版商
  108. Bühler A, Kustermann M, Bummer T, Rottbauer W, Sandri M, Just S. Atrogin-1 Deficiency Leads to Myopathy and Heart Failure in Zebrafish. Int J Mol Sci. 2016;17: pubmed 出版商
  109. Kwon D, Eom G, Ko J, Shin S, Joung H, Choe N, et al. MDM2 E3 ligase-mediated ubiquitination and degradation of HDAC1 in vascular calcification. Nat Commun. 2016;7:10492 pubmed 出版商
  110. Tokuda E, Brännström T, Andersen P, Marklund S. Low autophagy capacity implicated in motor system vulnerability to mutant superoxide dismutase. Acta Neuropathol Commun. 2016;4:6 pubmed 出版商
  111. Wolfsperger F, Hogh Binder S, Schittenhelm J, Psaras T, Ritter V, Bornes L, et al. Deubiquitylating enzyme USP9x regulates radiosensitivity in glioblastoma cells by Mcl-1-dependent and -independent mechanisms. Cell Death Dis. 2016;7:e2039 pubmed 出版商
  112. Mark K, Loveless T, Toczyski D. Isolation of ubiquitinated substrates by tandem affinity purification of E3 ligase-polyubiquitin-binding domain fusions (ligase traps). Nat Protoc. 2016;11:291-301 pubmed 出版商
  113. Bouché V, Espinosa A, Leone L, Sardiello M, Ballabio A, Botas J. Drosophila Mitf regulates the V-ATPase and the lysosomal-autophagic pathway. Autophagy. 2016;12:484-98 pubmed 出版商
  114. Han X, Zha Z, Yuan H, Feng X, Xia Y, Lei Q, et al. KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation. Oncogene. 2016;35:4179-90 pubmed 出版商
  115. Slowicka K, Vereecke L, Mc Guire C, Sze M, Maelfait J, Kolpe A, et al. Optineurin deficiency in mice is associated with increased sensitivity to Salmonella but does not affect proinflammatory NF-κB signaling. Eur J Immunol. 2016;46:971-80 pubmed 出版商
  116. Schwab A, Ebert A. Neurite Aggregation and Calcium Dysfunction in iPSC-Derived Sensory Neurons with Parkinson's Disease-Related LRRK2 G2019S Mutation. Stem Cell Reports. 2015;5:1039-1052 pubmed 出版商
  117. Sin Y, Tanaka K, Saijo M. The C-terminal Region and SUMOylation of Cockayne Syndrome Group B Protein Play Critical Roles in Transcription-coupled Nucleotide Excision Repair. J Biol Chem. 2016;291:1387-97 pubmed 出版商
  118. Kim M, Kim M, Park S, Lee C, Lim D. Role of Angiomotin-like 2 mono-ubiquitination on YAP inhibition. EMBO Rep. 2016;17:64-78 pubmed 出版商
  119. Ramiscal R, Parish I, Lee Young R, Babon J, Blagih J, Pratama A, et al. Attenuation of AMPK signaling by ROQUIN promotes T follicular helper cell formation. elife. 2015;4: pubmed 出版商
  120. Asano S, Arvapalli R, Manne N, Maheshwari M, Ma B, Rice K, et al. Cerium oxide nanoparticle treatment ameliorates peritonitis-induced diaphragm dysfunction. Int J Nanomedicine. 2015;10:6215-25 pubmed 出版商
  121. Du J, Ge X, Liu Y, Jiang P, Wang Z, Zhang R, et al. Targeting Swine Leukocyte Antigen Class I Molecules for Proteasomal Degradation by the nsp1α Replicase Protein of the Chinese Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Strain JXwn06. J Virol. 2016;90:682-93 pubmed 出版商
  122. Sokolova V, Li F, Polovin G, Park S. Proteasome Activation is Mediated via a Functional Switch of the Rpt6 C-terminal Tail Following Chaperone-dependent Assembly. Sci Rep. 2015;5:14909 pubmed 出版商
  123. Kuo H, Hsu H, Chen Y, Chang Y, Liu F, Wu C. Galectin-3 modulates the EGFR signalling-mediated regulation of Sox2 expression via c-Myc in lung cancer. Glycobiology. 2016;26:155-65 pubmed 出版商
  124. Kren N, Zagon I, McLaughlin P. Featured Article: Nuclear export of opioid growth factor receptor is CRM1 dependent. Exp Biol Med (Maywood). 2016;241:273-81 pubmed 出版商
  125. Geng J, Sun X, Wang P, Zhang S, Wang X, Wu H, et al. Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nat Immunol. 2015;16:1142-52 pubmed 出版商
  126. Gilda J, Ghosh R, Cheah J, West T, Bodine S, Gomes A. Western Blotting Inaccuracies with Unverified Antibodies: Need for a Western Blotting Minimal Reporting Standard (WBMRS). PLoS ONE. 2015;10:e0135392 pubmed 出版商
  127. Chiang C, Uzoma I, Lane D, MemiÅ¡ević V, Alem F, Yao K, et al. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection. Front Microbiol. 2015;6:683 pubmed 出版商
  128. Vertii A, Zimmerman W, Ivshina M, Doxsey S. Centrosome-intrinsic mechanisms modulate centrosome integrity during fever. Mol Biol Cell. 2015;26:3451-63 pubmed 出版商
  129. Capuani F, Conte A, Argenzio E, Marchetti L, Priami C, Polo S, et al. Quantitative analysis reveals how EGFR activation and downregulation are coupled in normal but not in cancer cells. Nat Commun. 2015;6:7999 pubmed 出版商
  130. Drießen S, Berleth N, Friesen O, Löffler A, Böhler P, Hieke N, et al. Deubiquitinase inhibition by WP1130 leads to ULK1 aggregation and blockade of autophagy. Autophagy. 2015;11:1458-70 pubmed 出版商
  131. Wang X, Chen X. A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death. Nature. 2015;524:481-4 pubmed 出版商
  132. Phan L, Chou P, Velazquez Torres G, Samudio I, Parreno K, Huang Y, et al. The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming. Nat Commun. 2015;6:7530 pubmed 出版商
  133. Zhu S, Chen Z, Katsha A, Hong J, Belkhiri A, el Rifai W. Regulation of CD44E by DARPP-32-dependent activation of SRp20 splicing factor in gastric tumorigenesis. Oncogene. 2016;35:1847-56 pubmed 出版商
  134. Huang J, Cardamone M, JOHNSON H, Neault M, Chan M, Floyd Z, et al. Exchange Factor TBL1 and Arginine Methyltransferase PRMT6 Cooperate in Protecting G Protein Pathway Suppressor 2 (GPS2) from Proteasomal Degradation. J Biol Chem. 2015;290:19044-54 pubmed 出版商
  135. Cui W, Sun M, Galeva N, Williams T, Azuma Y, Staudinger J. SUMOylation and Ubiquitylation Circuitry Controls Pregnane X Receptor Biology in Hepatocytes. Drug Metab Dispos. 2015;43:1316-25 pubmed 出版商
  136. Fajardo V, Bombardier E, McMillan E, TRAN K, Wadsworth B, Gamu D, et al. Phospholamban overexpression in mice causes a centronuclear myopathy-like phenotype. Dis Model Mech. 2015;8:999-1009 pubmed 出版商
  137. Tang X, Chen X, Xu Y, Qiao Y, Zhang X, Wang Y, et al. CD166 positively regulates MCAM via inhibition to ubiquitin E3 ligases Smurf1 and βTrCP through PI3K/AKT and c-Raf/MEK/ERK signaling in Bel-7402 hepatocellular carcinoma cells. Cell Signal. 2015;27:1694-702 pubmed 出版商
  138. Greenfeld H, Takasaki K, Walsh M, Ersing I, Bernhardt K, Ma Y, et al. TRAF1 Coordinates Polyubiquitin Signaling to Enhance Epstein-Barr Virus LMP1-Mediated Growth and Survival Pathway Activation. PLoS Pathog. 2015;11:e1004890 pubmed 出版商
  139. Cheng J, Yang H, Fang J, Ma L, Gong R, Wang P, et al. Molecular mechanism for USP7-mediated DNMT1 stabilization by acetylation. Nat Commun. 2015;6:7023 pubmed 出版商
  140. Ehm P, Nalaskowski M, Wundenberg T, Jücker M. The tumor suppressor SHIP1 colocalizes in nucleolar cavities with p53 and components of PML nuclear bodies. Nucleus. 2015;6:154-64 pubmed 出版商
  141. Tomasovic A, Kurrle N, Sürün D, Heidler J, Husnjak K, Poser I, et al. Sestrin 2 protein regulates platelet-derived growth factor receptor β (Pdgfrβ) expression by modulating proteasomal and Nrf2 transcription factor functions. J Biol Chem. 2015;290:9738-52 pubmed 出版商
  142. Morlé A, Garrido C, Micheau O. Hyperthermia restores apoptosis induced by death receptors through aggregation-induced c-FLIP cytosolic depletion. Cell Death Dis. 2015;6:e1633 pubmed 出版商
  143. Condello C, Yuan P, Schain A, Grutzendler J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat Commun. 2015;6:6176 pubmed 出版商
  144. Lee S, Lee T, Lee E, Kang S, Park A, Kim S, et al. Identification of a subnuclear body involved in sequence-specific cytokine RNA processing. Nat Commun. 2015;6:5791 pubmed 出版商
  145. Ling X, Xu C, Fan C, Zhong K, Li F, Wang X. FL118 induces p53-dependent senescence in colorectal cancer cells by promoting degradation of MdmX. Cancer Res. 2014;74:7487-97 pubmed 出版商
  146. Zhang H, Hu H, Greeley N, Jin J, Matthews A, Ohashi E, et al. STAT3 restrains RANK- and TLR4-mediated signalling by suppressing expression of the E2 ubiquitin-conjugating enzyme Ubc13. Nat Commun. 2014;5:5798 pubmed 出版商
  147. Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden A, Lipinski M. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy. 2014;10:2208-22 pubmed 出版商
  148. Davis A, Qiao S, Lesson J, Rojo de la Vega M, Park S, Seanez C, et al. The quinone methide aurin is a heat shock response inducer that causes proteotoxic stress and Noxa-dependent apoptosis in malignant melanoma cells. J Biol Chem. 2015;290:1623-38 pubmed 出版商
  149. Gradilla A, Gonzalez E, Seijo I, Andres G, Bischoff M, González Méndez L, et al. Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat Commun. 2014;5:5649 pubmed 出版商
  150. Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci. 2015;128:397-407 pubmed 出版商
  151. Nakashima H, Nguyen T, Goins W, Chiocca E. Interferon-stimulated gene 15 (ISG15) and ISG15-linked proteins can associate with members of the selective autophagic process, histone deacetylase 6 (HDAC6) and SQSTM1/p62. J Biol Chem. 2015;290:1485-95 pubmed 出版商
  152. Chen J, Shin J, Zhao R, Phan L, Wang H, Xue Y, et al. CSN6 drives carcinogenesis by positively regulating Myc stability. Nat Commun. 2014;5:5384 pubmed 出版商
  153. Martin S, Lovat P, Redfern C. Cell-type variation in stress responses as a consequence of manipulating GRP78 expression in neuroectodermal cells. J Cell Biochem. 2015;116:438-49 pubmed 出版商
  154. Chen D, Ming L, Zou F, Peng Y, Van Houten B, Yu J, et al. TAp73 promotes cell survival upon genotoxic stress by inhibiting p53 activity. Oncotarget. 2014;5:8107-22 pubmed
  155. Guo B, Huang J, Wu W, Feng D, Wang X, Chen Y, et al. The nascent polypeptide-associated complex is essential for autophagic flux. Autophagy. 2014;10:1738-48 pubmed 出版商
  156. van den Boomen D, Timms R, Grice G, Stagg H, Skødt K, Dougan G, et al. TMEM129 is a Derlin-1 associated ERAD E3 ligase essential for virus-induced degradation of MHC-I. Proc Natl Acad Sci U S A. 2014;111:11425-30 pubmed 出版商
  157. Hauerslev S, Vissing J, Krag T. Muscle atrophy reversed by growth factor activation of satellite cells in a mouse muscle atrophy model. PLoS ONE. 2014;9:e100594 pubmed 出版商
  158. Tullman J, Harmon M, Delannoy M, Gibson W. Recovery of an HMWP/hmwBP (pUL48/pUL47) complex from virions of human cytomegalovirus: subunit interactions, oligomer composition, and deubiquitylase activity. J Virol. 2014;88:8256-67 pubmed 出版商
  159. Gonzalez Rodriguez A, Mayoral R, Agra N, Valdecantos M, Pardo V, Miquilena Colina M, et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 2014;5:e1179 pubmed 出版商
  160. Zhang L, Chen X, Sharma P, Moon M, Sheftel A, Dawood F, et al. HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress. Nat Commun. 2014;5:3430 pubmed 出版商
  161. Naudin C, Sirvent A, Leroy C, Larive R, Simon V, Pannequin J, et al. SLAP displays tumour suppressor functions in colorectal cancer via destabilization of the SRC substrate EPHA2. Nat Commun. 2014;5:3159 pubmed 出版商
  162. Furuya N, Ikeda S, Sato S, Soma S, Ezaki J, Oliva Trejo J, et al. PARK2/Parkin-mediated mitochondrial clearance contributes to proteasome activation during slow-twitch muscle atrophy via NFE2L1 nuclear translocation. Autophagy. 2014;10:631-41 pubmed 出版商
  163. Xu C, Fan C, Wang X. Regulation of Mdm2 protein stability and the p53 response by NEDD4-1 E3 ligase. Oncogene. 2015;34:281-9 pubmed 出版商
  164. Rubio N, Verrax J, Dewaele M, Verfaillie T, Johansen T, Piette J, et al. p38(MAPK)-regulated induction of p62 and NBR1 after photodynamic therapy promotes autophagic clearance of ubiquitin aggregates and reduces reactive oxygen species levels by supporting Nrf2-antioxidant signaling. Free Radic Biol Med. 2014;67:292-303 pubmed 出版商
  165. Brouxhon S, Kyrkanides S, Teng X, Raja V, O Banion M, Clarke R, et al. Monoclonal antibody against the ectodomain of E-cadherin (DECMA-1) suppresses breast carcinogenesis: involvement of the HER/PI3K/Akt/mTOR and IAP pathways. Clin Cancer Res. 2013;19:3234-46 pubmed 出版商
  166. Choudhury S, Kolukula V, Preet A, Albanese C, Avantaggiati M. Dissecting the pathways that destabilize mutant p53: the proteasome or autophagy?. Cell Cycle. 2013;12:1022-9 pubmed 出版商
  167. Chan W, Schaffer T, Pomerantz J. A quantitative signaling screen identifies CARD11 mutations in the CARD and LATCH domains that induce Bcl10 ubiquitination and human lymphoma cell survival. Mol Cell Biol. 2013;33:429-43 pubmed 出版商
  168. Kirilyuk A, Shimoji M, Catania J, Sahu G, Pattabiraman N, Giordano A, et al. An intrinsically disordered region of the acetyltransferase p300 with similarity to prion-like domains plays a role in aggregation. PLoS ONE. 2012;7:e48243 pubmed 出版商
  169. Kensche T, Tokunaga F, Ikeda F, Goto E, Iwai K, Dikic I. Analysis of nuclear factor-?B (NF-?B) essential modulator (NEMO) binding to linear and lysine-linked ubiquitin chains and its role in the activation of NF-?B. J Biol Chem. 2012;287:23626-34 pubmed 出版商
  170. Lemire B, Debigare R, Dubé A, Thériault M, Cote C, Maltais F. MAPK signaling in the quadriceps of patients with chronic obstructive pulmonary disease. J Appl Physiol (1985). 2012;113:159-66 pubmed 出版商
  171. Schwab C, Yu S, McGeer P. Optineurin is colocalized with ubiquitin in Marinesco bodies. Acta Neuropathol. 2012;123:289-92 pubmed 出版商
  172. Koppen T, Weckmann A, Muller S, Staubach S, Bloch W, Dohmen R, et al. Proteomics analyses of microvesicles released by Drosophila Kc167 and S2 cells. Proteomics. 2011;11:4397-410 pubmed 出版商
  173. Ginsberg S, Alldred M, Che S. Gene expression levels assessed by CA1 pyramidal neuron and regional hippocampal dissections in Alzheimer's disease. Neurobiol Dis. 2012;45:99-107 pubmed 出版商
  174. Rico Bautista E, Yang C, Lu L, Roth G, Wolf D. Chemical genetics approach to restoring p27Kip1 reveals novel compounds with antiproliferative activity in prostate cancer cells. BMC Biol. 2010;8:153 pubmed 出版商
  175. Duvick L, Barnes J, Ebner B, Agrawal S, ANDRESEN M, Lim J, et al. SCA1-like disease in mice expressing wild-type ataxin-1 with a serine to aspartic acid replacement at residue 776. Neuron. 2010;67:929-35 pubmed 出版商
  176. Takahashi Fujigasaki J, Breidert T, Fujigasaki H, Duyckaerts C, Camonis J, Brice A, et al. Amyloid precursor-like protein 2 cleavage contributes to neuronal intranuclear inclusions and cytotoxicity in spinocerebellar ataxia-7 (SCA7). Neurobiol Dis. 2011;41:33-42 pubmed 出版商
  177. Nisoli I, Chauvin J, Napoletano F, Calamita P, Zanin V, Fanto M, et al. Neurodegeneration by polyglutamine Atrophin is not rescued by induction of autophagy. Cell Death Differ. 2010;17:1577-87 pubmed 出版商
  178. Guttman M, Betts G, Barnes H, Ghassemian M, van der Geer P, Komives E. Interactions of the NPXY microdomains of the low density lipoprotein receptor-related protein 1. Proteomics. 2009;9:5016-28 pubmed 出版商
  179. Wiseman R, Chin K, Haynes C, Stanhill A, Xu C, Roguev A, et al. Thioredoxin-related Protein 32 is an arsenite-regulated Thiol Reductase of the proteasome 19 S particle. J Biol Chem. 2009;284:15233-45 pubmed 出版商
  180. Zhu H, Rothermel B, Hill J. Autophagy in load-induced heart disease. Methods Enzymol. 2009;453:343-63 pubmed 出版商
  181. den Dulk B, van Eijk P, de Ruijter M, Brandsma J, Brouwer J. The NER protein Rad33 shows functional homology to human Centrin2 and is involved in modification of Rad4. DNA Repair (Amst). 2008;7:858-68 pubmed 出版商
  182. Marvin Guy L, Duncan P, Wagnière S, Antille N, Porta N, Affolter M, et al. Rapid identification of differentiation markers from whole epithelial cells by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and statistical analysis. Rapid Commun Mass Spectrom. 2008;22:1099-108 pubmed 出版商
  183. Nakamura N, Hirose S. Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. Mol Biol Cell. 2008;19:1903-11 pubmed 出版商
  184. Bjørkhaug L, Molnes J, Søvik O, Njølstad P, Flatmark T. Allosteric activation of human glucokinase by free polyubiquitin chains and its ubiquitin-dependent cotranslational proteasomal degradation. J Biol Chem. 2007;282:22757-64 pubmed
  185. Tanaka T, Grusby M, Kaisho T. PDLIM2-mediated termination of transcription factor NF-kappaB activation by intranuclear sequestration and degradation of the p65 subunit. Nat Immunol. 2007;8:584-91 pubmed
  186. Nomura N, Nomura M, Newcomb E, Zagzag D. Geldanamycin induces G2 arrest in U87MG glioblastoma cells through downregulation of Cdc2 and cyclin B1. Biochem Pharmacol. 2007;73:1528-36 pubmed
  187. Gallagher E, Enzler T, Matsuzawa A, Anzelon Mills A, Otero D, Holzer R, et al. Kinase MEKK1 is required for CD40-dependent activation of the kinases Jnk and p38, germinal center formation, B cell proliferation and antibody production. Nat Immunol. 2007;8:57-63 pubmed
  188. Bloom J, Pagano M. Experimental tests to definitively determine ubiquitylation of a substrate. Methods Enzymol. 2005;399:249-66 pubmed
  189. Nomura M, Nomura N, Yamashita J. Geldanamycin-induced degradation of Chk1 is mediated by proteasome. Biochem Biophys Res Commun. 2005;335:900-5 pubmed
  190. Lensch M, Tischkowitz M, Christianson T, Reifsteck C, Speckhart S, Jakobs P, et al. Acquired FANCA dysfunction and cytogenetic instability in adult acute myelogenous leukemia. Blood. 2003;102:7-16 pubmed
  191. Alberti S, Demand J, Esser C, Emmerich N, Schild H, Hohfeld J. Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J Biol Chem. 2002;277:45920-7 pubmed
  192. Kassenbrock C, Hunter S, Garl P, Johnson G, Anderson S. Inhibition of Src family kinases blocks epidermal growth factor (EGF)-induced activation of Akt, phosphorylation of c-Cbl, and ubiquitination of the EGF receptor. J Biol Chem. 2002;277:24967-75 pubmed
  193. Tan Z, Sankar R, Tu W, Shin D, Liu H, Wasterlain C, et al. Immunohistochemical study of p53-associated proteins in rat brain following lithium-pilocarpine status epilepticus. Brain Res. 2002;929:129-38 pubmed
  194. Floyd Z, Stephens J. Interferon-gamma-mediated activation and ubiquitin-proteasome-dependent degradation of PPARgamma in adipocytes. J Biol Chem. 2002;277:4062-8 pubmed
  195. Ruffner H, Joazeiro C, Hemmati D, Hunter T, Verma I. Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci U S A. 2001;98:5134-9 pubmed
  196. Verdier F, Chretien S, Muller O, Varlet P, Yoshimura A, Gisselbrecht S, et al. Proteasomes regulate erythropoietin receptor and signal transducer and activator of transcription 5 (STAT5) activation. Possible involvement of the ubiquitinated Cis protein. J Biol Chem. 1998;273:28185-90 pubmed
  197. Nielsen K, Papageorge A, Vass W, Willumsen B, Lowy D. The Ras-specific exchange factors mouse Sos1 (mSos1) and mSos2 are regulated differently: mSos2 contains ubiquitination signals absent in mSos1. Mol Cell Biol. 1997;17:7132-8 pubmed