这是一篇来自已证抗体库的有关人类 RPS27A的综述,是根据113篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合RPS27A 抗体。
RPS27A 同义词: CEP80; HEL112; S27A; UBA80; UBC; UBCEP1; UBCEP80; ubiquitin-40S ribosomal protein S27a; 40S ribosomal protein S27a; epididymis luminal protein 112; ubiquitin C; ubiquitin and ribosomal protein S27a; ubiquitin carboxyl extension protein 80; ubiquitin-CEP80

赛默飞世尔
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:2000; 图 6b
赛默飞世尔 RPS27A抗体(Invitrogen, 13-1600)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 6b). EMBO Mol Med (2019) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:5000; 图 6b
赛默飞世尔 RPS27A抗体(Thermo Scientific, PA1-10023)被用于被用于免疫印迹在大鼠样品上浓度为1:5000 (图 6b). Mol Neurobiol (2018) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 大鼠; 图 4d
赛默飞世尔 RPS27A抗体(Invitrogen, 131600)被用于被用于免疫印迹在大鼠样品上 (图 4d). FEBS Open Bio (2017) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; scFv; 图 st3
赛默飞世尔 RPS27A抗体(Thermo Fisher, 13-1600)被用于被用于免疫印迹在scFv样品上 (图 st3). Sci Rep (2017) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:500; 图 s7a
赛默飞世尔 RPS27A抗体(Invitrogen, 131600)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 s7a). Nat Commun (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 RPS27A抗体(Invitrogen, 13-1600)被用于被用于免疫印迹在人类样品上 (图 5). Neurobiol Dis (2017) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:1000; 图 3f
赛默飞世尔 RPS27A抗体(Invitrogen, 13-1600)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3f). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; common platanna; 图 1f
赛默飞世尔 RPS27A抗体(Pierce, PA1-187)被用于被用于免疫印迹在common platanna样品上 (图 1f). Mol Cell Biol (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 图 2
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔 RPS27A抗体(Thermo Fisher Scientific, PA5-17067)被用于被用于免疫组化在大鼠样品上 (图 2) 和 被用于免疫印迹在大鼠样品上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2
赛默飞世尔 RPS27A抗体(Invitrogen, 13.1600)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫细胞化学; 果蝇; 1:20; 图 2
赛默飞世尔 RPS27A抗体(ThermoFisher Scientific, 13-1600)被用于被用于免疫细胞化学在果蝇样品上浓度为1:20 (图 2). Autophagy (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s1
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s1). Eur J Immunol (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 5e
赛默飞世尔 RPS27A抗体(生活技术, 13-1600)被用于被用于免疫印迹在人类样品上 (图 5e). Nat Commun (2015) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫细胞化学; 人类
赛默飞世尔 RPS27A抗体(生活技术, 13-160)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 和 被用于免疫细胞化学在人类样品上. Nat Commun (2015) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫印迹在人类样品上. Nat Commun (2014) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:1000; 图 5
赛默飞世尔 RPS27A抗体(生活技术, 13-1600)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5). Nat Commun (2014) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫印迹在人类样品上 (图 5). Clin Cancer Res (2013) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 RPS27A抗体(Zymed, monoclonal mix made of P4D1, SCBT and 13-1600)被用于被用于免疫印迹在人类样品上 (图 1). Cell Cycle (2013) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫细胞化学; African green monkey
  • 免疫印迹; African green monkey
  • 免疫细胞化学; 人类
  • 免疫组化; 人类
  • 免疫印迹; 人类
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫细胞化学在African green monkey样品上, 被用于免疫印迹在African green monkey样品上, 被用于免疫细胞化学在人类样品上, 被用于免疫组化在人类样品上 和 被用于免疫印迹在人类样品上. PLoS ONE (2012) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 RPS27A抗体(Invitrogen, 13-1600)被用于被用于免疫印迹在人类样品上 (图 3). J Biol Chem (2012) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; 人类; 1:500; 图 1
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫组化在人类样品上浓度为1:500 (图 1). Acta Neuropathol (2012) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; 人类; 图 1
赛默飞世尔 RPS27A抗体(Invitrogen, 13-1600)被用于被用于免疫组化在人类样品上 (图 1). Neurobiol Dis (2012) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:2000; 图 5g
赛默飞世尔 RPS27A抗体(Zymed Laboratories, 13-1600)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 5g). BMC Biol (2010) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; 小鼠; 1:250; 图 4
赛默飞世尔 RPS27A抗体(Invitrogen, 13?C1600)被用于被用于免疫组化在小鼠样品上浓度为1:250 (图 4). Neuron (2010) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫细胞化学; 人类; 1:50; 图 4
  • 免疫组化; 人类; 1:50; 图 4
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫细胞化学在人类样品上浓度为1:50 (图 4) 和 被用于免疫组化在人类样品上浓度为1:50 (图 4). Neurobiol Dis (2011) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; 果蝇; 1:200; 图 6
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫组化在果蝇样品上浓度为1:200 (图 6). Cell Death Differ (2010) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 大鼠; 图 6
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫印迹在大鼠样品上 (图 6). Proteomics (2009) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫印迹在小鼠样品上 (图 6). J Biol Chem (2009) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; 小鼠; 1:500
赛默飞世尔 RPS27A抗体(Zymed, 131600)被用于被用于免疫组化在小鼠样品上浓度为1:500. Methods Enzymol (2009) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; budding yeasts
赛默飞世尔 RPS27A抗体(Zymed laboratories, 13-1600)被用于被用于免疫印迹在budding yeasts样品上. DNA Repair (Amst) (2008) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫细胞化学; 人类; 4 mg/ml
赛默飞世尔 RPS27A抗体(Zymed Laboratories, 13-1600)被用于被用于免疫细胞化学在人类样品上浓度为4 mg/ml. Rapid Commun Mass Spectrom (2008) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类
赛默飞世尔 RPS27A抗体(Zymed Laboratories, Ubi-1)被用于被用于免疫印迹在人类样品上. Mol Biol Cell (2008) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; scFv; 1:1500; 图 4
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫印迹在scFv样品上浓度为1:1500 (图 4). J Biol Chem (2007) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫印迹在小鼠样品上 (图 1). Nat Immunol (2007) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:1000; 图 7
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 7). Biochem Pharmacol (2007) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 小鼠; 图 4d
赛默飞世尔 RPS27A抗体(Zymed, 13- 1600)被用于被用于免疫印迹在小鼠样品上 (图 4d). Nat Immunol (2007) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫印迹在人类样品上. Methods Enzymol (2005) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 1:1000; 图 5
赛默飞世尔 RPS27A抗体(ZYMED, 13-1600)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5). Biochem Biophys Res Commun (2005) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫沉淀; 人类
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫沉淀在人类样品上. Blood (2003) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫沉淀; 人类; 图 2
赛默飞世尔 RPS27A抗体(Zymed, 131600)被用于被用于免疫沉淀在人类样品上 (图 2). J Biol Chem (2002) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 8
赛默飞世尔 RPS27A抗体(Zymed, 13?C1600)被用于被用于免疫印迹在人类样品上 (图 8). J Biol Chem (2002) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫组化; 大鼠; 1:200; 表 1
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫组化在大鼠样品上浓度为1:200 (表 1). Brain Res (2002) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 RPS27A抗体(Zymed Laboratories, 13-1600)被用于被用于免疫印迹在小鼠样品上 (图 2). J Biol Chem (2002) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫印迹在人类样品上 (图 2). Proc Natl Acad Sci U S A (2001) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 猕猴; 图 5
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫印迹在猕猴样品上 (图 5). J Biol Chem (1998) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫沉淀; 兔; 图 5d
赛默飞世尔 RPS27A抗体(Zymed, 13-1600)被用于被用于免疫沉淀在兔样品上 (图 5d). Mol Cell Biol (1997) ncbi
Enzo Life Sciences
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 1a
Enzo Life Sciences RPS27A抗体(Enzo, BML-PW0930)被用于被用于免疫印迹在人类样品上 (图 1a). J Biomed Sci (2018) ncbi
小鼠 单克隆(P4D1)
  • 免疫沉淀; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 图 3c
Enzo Life Sciences RPS27A抗体(Enzo Life Sciences, BML-PW0930-0100)被用于被用于免疫沉淀在小鼠样品上 (图 3a) 和 被用于免疫印迹在小鼠样品上 (图 3c). Free Radic Biol Med (2018) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; scFv; 1:1000; 图 1e
Enzo Life Sciences RPS27A抗体(ENZO, P4D1)被用于被用于免疫印迹在scFv样品上浓度为1:1000 (图 1e). Protein Sci (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 1:1000; 图 2f
Enzo Life Sciences RPS27A抗体(Enzo life sciences, P4D1)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2f). Sci Rep (2016) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; scFv; 图 6
Enzo Life Sciences RPS27A抗体(Enzo, P4D1)被用于被用于免疫印迹在scFv样品上 (图 6). Viruses (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s2
Enzo Life Sciences RPS27A抗体(Enzo Life Sciences, ADI-SPA-200)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 s2). PLoS ONE (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 面包酵母; 图 4
Enzo Life Sciences RPS27A抗体(Enzo Life Science, BML-PW0930)被用于被用于免疫印迹在面包酵母样品上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 人类; 图 3
Enzo Life Sciences RPS27A抗体(Enzo Life Sciences, P4D1)被用于被用于免疫印迹在人类样品上 (图 3). Glycobiology (2016) ncbi
小鼠 单克隆(P4G7-H11)
  • 免疫印迹; 小鼠; 1:1000; 图 1
  • 免疫印迹; 大鼠; 图 2
Enzo Life Sciences RPS27A抗体(Enzo, ADI-SPA-203-D)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1) 和 被用于免疫印迹在大鼠样品上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(P4D1)
  • 免疫印迹; 果蝇; 1:2000
Enzo Life Sciences RPS27A抗体(Enzo Life Sciences, p4D1)被用于被用于免疫印迹在果蝇样品上浓度为1:2000. Proteomics (2011) ncbi
Novus Biologicals
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 7c
Novus Biologicals RPS27A抗体(Novus Biological, NB300-130)被用于被用于免疫印迹在人类样品上 (图 7c). J Clin Invest (2018) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫印迹; 人类; 图 1
Novus Biologicals RPS27A抗体(novus Biologicals, NB300-130)被用于被用于免疫印迹在人类样品上 (图 1). Cell (2016) ncbi
小鼠 单克隆(Ubi-1)
  • 免疫细胞化学; 人类; 图 3
Novus Biologicals RPS27A抗体(Novus Biologicals, NB300-130)被用于被用于免疫细胞化学在人类样品上 (图 3). Stem Cell Reports (2015) ncbi
BioLegend
小鼠 单克隆(P4D1)
  • 免疫印迹; 面包酵母; 图 7b
BioLegend RPS27A抗体(Covance, P4D1)被用于被用于免疫印迹在面包酵母样品上 (图 7b). Mol Biol Cell (2017) ncbi
丹科医疗器械技术服务(上海)有限公司
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 4a
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 (图 4a). Am J Pathol (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1c
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, z0458)被用于被用于免疫印迹在小鼠样品上 (图 1c). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4b
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫印迹在人类样品上 (图 4b). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫印迹; scFv; 图 5
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫印迹在scFv样品上 (图 5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 5a
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫印迹在小鼠样品上浓度为1:200 (图 5a). Mol Neurobiol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z 0458)被用于被用于免疫印迹在小鼠样品上 (图 2) 和 被用于免疫印迹在人类样品上 (图 1). Cell (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 s2
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000 (图 s2). Mol Neurodegener (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 6
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(DAKO, Z0458)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫印迹在人类样品上 (图 5). Biochem Biophys Res Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z 0458)被用于被用于免疫印迹在人类样品上 (图 3). PLoS Genet (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 s2
  • 免疫印迹; 小鼠; 1:3000; 图 1
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500 (图 s2) 和 被用于免疫印迹在小鼠样品上浓度为1:3000 (图 1). Am J Pathol (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 4
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(DAKO, Z0458)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400 (图 4). Hum Mol Genet (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:25,000; 图 7
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫印迹在小鼠样品上浓度为1:25,000 (图 7). Acta Neuropathol Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z045801-5)被用于被用于免疫印迹在人类样品上 (图 2). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s4
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(dako, Z0458)被用于被用于免疫印迹在人类样品上 (图 s4). Nature (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z045801)被用于被用于免疫印迹在小鼠样品上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Acta Neuropathol Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1b
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z 0458)被用于被用于免疫印迹在小鼠样品上 (图 1b). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(DakoCytomation, Nr.Z0458)被用于被用于免疫印迹在小鼠样品上. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4). EMBO Rep (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(DAKO, Z0458)被用于被用于免疫组化-石蜡切片在人类样品上 (图 3). Neuropathology (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫印迹在小鼠样品上. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 6
  • 免疫印迹; 人类; 1:500; 图 7
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, PN Z-0458)被用于被用于免疫细胞化学在人类样品上 (图 6) 和 被用于免疫印迹在人类样品上浓度为1:500 (图 7). J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫组化; medaka; 1:1000; 图 4
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(DAKO, Z0458)被用于被用于免疫组化在medaka样品上浓度为1:1000 (图 4). PLoS Genet (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2g
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫印迹在人类样品上 (图 2g). elife (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:100; 图 9
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 9). Neurotherapeutics (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 2
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图 2) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2). ASN Neuro (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000. Rom J Morphol Embryol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4e
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(DAKO, Z0458)被用于被用于免疫印迹在小鼠样品上 (图 4e). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1
  • 免疫印迹; 小鼠; 1:1000; 图 1c
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(DAKO, Z0458)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 1) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1c). EMBO Mol Med (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠
  • 免疫细胞化学; 小鼠; 图 1
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako Cytomation, Z0458)被用于被用于免疫组化-石蜡切片在小鼠样品上 和 被用于免疫细胞化学在小鼠样品上 (图 1). Autophagy (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 果蝇; 1:200; 图 s8
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫组化-石蜡切片在果蝇样品上浓度为1:200 (图 s8). Proc Natl Acad Sci U S A (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5j
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 5j). Nat Cell Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 3). Acta Neuropathol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako Cytomation, Z0458)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200. Biochim Biophys Acta (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:150
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫印迹在人类样品上浓度为1:150. Am J Pathol (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫组化-石蜡切片在人类样品上. Orphanet J Rare Dis (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2b
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫印迹在人类样品上 (图 2b). BMC Biol (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako Corporation, Z0458)被用于被用于免疫组化在人类样品上浓度为1:100. Ann Neurol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(DAKO, Z0458)被用于被用于免疫印迹在人类样品上浓度为1:500. Nature (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(DAKO, Z0458)被用于被用于免疫细胞化学在人类样品上. Genes Cells (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1,000
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫组化在人类样品上浓度为1:1,000. Neurobiol Aging (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako, Z0458)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. ASN Neuro (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(DAKO, Z0458)被用于被用于免疫印迹在人类样品上浓度为1:5000. PLoS Pathog (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 猪; 1:2000
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(DakoCytomation, Z0458)被用于被用于免疫组化-石蜡切片在猪样品上浓度为1:2000. Toxicon (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1500
丹科医疗器械技术服务(上海)有限公司 RPS27A抗体(Dako North America, Z0458)被用于被用于免疫印迹在大鼠样品上浓度为1:1500. J Biol Chem (2013) ncbi
碧迪BD
小鼠 单克隆(6C1.17)
  • 免疫印迹; 人类; 图 5
碧迪BD RPS27A抗体(BD Pharmingen, 550944)被用于被用于免疫印迹在人类样品上 (图 5). EMBO Rep (2016) ncbi
小鼠 单克隆(6C1.17)
  • 免疫细胞化学; 人类
碧迪BD RPS27A抗体(BD Transduction, 550944)被用于被用于免疫细胞化学在人类样品上. Mol Biol Cell (2015) ncbi
小鼠 单克隆(6C1.17)
  • 免疫印迹; 人类
碧迪BD RPS27A抗体(BD, 550944)被用于被用于免疫印迹在人类样品上. Cancer Res (2014) ncbi
小鼠 单克隆(6C1.17)
  • 免疫沉淀; 果蝇; 图 5
碧迪BD RPS27A抗体(BD Biosciences, 6C1.17)被用于被用于免疫沉淀在果蝇样品上 (图 5). Nat Commun (2014) ncbi
小鼠 单克隆(6C1.17)
  • 免疫印迹; 人类; 图 7d
碧迪BD RPS27A抗体(BD, 550944)被用于被用于免疫印迹在人类样品上 (图 7d). Oncotarget (2014) ncbi
小鼠 单克隆(6C1.17)
  • 免疫印迹; 小鼠
碧迪BD RPS27A抗体(BD, 550944)被用于被用于免疫印迹在小鼠样品上. Oncogene (2015) ncbi
默克密理博中国
兔 多克隆
  • 免疫印迹; 小鼠
默克密理博中国 RPS27A抗体(Millipore, AB1690)被用于被用于免疫印迹在小鼠样品上. J Am Soc Mass Spectrom (2013) ncbi
文章列表
  1. Signes A, Cerutti R, Dickson A, Benincá C, Hinchy E, Ghezzi D, et al. APOPT1/COA8 assists COX assembly and is oppositely regulated by UPS and ROS. EMBO Mol Med. 2019;11: pubmed 出版商
  2. Lee Y, Huang W, Lin J, Kao T, Lin H, Lee K, et al. Znf179 E3 ligase-mediated TDP-43 polyubiquitination is involved in TDP-43- ubiquitinated inclusions (UBI) (+)-related neurodegenerative pathology. J Biomed Sci. 2018;25:76 pubmed 出版商
  3. Li L, Guturi K, Gautreau B, Patel P, Saad A, Morii M, et al. Ubiquitin ligase RNF8 suppresses Notch signaling to regulate mammary development and tumorigenesis. J Clin Invest. 2018;128:4525-4542 pubmed 出版商
  4. Deng Y, Jiang B, Rankin C, Toyo oka K, Richter M, Maupin Furlow J, et al. Methionine sulfoxide reductase A (MsrA) mediates the ubiquitination of 14-3-3 protein isotypes in brain. Free Radic Biol Med. 2018;129:600-607 pubmed 出版商
  5. Lee S, Bazick H, Chittoor Vinod V, Al Salihi M, Xia G, Notterpek L. Elevated Peripheral Myelin Protein 22, Reduced Mitotic Potential, and Proteasome Impairment in Dermal Fibroblasts from Charcot-Marie-Tooth Disease Type 1A Patients. Am J Pathol. 2018;188:728-738 pubmed 出版商
  6. Zhao T, Hong Y, Yin P, Li S, Li X. Differential HspBP1 expression accounts for the greater vulnerability of neurons than astrocytes to misfolded proteins. Proc Natl Acad Sci U S A. 2017;114:E7803-E7811 pubmed 出版商
  7. Guan W, Guyot R, Samarut J, Flamant F, Wong J, Gauthier K. Methylcytosine dioxygenase TET3 interacts with thyroid hormone nuclear receptors and stabilizes their association to chromatin. Proc Natl Acad Sci U S A. 2017;114:8229-8234 pubmed 出版商
  8. Xu J, Kurup P, Nairn A, Lombroso P. Synaptic NMDA Receptor Activation Induces Ubiquitination and Degradation of STEP61. Mol Neurobiol. 2018;55:3096-3111 pubmed 出版商
  9. Defenouillère Q, Namane A, Mouaikel J, Jacquier A, Fromont Racine M. The ribosome-bound quality control complex remains associated to aberrant peptides during their proteasomal targeting and interacts with Tom1 to limit protein aggregation. Mol Biol Cell. 2017;28:1165-1176 pubmed 出版商
  10. Aukrust I, Rosenberg L, Ankerud M, Bertelsen V, Hollås H, Saraste J, et al. Post-translational modifications of Annexin A2 are linked to its association with perinuclear nonpolysomal mRNP complexes. FEBS Open Bio. 2017;7:160-173 pubmed 出版商
  11. Dadson K, Hauck L, Hao Z, Grothe D, Rao V, Mak T, et al. The E3 ligase Mule protects the heart against oxidative stress and mitochondrial dysfunction through Myc-dependent inactivation of Pgc-1α and Pink1. Sci Rep. 2017;7:41490 pubmed 出版商
  12. Falfushynska H, Phan T, Sokolova I. Long-Term Acclimation to Different Thermal Regimes Affects Molecular Responses to Heat Stress in a Freshwater Clam Corbicula Fluminea. Sci Rep. 2016;6:39476 pubmed 出版商
  13. Oh E, Kim J, Kim J, Kim S, Lee J, Hong S, et al. NQO1 inhibits proteasome-mediated degradation of HIF-1?. Nat Commun. 2016;7:13593 pubmed 出版商
  14. Ding X, Barodia S, Ma L, Goldberg M. Fbxl18 targets LRRK2 for proteasomal degradation and attenuates cell toxicity. Neurobiol Dis. 2017;98:122-136 pubmed 出版商
  15. Huang Z, Her L. The Ubiquitin Receptor ADRM1 Modulates HAP40-Induced Proteasome Activity. Mol Neurobiol. 2017;54:7382-7400 pubmed 出版商
  16. Hu Z, Wang J, Yu D, Soon J, de Kleijn D, Foo R, et al. Aberrant Splicing Promotes Proteasomal Degradation of L-type CaV1.2 Calcium Channels by Competitive Binding for CaVβ Subunits in Cardiac Hypertrophy. Sci Rep. 2016;6:35247 pubmed 出版商
  17. Fullbright G, Rycenga H, Gruber J, Long D. p97 Promotes a Conserved Mechanism of Helicase Unloading during DNA Cross-Link Repair. Mol Cell Biol. 2016;36:2983-2994 pubmed
  18. Damgaard R, Walker J, Marco Casanova P, Morgan N, Titheradge H, Elliott P, et al. The Deubiquitinase OTULIN Is an Essential Negative Regulator of Inflammation and Autoimmunity. Cell. 2016;166:1215-1230.e20 pubmed 出版商
  19. Hjerpe R, Bett J, Keuss M, Solovyova A, McWilliams T, Johnson C, et al. UBQLN2 Mediates Autophagy-Independent Protein Aggregate Clearance by the Proteasome. Cell. 2016;166:935-949 pubmed 出版商
  20. Alves S, Marais T, Biferi M, Furling D, Marinello M, El Hachimi K, et al. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener. 2016;11:58 pubmed 出版商
  21. Lim S, Jin L, Jin J, Yang C. Effect of Exendin-4 on Autophagy Clearance in Beta Cell of Rats with Tacrolimus-induced Diabetes Mellitus. Sci Rep. 2016;6:29921 pubmed 出版商
  22. Bayram Weston Z, Jones L, Dunnett S, Brooks S. Comparison of mHTT Antibodies in Huntington's Disease Mouse Models Reveal Specific Binding Profiles and Steady-State Ubiquitin Levels with Disease Development. PLoS ONE. 2016;11:e0155834 pubmed 出版商
  23. Maure J, Moser S, Jaffray E, F Alpi A, Hay R. Loss of ubiquitin E2 Ube2w rescues hypersensitivity of Rnf4 mutant cells to DNA damage. Sci Rep. 2016;6:26178 pubmed 出版商
  24. Emmerich C, Bakshi S, Kelsall I, Ortiz Guerrero J, Shpiro N, Cohen P. Lys63/Met1-hybrid ubiquitin chains are commonly formed during the activation of innate immune signalling. Biochem Biophys Res Commun. 2016;474:452-461 pubmed 出版商
  25. Zhang J, Lachance V, Schaffner A, Li X, Fedick A, Kaye L, et al. A Founder Mutation in VPS11 Causes an Autosomal Recessive Leukoencephalopathy Linked to Autophagic Defects. PLoS Genet. 2016;12:e1005848 pubmed 出版商
  26. Surana P, Das R. Observing a late folding intermediate of Ubiquitin at atomic resolution by NMR. Protein Sci. 2016;25:1438-50 pubmed 出版商
  27. Rodriguez Ortiz C, Flores J, Valenzuela J, Rodriguez G, Zumkehr J, Tran D, et al. The Myoblast C2C12 Transfected with Mutant Valosin-Containing Protein Exhibits Delayed Stress Granule Resolution on Oxidative Stress. Am J Pathol. 2016;186:1623-34 pubmed 出版商
  28. Ranjan K, Pathak C. FADD regulates NF-κB activation and promotes ubiquitination of cFLIPL to induce apoptosis. Sci Rep. 2016;6:22787 pubmed 出版商
  29. Polyzos A, Holt A, Brown C, Cosme C, Wipf P, Gomez Marin A, et al. Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes. Hum Mol Genet. 2016;25:1792-802 pubmed 出版商
  30. Olsen C, Markussen T, Thiede B, Rimstad E. Infectious Salmon Anaemia Virus (ISAV) RNA Binding Protein Encoded by Segment 8 ORF2 and Its Interaction with ISAV and Intracellular Proteins. Viruses. 2016;8: pubmed 出版商
  31. Tokuda E, Brännström T, Andersen P, Marklund S. Low autophagy capacity implicated in motor system vulnerability to mutant superoxide dismutase. Acta Neuropathol Commun. 2016;4:6 pubmed 出版商
  32. Bouché V, Espinosa A, Leone L, Sardiello M, Ballabio A, Botas J. Drosophila Mitf regulates the V-ATPase and the lysosomal-autophagic pathway. Autophagy. 2016;12:484-98 pubmed 出版商
  33. Han X, Zha Z, Yuan H, Feng X, Xia Y, Lei Q, et al. KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation. Oncogene. 2016;35:4179-90 pubmed 出版商
  34. Müller A, Stellmacher A, Freitag C, Landgraf P, Dieterich D. Monitoring Astrocytic Proteome Dynamics by Cell Type-Specific Protein Labeling. PLoS ONE. 2015;10:e0145451 pubmed 出版商
  35. Slowicka K, Vereecke L, Mc Guire C, Sze M, Maelfait J, Kolpe A, et al. Optineurin deficiency in mice is associated with increased sensitivity to Salmonella but does not affect proinflammatory NF-κB signaling. Eur J Immunol. 2016;46:971-80 pubmed 出版商
  36. Schwab A, Ebert A. Neurite Aggregation and Calcium Dysfunction in iPSC-Derived Sensory Neurons with Parkinson's Disease-Related LRRK2 G2019S Mutation. Stem Cell Reports. 2015;5:1039-1052 pubmed 出版商
  37. Orthwein A, Noordermeer S, Wilson M, Landry S, Enchev R, Sherker A, et al. A mechanism for the suppression of homologous recombination in G1 cells. Nature. 2015;528:422-6 pubmed 出版商
  38. Kim M, Kim M, Park S, Lee C, Lim D. Role of Angiomotin-like 2 mono-ubiquitination on YAP inhibition. EMBO Rep. 2016;17:64-78 pubmed 出版商
  39. Sokolova V, Li F, Polovin G, Park S. Proteasome Activation is Mediated via a Functional Switch of the Rpt6 C-terminal Tail Following Chaperone-dependent Assembly. Sci Rep. 2015;5:14909 pubmed 出版商
  40. Kuo H, Hsu H, Chen Y, Chang Y, Liu F, Wu C. Galectin-3 modulates the EGFR signalling-mediated regulation of Sox2 expression via c-Myc in lung cancer. Glycobiology. 2016;26:155-65 pubmed 出版商
  41. Shi C, Huang X, Zhang B, Zhu D, Luo H, Lu Q, et al. The Inhibition of Heat Shock Protein 90 Facilitates the Degradation of Poly-Alanine Expanded Poly (A) Binding Protein Nuclear 1 via the Carboxyl Terminus of Heat Shock Protein 70-Interacting Protein. PLoS ONE. 2015;10:e0138936 pubmed 出版商
  42. Henstridge C, Jackson R, Kim J, Herrmann A, Wright A, Harris S, et al. Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse. Acta Neuropathol Commun. 2015;3:53 pubmed 出版商
  43. Gilda J, Ghosh R, Cheah J, West T, Bodine S, Gomes A. Western Blotting Inaccuracies with Unverified Antibodies: Need for a Western Blotting Minimal Reporting Standard (WBMRS). PLoS ONE. 2015;10:e0135392 pubmed 出版商
  44. Vertii A, Zimmerman W, Ivshina M, Doxsey S. Centrosome-intrinsic mechanisms modulate centrosome integrity during fever. Mol Biol Cell. 2015;26:3451-63 pubmed 出版商
  45. Tomita T, Hamazaki J, Hirayama S, McBurney M, Yashiroda H, Murata S. Sirt1-deficiency causes defective protein quality control. Sci Rep. 2015;5:12613 pubmed 出版商
  46. Phan L, Chou P, Velazquez Torres G, Samudio I, Parreno K, Huang Y, et al. The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming. Nat Commun. 2015;6:7530 pubmed 出版商
  47. Tsuboi K, Nishitani M, Takakura A, Imai Y, Komatsu M, Kawashima H. Autophagy Protects against Colitis by the Maintenance of Normal Gut Microflora and Secretion of Mucus. J Biol Chem. 2015;290:20511-26 pubmed 出版商
  48. Kazlauskaite A, Martínez Torres R, Wilkie S, Kumar A, Peltier J, González A, et al. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep. 2015;16:939-54 pubmed 出版商
  49. Inoue K, Fujimura H, Ueda K, Matsumura T, Itoh K, Sakoda S. An autopsy case of neuronal intermediate filament inclusion disease with regard to immunophenotypic and topographical analysis of the neuronal inclusions. Neuropathology. 2015;35:545-52 pubmed 出版商
  50. Krokowski D, Jobava R, Guan B, Farabaugh K, Wu J, Majumder M, et al. Coordinated Regulation of the Neutral Amino Acid Transporter SNAT2 and the Protein Phosphatase Subunit GADD34 Promotes Adaptation to Increased Extracellular Osmolarity. J Biol Chem. 2015;290:17822-37 pubmed 出版商
  51. Okatsu K, Koyano F, Kimura M, Kosako H, Saeki Y, Tanaka K, et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J Cell Biol. 2015;209:111-28 pubmed 出版商
  52. Uemura N, Koike M, Ansai S, Kinoshita M, Ishikawa Fujiwara T, Matsui H, et al. Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein. PLoS Genet. 2015;11:e1005065 pubmed 出版商
  53. Zhang T, Dong K, Liang W, Xu D, Xia H, Geng J, et al. G-protein-coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L. elife. 2015;4:e06734 pubmed 出版商
  54. Tokuda E, Watanabe S, Okawa E, Ono S. Regulation of Intracellular Copper by Induction of Endogenous Metallothioneins Improves the Disease Course in a Mouse Model of Amyotrophic Lateral Sclerosis. Neurotherapeutics. 2015;12:461-76 pubmed 出版商
  55. Chittoor Vinod V, Lee S, Judge S, Notterpek L. Inducible HSP70 is critical in preventing the aggregation and enhancing the processing of PMP22. ASN Neuro. 2015;7: pubmed 出版商
  56. Pirici I, Mărgăritescu C, Mogoantă L, Petrescu F, Simionescu C, Popescu E, et al. Corpora amylacea in the brain form highly branched three-dimensional lattices. Rom J Morphol Embryol. 2014;55:1071-7 pubmed
  57. Lee S, Lee T, Lee E, Kang S, Park A, Kim S, et al. Identification of a subnuclear body involved in sequence-specific cytokine RNA processing. Nat Commun. 2015;6:5791 pubmed 出版商
  58. Mir S, George N, Zahoor L, Harms R, Guinn Z, SARVETNICK N. Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death. J Biol Chem. 2015;290:6071-85 pubmed 出版商
  59. Ling X, Xu C, Fan C, Zhong K, Li F, Wang X. FL118 induces p53-dependent senescence in colorectal cancer cells by promoting degradation of MdmX. Cancer Res. 2014;74:7487-97 pubmed 出版商
  60. Ito H, Fujita K, Tagawa K, Chen X, Homma H, Sasabe T, et al. HMGB1 facilitates repair of mitochondrial DNA damage and extends the lifespan of mutant ataxin-1 knock-in mice. EMBO Mol Med. 2015;7:78-101 pubmed 出版商
  61. Shen W, Li H, Chen G, Chern Y, Tu P. Mutations in the ubiquitin-binding domain of OPTN/optineurin interfere with autophagy-mediated degradation of misfolded proteins by a dominant-negative mechanism. Autophagy. 2015;11:685-700 pubmed 出版商
  62. Gradilla A, González E, Seijo I, Andrés G, Bischoff M, González Mendez L, et al. Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat Commun. 2014;5:5649 pubmed 出版商
  63. Merlo P, Frost B, Peng S, Yang Y, Park P, Feany M. p53 prevents neurodegeneration by regulating synaptic genes. Proc Natl Acad Sci U S A. 2014;111:18055-60 pubmed 出版商
  64. Chen J, Shin J, Zhao R, Phan L, Wang H, Xue Y, et al. CSN6 drives carcinogenesis by positively regulating Myc stability. Nat Commun. 2014;5:5384 pubmed 出版商
  65. Li N, Fassl A, Chick J, Inuzuka H, Li X, Mansour M, et al. Cyclin C is a haploinsufficient tumour suppressor. Nat Cell Biol. 2014;16:1080-91 pubmed 出版商
  66. Chen D, Ming L, Zou F, Peng Y, Van Houten B, Yu J, et al. TAp73 promotes cell survival upon genotoxic stress by inhibiting p53 activity. Oncotarget. 2014;5:8107-22 pubmed
  67. Zhang Y, Jansen West K, Xu Y, Gendron T, Bieniek K, Lin W, et al. Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol. 2014;128:505-24 pubmed 出版商
  68. Shivers K, Nikolopoulou A, Machlovi S, Vallabhajosula S, Figueiredo Pereira M. PACAP27 prevents Parkinson-like neuronal loss and motor deficits but not microglia activation induced by prostaglandin J2. Biochim Biophys Acta. 2014;1842:1707-19 pubmed 出版商
  69. Screen M, Jonson P, Raheem O, Palmio J, Laaksonen R, Lehtimaki T, et al. Abnormal splicing of NEDD4 in myotonic dystrophy type 2: possible link to statin adverse reactions. Am J Pathol. 2014;184:2322-32 pubmed 出版商
  70. Satoh J, Motohashi N, Kino Y, Ishida T, Yagishita S, Jinnai K, et al. LC3, an autophagosome marker, is expressed on oligodendrocytes in Nasu-Hakola disease brains. Orphanet J Rare Dis. 2014;9:68 pubmed 出版商
  71. Baron Y, Pedrioli P, Tyagi K, Johnson C, Wood N, Fountaine D, et al. VAPB/ALS8 interacts with FFAT-like proteins including the p97 cofactor FAF1 and the ASNA1 ATPase. BMC Biol. 2014;12:39 pubmed 出版商
  72. Cicchetti F, Lacroix S, Cisbani G, Vallières N, Saint Pierre M, St Amour I, et al. Mutant huntingtin is present in neuronal grafts in Huntington disease patients. Ann Neurol. 2014;76:31-42 pubmed 出版商
  73. Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. 2014;510:162-6 pubmed 出版商
  74. Naudin C, Sirvent A, Leroy C, Larive R, Simon V, Pannequin J, et al. SLAP displays tumour suppressor functions in colorectal cancer via destabilization of the SRC substrate EPHA2. Nat Commun. 2014;5:3159 pubmed 出版商
  75. Kitamura A, Inada N, Kubota H, Matsumoto G, Kinjo M, Morimoto R, et al. Dysregulation of the proteasome increases the toxicity of ALS-linked mutant SOD1. Genes Cells. 2014;19:209-24 pubmed 出版商
  76. Xu C, Fan C, Wang X. Regulation of Mdm2 protein stability and the p53 response by NEDD4-1 E3 ligase. Oncogene. 2015;34:281-9 pubmed 出版商
  77. Coppieters N, Dieriks B, Lill C, Faull R, Curtis M, Dragunow M. Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain. Neurobiol Aging. 2014;35:1334-44 pubmed 出版商
  78. Chittoor V, Sooyeon L, Rangaraju S, Nicks J, Schmidt J, Madorsky I, et al. Biochemical characterization of protein quality control mechanisms during disease progression in the C22 mouse model of CMT1A. ASN Neuro. 2013;5:e00128 pubmed 出版商
  79. Gastaldello S, Chen X, Callegari S, Masucci M. Caspase-1 promotes Epstein-Barr virus replication by targeting the large tegument protein deneddylase to the nucleus of productively infected cells. PLoS Pathog. 2013;9:e1003664 pubmed 出版商
  80. Cholich L, Marquez M, Pumarola I Batlle M, Gimeno E, Teibler G, Rios E, et al. Experimental intoxication of guinea pigs with Ipomoea carnea: behavioural and neuropathological alterations. Toxicon. 2013;76:28-36 pubmed 出版商
  81. Nakayasu E, Ansong C, Brown J, Yang F, Lopez Ferrer D, Qian W, et al. Evaluation of selected binding domains for the analysis of ubiquitinated proteomes. J Am Soc Mass Spectrom. 2013;24:1214-23 pubmed 出版商
  82. Brouxhon S, Kyrkanides S, Teng X, Raja V, O Banion M, Clarke R, et al. Monoclonal antibody against the ectodomain of E-cadherin (DECMA-1) suppresses breast carcinogenesis: involvement of the HER/PI3K/Akt/mTOR and IAP pathways. Clin Cancer Res. 2013;19:3234-46 pubmed 出版商
  83. Huang Q, Wang H, Perry S, Figueiredo Pereira M. Negative regulation of 26S proteasome stability via calpain-mediated cleavage of Rpn10 subunit upon mitochondrial dysfunction in neurons. J Biol Chem. 2013;288:12161-74 pubmed 出版商
  84. Choudhury S, Kolukula V, Preet A, Albanese C, Avantaggiati M. Dissecting the pathways that destabilize mutant p53: the proteasome or autophagy?. Cell Cycle. 2013;12:1022-9 pubmed 出版商
  85. Kirilyuk A, Shimoji M, Catania J, Sahu G, Pattabiraman N, Giordano A, et al. An intrinsically disordered region of the acetyltransferase p300 with similarity to prion-like domains plays a role in aggregation. PLoS ONE. 2012;7:e48243 pubmed 出版商
  86. Kensche T, Tokunaga F, Ikeda F, Goto E, Iwai K, Dikic I. Analysis of nuclear factor-?B (NF-?B) essential modulator (NEMO) binding to linear and lysine-linked ubiquitin chains and its role in the activation of NF-?B. J Biol Chem. 2012;287:23626-34 pubmed 出版商
  87. Schwab C, Yu S, McGeer P. Optineurin is colocalized with ubiquitin in Marinesco bodies. Acta Neuropathol. 2012;123:289-92 pubmed 出版商
  88. Koppen T, Weckmann A, Muller S, Staubach S, Bloch W, Dohmen R, et al. Proteomics analyses of microvesicles released by Drosophila Kc167 and S2 cells. Proteomics. 2011;11:4397-410 pubmed 出版商
  89. Ginsberg S, Alldred M, Che S. Gene expression levels assessed by CA1 pyramidal neuron and regional hippocampal dissections in Alzheimer's disease. Neurobiol Dis. 2012;45:99-107 pubmed 出版商
  90. Rico Bautista E, Yang C, Lu L, Roth G, Wolf D. Chemical genetics approach to restoring p27Kip1 reveals novel compounds with antiproliferative activity in prostate cancer cells. BMC Biol. 2010;8:153 pubmed 出版商
  91. Duvick L, Barnes J, Ebner B, Agrawal S, ANDRESEN M, Lim J, et al. SCA1-like disease in mice expressing wild-type ataxin-1 with a serine to aspartic acid replacement at residue 776. Neuron. 2010;67:929-35 pubmed 出版商
  92. Takahashi Fujigasaki J, Breidert T, Fujigasaki H, Duyckaerts C, Camonis J, Brice A, et al. Amyloid precursor-like protein 2 cleavage contributes to neuronal intranuclear inclusions and cytotoxicity in spinocerebellar ataxia-7 (SCA7). Neurobiol Dis. 2011;41:33-42 pubmed 出版商
  93. Nisoli I, Chauvin J, Napoletano F, Calamita P, Zanin V, Fanto M, et al. Neurodegeneration by polyglutamine Atrophin is not rescued by induction of autophagy. Cell Death Differ. 2010;17:1577-87 pubmed 出版商
  94. Guttman M, Betts G, Barnes H, Ghassemian M, van der Geer P, Komives E. Interactions of the NPXY microdomains of the low density lipoprotein receptor-related protein 1. Proteomics. 2009;9:5016-28 pubmed 出版商
  95. Wiseman R, Chin K, Haynes C, Stanhill A, Xu C, Roguev A, et al. Thioredoxin-related Protein 32 is an arsenite-regulated Thiol Reductase of the proteasome 19 S particle. J Biol Chem. 2009;284:15233-45 pubmed 出版商
  96. Zhu H, Rothermel B, Hill J. Autophagy in load-induced heart disease. Methods Enzymol. 2009;453:343-63 pubmed 出版商
  97. den Dulk B, van Eijk P, de Ruijter M, Brandsma J, Brouwer J. The NER protein Rad33 shows functional homology to human Centrin2 and is involved in modification of Rad4. DNA Repair (Amst). 2008;7:858-68 pubmed 出版商
  98. Marvin Guy L, Duncan P, Wagnière S, Antille N, Porta N, Affolter M, et al. Rapid identification of differentiation markers from whole epithelial cells by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and statistical analysis. Rapid Commun Mass Spectrom. 2008;22:1099-108 pubmed 出版商
  99. Nakamura N, Hirose S. Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. Mol Biol Cell. 2008;19:1903-11 pubmed 出版商
  100. Bjørkhaug L, Molnes J, Søvik O, Njølstad P, Flatmark T. Allosteric activation of human glucokinase by free polyubiquitin chains and its ubiquitin-dependent cotranslational proteasomal degradation. J Biol Chem. 2007;282:22757-64 pubmed
  101. Tanaka T, Grusby M, Kaisho T. PDLIM2-mediated termination of transcription factor NF-kappaB activation by intranuclear sequestration and degradation of the p65 subunit. Nat Immunol. 2007;8:584-91 pubmed
  102. Nomura N, Nomura M, Newcomb E, Zagzag D. Geldanamycin induces G2 arrest in U87MG glioblastoma cells through downregulation of Cdc2 and cyclin B1. Biochem Pharmacol. 2007;73:1528-36 pubmed
  103. Gallagher E, Enzler T, Matsuzawa A, Anzelon Mills A, Otero D, Holzer R, et al. Kinase MEKK1 is required for CD40-dependent activation of the kinases Jnk and p38, germinal center formation, B cell proliferation and antibody production. Nat Immunol. 2007;8:57-63 pubmed
  104. Bloom J, Pagano M. Experimental tests to definitively determine ubiquitylation of a substrate. Methods Enzymol. 2005;399:249-66 pubmed
  105. Nomura M, Nomura N, Yamashita J. Geldanamycin-induced degradation of Chk1 is mediated by proteasome. Biochem Biophys Res Commun. 2005;335:900-5 pubmed
  106. Lensch M, Tischkowitz M, Christianson T, Reifsteck C, Speckhart S, Jakobs P, et al. Acquired FANCA dysfunction and cytogenetic instability in adult acute myelogenous leukemia. Blood. 2003;102:7-16 pubmed
  107. Alberti S, Demand J, Esser C, Emmerich N, Schild H, Hohfeld J. Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J Biol Chem. 2002;277:45920-7 pubmed
  108. Kassenbrock C, Hunter S, Garl P, Johnson G, Anderson S. Inhibition of Src family kinases blocks epidermal growth factor (EGF)-induced activation of Akt, phosphorylation of c-Cbl, and ubiquitination of the EGF receptor. J Biol Chem. 2002;277:24967-75 pubmed
  109. Tan Z, Sankar R, Tu W, Shin D, Liu H, Wasterlain C, et al. Immunohistochemical study of p53-associated proteins in rat brain following lithium-pilocarpine status epilepticus. Brain Res. 2002;929:129-38 pubmed
  110. Floyd Z, Stephens J. Interferon-gamma-mediated activation and ubiquitin-proteasome-dependent degradation of PPARgamma in adipocytes. J Biol Chem. 2002;277:4062-8 pubmed
  111. Ruffner H, Joazeiro C, Hemmati D, Hunter T, Verma I. Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci U S A. 2001;98:5134-9 pubmed
  112. Verdier F, Chretien S, Muller O, Varlet P, Yoshimura A, Gisselbrecht S, et al. Proteasomes regulate erythropoietin receptor and signal transducer and activator of transcription 5 (STAT5) activation. Possible involvement of the ubiquitinated Cis protein. J Biol Chem. 1998;273:28185-90 pubmed
  113. Nielsen K, Papageorge A, Vass W, Willumsen B, Lowy D. The Ras-specific exchange factors mouse Sos1 (mSos1) and mSos2 are regulated differently: mSos2 contains ubiquitination signals absent in mSos1. Mol Cell Biol. 1997;17:7132-8 pubmed