这是一篇来自已证抗体库的有关人类 RPS6KA3的综述,是根据32篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合RPS6KA3 抗体。
RPS6KA3 同义词: CLS; HU-3; ISPK-1; MAPKAPK1B; MRX19; RSK; RSK2; S6K-alpha3; p90-RSK2; pp90RSK2

圣克鲁斯生物技术
小鼠 单克隆(E-1)
  • 免疫印迹; 人类; 图 2e
圣克鲁斯生物技术 RPS6KA3抗体(Santa Cruz Biotechnology, SC-9986)被用于被用于免疫印迹在人类样本上 (图 2e). Int J Mol Sci (2019) ncbi
小鼠 单克隆(C-6)
  • 免疫组化; 人类; 图 1e
圣克鲁斯生物技术 RPS6KA3抗体(Santa Cruz, SC-377501)被用于被用于免疫组化在人类样本上 (图 1e). Cell Death Dis (2018) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 RPS6KA3抗体(Santa Cruz, sc-9986)被用于被用于免疫印迹在人类样本上 (图 1a). Exp Mol Med (2016) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 RPS6KA3抗体(Santa Cruz, SC-9986)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cancer (2015) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 RPS6KA3抗体(Santa Cruz, sc-9986)被用于被用于免疫印迹在人类样本上. Cell Signal (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR2847Y)
  • 免疫印迹; 人类; 图 7e
艾博抗(上海)贸易有限公司 RPS6KA3抗体(Abcam, ab75820)被用于被用于免疫印迹在人类样本上 (图 7e). Mol Cancer (2020) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D53A11)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signaling Technology, 3556 s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). J Exp Clin Cancer Res (2022) ncbi
domestic rabbit 单克隆(D21B2)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signaling Technology, 5528s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). J Exp Clin Cancer Res (2022) ncbi
domestic rabbit 单克隆(9D9)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signaling Technology, 9335)被用于被用于免疫印迹在人类样本上 (图 4d). Cancer Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell signaling, 9344)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1a
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signaling, 9346)被用于被用于免疫印迹在人类样本上 (图 s1a). Breast Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2f
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell signaling, 9344)被用于被用于免疫印迹在人类样本上 (图 s2f). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signaling, 9346)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(9D9)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signaling, 9335)被用于被用于免疫印迹在人类样本上 (图 6d). Cell (2018) ncbi
domestic rabbit 单克隆(D21B2)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signaling, 5528)被用于被用于免疫印迹在人类样本上 (图 2d). Mol Cell Proteomics (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signaling, 9344)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Biol Chem (2018) ncbi
domestic rabbit 单克隆(9D9)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signaling, 9335)被用于被用于免疫印迹在人类样本上 (图 3a). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(CST, 9344)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s1
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signaling, 9346)被用于被用于免疫细胞化学在人类样本上 (图 s1). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(cell signalling, 9344)被用于被用于免疫印迹在小鼠样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 S8
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signaling, 9344)被用于被用于免疫印迹在人类样本上 (图 S8). Oncotarget (2016) ncbi
domestic rabbit 单克隆(9D9)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signaling, 9335)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signaling, 9341)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(cell signalling, 9344)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D53A11)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell signaling, 3556)被用于被用于免疫印迹在人类样本上 (图 5d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(9D9)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell signaling, 9335)被用于被用于免疫印迹在人类样本上 (图 3). FASEB J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signaling Tech, 9346)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8c
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signaling, 9344)被用于被用于免疫印迹在人类样本上 (图 8c). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell signaling, 9344)被用于被用于免疫印迹在小鼠样本上 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 4
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signaling Tech, 9341)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signaling Technology, 9341)被用于被用于免疫印迹在人类样本上 (图 4). Cell Commun Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signaling Technology, 9340)被用于被用于免疫印迹在人类样本上 (图 6). FASEB J (2016) ncbi
domestic rabbit 单克隆(9D9)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signaling Technology, 9335p)被用于被用于免疫印迹在小鼠样本上 (图 4). Endocrinology (2016) ncbi
domestic rabbit 单克隆(9D9)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signalling, 9335)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D21B2)
  • 免疫细胞化学; 人类; 1:75
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signaling Technology, 5528)被用于被用于免疫细胞化学在人类样本上浓度为1:75 和 被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
domestic rabbit 单克隆(9D9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 RPS6KA3抗体(Cell Signaling Technology, 9335)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
文章列表
  1. Zhang X, Guo Y, Xiao T, Li J, Guo A, Lei L, et al. CD147 mediates epidermal malignant transformation through the RSK2/AP-1 pathway. J Exp Clin Cancer Res. 2022;41:246 pubmed 出版商
  2. Feng Y, Mischler W, Gurung A, Kavanagh T, Androsov G, Sadow P, et al. Therapeutic Targeting of the Secreted Lysophospholipase D Autotaxin Suppresses Tuberous Sclerosis Complex-Associated Tumorigenesis. Cancer Res. 2020;80:2751-2763 pubmed 出版商
  3. Lu C, Wei Y, Wang X, Zhang Z, Yin J, Li W, et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer. 2020;19:28 pubmed 出版商
  4. Hamilton W, Mosesson Y, Monteiro R, Emdal K, Knudsen T, Francavilla C, et al. Dynamic lineage priming is driven via direct enhancer regulation by ERK. Nature. 2019;: pubmed 出版商
  5. Yoo S, Lee C, An H, Lee J, Lee H, Kang H, et al. RSK2-Mediated ELK3 Activation Enhances Cell Transformation and Breast Cancer Cell Growth by Regulation of c-fos Promoter Activity. Int J Mol Sci. 2019;20: pubmed 出版商
  6. Greer Y, Gilbert S, Gril B, Narwal R, Peacock Brooks D, Tice D, et al. MEDI3039, a novel highly potent tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 2 agonist, causes regression of orthotopic tumors and inhibits outgrowth of metastatic triple-negative breast cancer. Breast Cancer Res. 2019;21:27 pubmed 出版商
  7. Lee C, Moon S, Jeong J, Lee S, Lee M, Yoo S, et al. Kaempferol targeting on the fibroblast growth factor receptor 3-ribosomal S6 kinase 2 signaling axis prevents the development of rheumatoid arthritis. Cell Death Dis. 2018;9:401 pubmed 出版商
  8. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  9. Su S, Chen J, Yao H, Liu J, Yu S, Lao L, et al. CD10+GPR77+ Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness. Cell. 2018;172:841-856.e16 pubmed 出版商
  10. Kostas M, Haugsten E, Zhen Y, Sørensen V, Szybowska P, Fiorito E, et al. Protein Tyrosine Phosphatase Receptor Type G (PTPRG) Controls Fibroblast Growth Factor Receptor (FGFR) 1 Activity and Influences Sensitivity to FGFR Kinase Inhibitors. Mol Cell Proteomics. 2018;17:850-870 pubmed 出版商
  11. Sutavani R, Phair I, Barker R, McFarlane A, Shpiro N, Lang S, et al. Differential control of Toll-like receptor 4-induced interleukin-10 induction in macrophages and B cells reveals a role for p90 ribosomal S6 kinases. J Biol Chem. 2018;293:2302-2317 pubmed 出版商
  12. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  13. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  14. Loo L, Bougen Zhukov N, Tan W. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments. Sci Rep. 2017;7:43541 pubmed 出版商
  15. Kidger A, Rushworth L, Stellzig J, Davidson J, Bryant C, Bayley C, et al. Dual-specificity phosphatase 5 controls the localized inhibition, propagation, and transforming potential of ERK signaling. Proc Natl Acad Sci U S A. 2017;114:E317-E326 pubmed 出版商
  16. Piasecka D, Kitowska K, Czaplinska D, Mieczkowski K, Mieszkowska M, Turczyk L, et al. Fibroblast growth factor signalling induces loss of progesterone receptor in breast cancer cells. Oncotarget. 2016;7:86011-86025 pubmed 出版商
  17. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  18. Krepler C, Xiao M, Samanta M, Vultur A, Chen H, Brafford P, et al. Targeting Notch enhances the efficacy of ERK inhibitors in BRAF-V600E melanoma. Oncotarget. 2016;7:71211-71222 pubmed 出版商
  19. Park Y, Nam H, Do M, Lee J. The p90 ribosomal S6 kinase 2 specifically affects mitotic progression by regulating the basal level, distribution and stability of mitotic spindles. Exp Mol Med. 2016;48:e250 pubmed 出版商
  20. Lagares Tena L, García Monclús S, López Alemany R, Almacellas Rabaiget O, Huertas Martínez J, Sáinz Jaspeado M, et al. Caveolin-1 promotes Ewing sarcoma metastasis regulating MMP-9 expression through MAPK/ERK pathway. Oncotarget. 2016;7:56889-56903 pubmed 出版商
  21. Subramaniam S, Ozdener M, Abdoul Azize S, Saito K, Malik B, Maquart G, et al. ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans. FASEB J. 2016;30:3489-3500 pubmed
  22. Park J, Xu X, Cho S, Hur K, Lee M, Kersten S, et al. CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis. Sci Rep. 2016;6:27938 pubmed 出版商
  23. Zhou B, Ritt D, Morrison D, Der C, Cox A. Protein Kinase CK2? Maintains Extracellular Signal-regulated Kinase (ERK) Activity in a CK2? Kinase-independent Manner to Promote Resistance to Inhibitors of RAF and MEK but Not ERK in BRAF Mutant Melanoma. J Biol Chem. 2016;291:17804-15 pubmed 出版商
  24. de Jong P, Taniguchi K, Harris A, Bertin S, Takahashi N, Duong J, et al. ERK5 signalling rescues intestinal epithelial turnover and tumour cell proliferation upon ERK1/2 abrogation. Nat Commun. 2016;7:11551 pubmed 出版商
  25. Moiseeva O, Lopes Paciencia S, Huot G, Lessard F, Ferbeyre G. Permanent farnesylation of lamin A mutants linked to progeria impairs its phosphorylation at serine 22 during interphase. Aging (Albany NY). 2016;8:366-81 pubmed
  26. Hennig A, Markwart R, Wolff K, Schubert K, Cui Y, Prior I, et al. Feedback activation of neurofibromin terminates growth factor-induced Ras activation. Cell Commun Signal. 2016;14:5 pubmed 出版商
  27. Lommel M, Trairatphisan P, Gäbler K, Laurini C, Muller A, Kaoma T, et al. L-plastin Ser5 phosphorylation in breast cancer cells and in vitro is mediated by RSK downstream of the ERK/MAPK pathway. FASEB J. 2016;30:1218-33 pubmed 出版商
  28. van Jaarsveld M, van Kuijk P, Boersma A, Helleman J, Van Ijcken W, Mathijssen R, et al. miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway. Mol Cancer. 2015;14:196 pubmed 出版商
  29. Yang C, Lowther K, Lalioti M, Seli E. Embryonic Poly(A)-Binding Protein (EPAB) Is Required for Granulosa Cell EGF Signaling and Cumulus Expansion in Female Mice. Endocrinology. 2016;157:405-16 pubmed 出版商
  30. Gruosso T, Garnier C, Abélanet S, Kieffer Y, Lemesre V, Bellanger D, et al. MAP3K8/TPL-2/COT is a potential predictive marker for MEK inhibitor treatment in high-grade serous ovarian carcinomas. Nat Commun. 2015;6:8583 pubmed 出版商
  31. Czaplinska D, Turczyk L, Grudowska A, Mieszkowska M, Lipinska A, Skladanowski A, et al. Phosphorylation of RSK2 at Tyr529 by FGFR2-p38 enhances human mammary epithelial cells migration. Biochim Biophys Acta. 2014;1843:2461-70 pubmed 出版商
  32. Nam H, Lee I, Jang S, Bae C, Kwak S, Lee J. p90 ribosomal S6 kinase 1 (RSK1) isoenzyme specifically regulates cytokinesis progression. Cell Signal. 2014;26:208-19 pubmed 出版商