这是一篇来自已证抗体库的有关人类 runt相关转录因子2 (RUNX2) 的综述,是根据117篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合runt相关转录因子2 抗体。
runt相关转录因子2 同义词: AML3; CBF-alpha-1; CBFA1; CCD; CCD1; CLCD; OSF-2; OSF2; PEA2aA; PEBP2aA

艾博抗(上海)贸易有限公司
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 2d
  • EMSA; African green monkey; 图 6h
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在小鼠样本上 (图 2d) 和 被用于EMSA在African green monkey样本上 (图 6h). Cell Rep (2022) ncbi
domestic rabbit 单克隆(EPR3099)
  • 免疫组化-石蜡切片; 小鼠; 图 1i
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab92336)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1i). Cell Rep (2021) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s5c
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s5c). Bone Res (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 4h
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在小鼠样本上 (图 4h). Mol Cells (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 6a
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在小鼠样本上 (图 6a). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(EPR22858-106)
  • 免疫印迹; 大鼠; 1:1000; 图 2e
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab236639)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2e). Aging (Albany NY) (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:1000; 图 9b
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9b). Int J Mol Med (2021) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3i
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3i). Biomed Res Int (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4e
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab23981)被用于被用于免疫印迹在小鼠样本上 (图 4e). Cell Prolif (2021) ncbi
domestic rabbit 单克隆(EPR14334)
  • 免疫组化; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab192256)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6a). Genes Dev (2021) ncbi
domestic rabbit 单克隆(EPR14334)
  • 免疫组化; 人类; 1:1000; 图 s3e
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(abcam, ab192256)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 s3e). Genome Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, Ab23981)被用于被用于免疫印迹在人类样本上 (图 4d). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, 23981)被用于被用于免疫印迹在小鼠样本上 (图 4b). Bioact Mater (2021) ncbi
domestic rabbit 单克隆(EPR14334)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 9
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab192256)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 9). Cells (2020) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:2000; 图 4b
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4b). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 4c
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab23981)被用于被用于免疫组化在小鼠样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上 (图 4c). Int J Mol Sci (2020) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在人类样本上 (图 6a). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab23981)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EPR14334)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4c
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, EPR14334)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4c). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EPR3099)
  • 免疫细胞化学; 人类; 图 3d
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(abcam, ab92336)被用于被用于免疫细胞化学在人类样本上 (图 3d). Cell (2019) ncbi
domestic rabbit 单克隆(EPR3099)
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab92336)被用于被用于免疫印迹在人类样本上 (图 1d). Leukemia (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 5c
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EPR14334)
  • 流式细胞仪; 小鼠; 1:50; 图 s3a
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab192256)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s3a). Bone Res (2018) ncbi
domestic rabbit 单克隆(EPR3099)
  • 免疫印迹; 人类; 1:1000; 图 2a
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, 92336)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Cell Rep (2018) ncbi
domestic rabbit 单克隆(EPR3099)
  • 免疫印迹; 小鼠; 1:500; 图 5e
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, AB92336)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5e). Mol Cell Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3e
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab23981)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Biomed Res Int (2018) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:10,000; 图 4b
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4b). Biosci Rep (2018) ncbi
domestic rabbit 单克隆(EPR3099)
  • 免疫印迹; 小鼠; 图 2b
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab92336)被用于被用于免疫印迹在小鼠样本上 (图 2b). elife (2018) ncbi
domestic rabbit 单克隆(EPR3099)
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab92336)被用于被用于免疫印迹在小鼠样本上 (图 5a). BMC Musculoskelet Disord (2017) ncbi
domestic rabbit 单克隆(EPR3099)
  • 免疫组化; 小鼠; 图 2b
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab92336)被用于被用于免疫组化在小鼠样本上 (图 2b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(EPR3099)
  • 流式细胞仪; 小鼠; 图 3e
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab92336)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Sci Rep (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Mol Med (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:500; 图 4
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(EPR3099)
  • 免疫组化; 小鼠; 1:200; 图 7e
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab92336)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7e). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s4
  • 免疫印迹; 小鼠; 1:1000; 图 5
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(abcam, ab23981)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 6
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cancer Med (2015) ncbi
domestic rabbit 单克隆(EPR3099)
  • 免疫组化; 小鼠; 图 4a
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, 92336)被用于被用于免疫组化在小鼠样本上 (图 4a). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 1:200; 图 4b
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4b). Stem Cell Res Ther (2015) ncbi
domestic rabbit 单克隆(EPR3099)
  • 染色质免疫沉淀 ; 小鼠; 图 6
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab92336)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 6). elife (2014) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Int J Mol Sci (2014) ncbi
小鼠 单克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在人类样本上. FEBS J (2014) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Cell Prolif (2014) ncbi
小鼠 单克隆
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在人类样本上. Int J Biol Sci (2013) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Cell Tissue Res (2014) ncbi
小鼠 单克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Prolif (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术runt相关转录因子2抗体(Santa, sc-390351)被用于被用于免疫印迹在人类样本上 (图 4b). Int J Med Sci (2022) ncbi
小鼠 单克隆(F-2)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1b
圣克鲁斯生物技术runt相关转录因子2抗体(Santa Cruz, sc-390351)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1b). Front Physiol (2022) ncbi
小鼠 单克隆(F-2)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5d
圣克鲁斯生物技术runt相关转录因子2抗体(Santa Cruz, sc-390351)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5d). Commun Biol (2022) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 牛; 图 3e
圣克鲁斯生物技术runt相关转录因子2抗体(Santa Cruz, sc-390351)被用于被用于免疫印迹在牛样本上 (图 3e). J Orthop Translat (2021) ncbi
小鼠 单克隆(F-2)
  • 免疫组化-石蜡切片; 大鼠; 图 3d
圣克鲁斯生物技术runt相关转录因子2抗体(Santa Cruz, sc-390351)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 3d). PLoS ONE (2021) ncbi
小鼠 单克隆(C-12)
  • 免疫印迹; 大鼠; 图 1g
圣克鲁斯生物技术runt相关转录因子2抗体(Santa, sc-390715)被用于被用于免疫印迹在大鼠样本上 (图 1g). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(F-2)
  • 免疫组化; 人类; 1:50; 图 s1b
  • 免疫细胞化学; 小鼠; 图 s7d
圣克鲁斯生物技术runt相关转录因子2抗体(Santa Cruz, sc-390351)被用于被用于免疫组化在人类样本上浓度为1:50 (图 s1b) 和 被用于免疫细胞化学在小鼠样本上 (图 s7d). Nat Commun (2020) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 1:500; 图 2b
圣克鲁斯生物技术runt相关转录因子2抗体(Santa Cruz, SC-390351)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Arthritis Res Ther (2019) ncbi
小鼠 单克隆(27-K)
  • 免疫细胞化学; 人类; 图 4h
圣克鲁斯生物技术runt相关转录因子2抗体(Santa Cruz, sc-101145)被用于被用于免疫细胞化学在人类样本上 (图 4h). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(27-K)
  • 免疫印迹; 大鼠; 1:400; 图 7a
圣克鲁斯生物技术runt相关转录因子2抗体(Santa Cruz, sc-101145)被用于被用于免疫印迹在大鼠样本上浓度为1:400 (图 7a). Exp Ther Med (2017) ncbi
小鼠 单克隆(C-12)
  • 染色质免疫沉淀 ; 小鼠; 图 6d
圣克鲁斯生物技术runt相关转录因子2抗体(Santa Cruz, SC-390715)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 6d). Sci Rep (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 大鼠; 1:500; 图 6
圣克鲁斯生物技术runt相关转录因子2抗体(santa Cruz, sc-390351)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6). Int J Med Sci (2016) ncbi
小鼠 单克隆(27-K)
  • 免疫印迹; 人类; 图 7c
圣克鲁斯生物技术runt相关转录因子2抗体(SantaCruz, sc-101145)被用于被用于免疫印迹在人类样本上 (图 7c). Oncogene (2016) ncbi
小鼠 单克隆(27-K)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
圣克鲁斯生物技术runt相关转录因子2抗体(Santa Cruz Biotechnology, sc-101145)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Pathol Oncol Res (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6
  • 免疫印迹; 小鼠; 1:2000; 图 3
圣克鲁斯生物技术runt相关转录因子2抗体(Santa Cruz, sc-390351)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). Drug Des Devel Ther (2015) ncbi
小鼠 单克隆(27-K)
  • 免疫组化-石蜡切片; 人类
圣克鲁斯生物技术runt相关转录因子2抗体(Santa Cruz Biotechnology, 27-K)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Pathol (2013) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7b
赛默飞世尔runt相关转录因子2抗体(ThermoFisher Scientific, PA1-41519)被用于被用于免疫印迹在小鼠样本上 (图 7b). Biomed Mater (2016) ncbi
小鼠 单克隆(ZR002)
  • 免疫细胞化学; 人类; 1:400; 图 2f
  • 酶联免疫吸附测定; 人类; 1:200; 表 2
赛默飞世尔runt相关转录因子2抗体(Invitrogen, ZR002)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 2f) 和 被用于酶联免疫吸附测定在人类样本上浓度为1:200 (表 2). Mol Biol Rep (2016) ncbi
小鼠 单克隆(ZR002)
  • 抑制或激活实验; 人类; 1 ug/ml
赛默飞世尔runt相关转录因子2抗体(Invitrogen, 41-1400)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml. J Biol Eng (2013) ncbi
Novus Biologicals
domestic rabbit 多克隆(8D5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2c
  • 免疫印迹; 小鼠; 1:2000; 图 1k
Novus Biologicalsrunt相关转录因子2抗体(Novusbio, NBP1-77461)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2c) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1k). Nat Commun (2021) ncbi
domestic rabbit 多克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1e, 4a
Novus Biologicalsrunt相关转录因子2抗体(Novus, NBP1-77461)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1e, 4a). J Clin Med (2019) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(3F5)
  • 免疫组化-石蜡切片; 人类; 图 1
  • 免疫细胞化学; 人类; 图 1
亚诺法生技股份有限公司runt相关转录因子2抗体(Abnova, H00000860-M06)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1) 和 被用于免疫细胞化学在人类样本上 (图 1). Endocrinology (2016) ncbi
小鼠 单克隆(3F5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
亚诺法生技股份有限公司runt相关转录因子2抗体(Abnova, H00000860-M06)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5). PLoS ONE (2016) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6b
安迪生物R&Drunt相关转录因子2抗体(亲和, AF2006)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). J Neuroinflammation (2022) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D1L7F)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 6g
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signalling, 12556)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 6g). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D1H7)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 8486)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). elife (2022) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫组化; 小鼠; 1:200; 图 7a
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 12556s)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7a). elife (2022) ncbi
domestic rabbit 单克隆(D1H7)
  • 染色质免疫沉淀 ; 人类; 2 ug/ml; 图 2c
  • 免疫印迹; 人类; 图 2a
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 8486)被用于被用于染色质免疫沉淀 在人类样本上浓度为2 ug/ml (图 2c), 被用于免疫印迹在人类样本上 (图 2a) 和 被用于免疫印迹在小鼠样本上 (图 3e). () ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling Technology, 12556)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Exp Ther Med (2021) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫印迹; 小鼠; 图 8g
  • 免疫印迹; 人类; 图 e2a
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 12556)被用于被用于免疫印迹在小鼠样本上 (图 8g) 和 被用于免疫印迹在人类样本上 (图 e2a). EMBO Rep (2021) ncbi
domestic rabbit 单克隆(D1H7)
  • 免疫细胞化学; 人类; 1:250; 图 3a
  • 免疫印迹; 人类; 1:2000; 图 2e
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(CST, 8486)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 3a) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 2e). Stem Cell Res Ther (2021) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 12556)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). elife (2021) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫印迹; 大鼠; 图 3b
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling Technology, 12556)被用于被用于免疫印迹在大鼠样本上 (图 3b). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫印迹; 人类; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(CST, 12556)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(D1H7)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3g
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 8486)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Commun Biol (2021) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling Technology, 12556S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). J Clin Invest (2021) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫印迹; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling Technology, 12556)被用于被用于免疫印迹在小鼠样本上 (图 3f). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫细胞化学; 小鼠; 图 6e
  • 免疫组化; 小鼠; 图 7g
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(cst, 12556)被用于被用于免疫细胞化学在小鼠样本上 (图 6e), 被用于免疫组化在小鼠样本上 (图 7g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Cell Discov (2021) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫印迹; 人类; 图 3g
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 12556)被用于被用于免疫印迹在人类样本上 (图 3g). J Cell Mol Med (2021) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫印迹; 小鼠; 图 3c, 7d
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell signaling, 12556s)被用于被用于免疫印迹在小鼠样本上 (图 3c, 7d). PLoS Genet (2021) ncbi
domestic rabbit 单克隆(D1H7)
  • 免疫印迹; 小鼠; 图 5a, s5b
  • 免疫印迹; 人类; 图 6i
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 8486s)被用于被用于免疫印迹在小鼠样本上 (图 5a, s5b) 和 被用于免疫印迹在人类样本上 (图 6i). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 12556)被用于被用于免疫印迹在人类样本上 (图 2a). Int J Mol Sci (2020) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 12556)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). elife (2020) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫组化基因敲除验证; 小鼠; 1:200; 图 1d
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, D1L7F)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:200 (图 1d). Sci Rep (2020) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫印迹; 小鼠; 1:1000; 图 2k
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(CST, 12556 s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2k). elife (2019) ncbi
domestic rabbit 单克隆(D1H7)
  • 免疫印迹; 小鼠; 1:1000; 图 s1b
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 8486S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1b). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D1L7F)
  • mass cytometry; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 12556)被用于被用于mass cytometry在小鼠样本上 (图 1d). Cell Stem Cell (2019) ncbi
domestic rabbit 单克隆(D1L7F)
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, D1L7F)被用于. Nat Commun (2019) ncbi
domestic rabbit 单克隆(D1H7)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling Technology, 8486)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Cell Death Differ (2019) ncbi
domestic rabbit 单克隆(D1L7F)
  • 流式细胞仪; 人类; 图 s2b
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 12556S)被用于被用于流式细胞仪在人类样本上 (图 s2b). Cell (2019) ncbi
domestic rabbit 单克隆(D1H7)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 8486)被用于被用于免疫印迹在小鼠样本上 (图 3d). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫印迹; 人类; 1:500; 图 2c
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling Technology, 12556S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2c). Mol Med Rep (2018) ncbi
domestic rabbit 单克隆(D1H7)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 8486)被用于被用于免疫印迹在小鼠样本上 (图 5a). Bone (2018) ncbi
domestic rabbit 单克隆(D1H7)
  • 免疫印迹; 小鼠; 图 9e
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling Technologies, 8486)被用于被用于免疫印迹在小鼠样本上 (图 9e). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫沉淀; 大鼠; 图 6c
  • 免疫印迹; 大鼠; 图 5a
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell signaling, 12556)被用于被用于免疫沉淀在大鼠样本上 (图 6c) 和 被用于免疫印迹在大鼠样本上 (图 5a). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3a
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 12556)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(CST, 12556)被用于被用于免疫印迹在人类样本上 (图 1a). Tumour Biol (2016) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell signaling, 12556)被用于被用于免疫印迹在人类样本上 (图 3). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(D1H7)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 8486)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 12556)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫组化; 小鼠; 1:400; 图 2
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 12556)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D1H7)
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 8486)被用于被用于免疫印迹在小鼠样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(D1H7)
  • 免疫印迹; 大鼠; 1:1000; 图 11
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 8486S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 11). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling Technology, 12556)被用于被用于免疫印迹在人类样本上 (图 2d). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D1L7F)
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 12556)被用于被用于免疫印迹在大鼠样本上 (图 2). Int J Mol Sci (2015) ncbi
MBL International
单克隆(8G5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
MBL Internationalrunt相关转录因子2抗体(MBL, D130-3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1a). Nat Commun (2020) ncbi
单克隆(8G5)
  • 免疫组化基因敲除验证; 小鼠; 1:200; 图 3a
MBL Internationalrunt相关转录因子2抗体(MBL, D130-3)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:200 (图 3a). J Cell Physiol (2019) ncbi
单克隆(8G5)
  • 免疫印迹; 小鼠; 图 3e
MBL Internationalrunt相关转录因子2抗体(MBL International, 8G5)被用于被用于免疫印迹在小鼠样本上 (图 3e). J Biol Chem (2018) ncbi
单克隆(8G5)
  • 免疫沉淀; 小鼠; 图 2i
  • 免疫细胞化学; 小鼠; 图 2i
  • 免疫印迹; 小鼠; 图 2i
  • 免疫沉淀; 人类; 图 2d
  • 免疫印迹; 人类; 图 2b
MBL Internationalrunt相关转录因子2抗体(MBL, D-130-3)被用于被用于免疫沉淀在小鼠样本上 (图 2i), 被用于免疫细胞化学在小鼠样本上 (图 2i), 被用于免疫印迹在小鼠样本上 (图 2i), 被用于免疫沉淀在人类样本上 (图 2d) 和 被用于免疫印迹在人类样本上 (图 2b). J Clin Invest (2016) ncbi
单克隆(8G5)
  • 免疫印迹; 小鼠; 1:100; 图 5b
MBL Internationalrunt相关转录因子2抗体(MBL, D130-3)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 5b). PLoS ONE (2016) ncbi
单克隆(8G5)
  • 免疫沉淀; 人类
  • 酶联免疫吸附测定; 人类; 1:5000
MBL Internationalrunt相关转录因子2抗体(MBL, D130-3)被用于被用于免疫沉淀在人类样本上 和 被用于酶联免疫吸附测定在人类样本上浓度为1:5000. Microvasc Res (2015) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:250; 图 5a
西格玛奥德里奇runt相关转录因子2抗体(Sigma, HPA022040)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 5a). Cell Rep (2021) ncbi
文章列表
  1. Hojo H, Saito T, He X, Guo Q, Onodera S, Azuma T, et al. Runx2 regulates chromatin accessibility to direct the osteoblast program at neonatal stages. Cell Rep. 2022;40:111315 pubmed 出版商
  2. Mu R, Chen B, Bi B, Yu H, Liu J, Li J, et al. LIM Mineralization Protein-1 Enhances the Committed Differentiation of Dental Pulp Stem Cells through the ERK1/2 and p38 MAPK Pathways and BMP Signaling. Int J Med Sci. 2022;19:1307-1319 pubmed 出版商
  3. Ding R, Li H, Liu Y, Ou W, Zhang X, Chai H, et al. Activating cGAS-STING axis contributes to neuroinflammation in CVST mouse model and induces inflammasome activation and microglia pyroptosis. J Neuroinflammation. 2022;19:137 pubmed 出版商
  4. Lohraseb I, McCarthy P, Secker G, Marchant C, Wu J, Ali N, et al. Global ubiquitinome profiling identifies NEDD4 as a regulator of Profilin 1 and actin remodelling in neural crest cells. Nat Commun. 2022;13:2018 pubmed 出版商
  5. Shen L, Yu Y, Zhou Y, Pruett Miller S, Zhang G, Karner C. SLC38A2 provides proline to fulfill unique synthetic demands arising during osteoblast differentiation and bone formation. elife. 2022;11: pubmed 出版商
  6. Ha N, Sun J, Bian Q, Wu D, Wang X. Hdac4 Regulates the Proliferation of Neural Crest-Derived Osteoblasts During Murine Craniofacial Development. Front Physiol. 2022;13:819619 pubmed 出版商
  7. Guo T, Han X, He J, Feng J, Jing J, Jane x10d kov xe1 E, et al. KDM6B interacts with TFDP1 to activate P53 signaling in regulating mouse palatogenesis. elife. 2022;11: pubmed 出版商
  8. Liu N, Lin Y, Li L, Lu J, Geng D, Zhang J, et al. gp130/STAT3 signaling is required for homeostatic proliferation and anabolism in postnatal growth plate and articular chondrocytes. Commun Biol. 2022;5:64 pubmed 出版商
  9. Tsai H, Wang J, Hsu Y, Chiu Y, Lin C, Lu C, et al. miR-424/322 protects against abdominal aortic aneurysm formation by modulating the Smad2/3/runt-related transcription factor 2 axis. Mol Ther Nucleic Acids. 2022;27:656-669 pubmed 出版商
  10. Li X, Yang H, Zhang Y, Du X, Yan Z, Li J, et al. CGFe and TGF-β1 enhance viability and osteogenic differentiation of human dental pulp stem cells through the MAPK pathway. Exp Ther Med. 2021;22:1048 pubmed 出版商
  11. Zhang Y, McGrath K, Ayoub E, Kingsley P, Yu H, Fegan K, et al. Mds1CreERT2, an inducible Cre allele specific to adult-repopulating hematopoietic stem cells. Cell Rep. 2021;36:109562 pubmed 出版商
  12. Gan Y, He J, Zhu J, Xu Z, Wang Z, Yan J, et al. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res. 2021;9:37 pubmed 出版商
  13. Jiang L, Yang Q, Gao J, Yang J, He J, Xin H, et al. BK Channel Deficiency in Osteoblasts Reduces Bone Formation via the Wnt/β-Catenin Pathway. Mol Cells. 2021;44:557-568 pubmed 出版商
  14. Du Y, Zhang M, Liu X, Li Z, Hu M, Tian Y, et al. CDC20 promotes bone formation via APC/C dependent ubiquitination and degradation of p65. EMBO Rep. 2021;22:e52576 pubmed 出版商
  15. Kim J, Kim M, Hong S, Kim E, Lee H, Jung H, et al. Albiflorin Promotes Osteoblast Differentiation and Healing of Rat Femoral Fractures Through Enhancing BMP-2/Smad and Wnt/β-Catenin Signaling. Front Pharmacol. 2021;12:690113 pubmed 出版商
  16. Han H, Tian T, Huang G, Li D, Yang S. The lncRNA H19/miR-541-3p/Wnt/β-catenin axis plays a vital role in melatonin-mediated osteogenic differentiation of bone marrow mesenchymal stem cells. Aging (Albany NY). 2021;13:18257-18273 pubmed 出版商
  17. Shen J, Sun Y, Liu X, Zhu Y, Bao B, Gao T, et al. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res Ther. 2021;12:415 pubmed 出版商
  18. Zhang D, Huang J, Sun X, Chen H, Huang S, Yang J, et al. Targeting local lymphatics to ameliorate heterotopic ossification via FGFR3-BMPR1a pathway. Nat Commun. 2021;12:4391 pubmed 出版商
  19. Xue F, Zhao Z, Gu Y, Han J, Ye K, Zhang Y. 7,8-Dihydroxyflavone modulates bone formation and resorption and ameliorates ovariectomy-induced osteoporosis. elife. 2021;10: pubmed 出版商
  20. Wu Y, Zhang J, Li C, Hu H, Qin B, Wang T, et al. The Activation of ROS/NF-κB/MMP-9 Pathway Promotes Calcium-Induced Kidney Crystal Deposition. Oxid Med Cell Longev. 2021;2021:8836355 pubmed 出版商
  21. Watson A, Grant A, Parker S, Hill S, Whalen M, Chakrabarti J, et al. Breast tumor stiffness instructs bone metastasis via maintenance of mechanical conditioning. Cell Rep. 2021;35:109293 pubmed 出版商
  22. Liu Y, Bao S, Guo W, Liu W. Bone mesenchymal stem cell derived exosomes alleviate high phosphorus-induced calcification of vascular smooth muscle cells through the NONHSAT 084969.2/NF-κB axis. Aging (Albany NY). 2021;13:16749-16762 pubmed 出版商
  23. Lee B, Hong S, Kim M, Kim E, Park H, Jung H, et al. Lycii radicis cortex inhibits glucocorticoid‑induced bone loss by downregulating Runx2 and BMP‑2 expression. Int J Mol Med. 2021;48: pubmed 出版商
  24. Qin H, Zhao X, Hu Y, Wang S, Ma Y, He S, et al. Inhibition of SDF-1/CXCR4 Axis to Alleviate Abnormal Bone Formation and Angiogenesis Could Improve the Subchondral Bone Microenvironment in Osteoarthritis. Biomed Res Int. 2021;2021:8852574 pubmed 出版商
  25. Yen Y, Chien M, Wu P, Hung S. PP2A in LepR+ mesenchymal stem cells contributes to embryonic and postnatal endochondral ossification through Runx2 dephosphorylation. Commun Biol. 2021;4:658 pubmed 出版商
  26. Zhang W, Dong Z, Li D, Li B, Liu Y, Zheng X, et al. Cathepsin K deficiency promotes alveolar bone regeneration by promoting jaw bone marrow mesenchymal stem cells proliferation and differentiation via glycolysis pathway. Cell Prolif. 2021;54:e13058 pubmed 出版商
  27. Olsen R, Ireland A, Kastner D, Groves S, Spainhower K, Pozo K, et al. ASCL1 represses a SOX9+ neural crest stem-like state in small cell lung cancer. Genes Dev. 2021;35:847-869 pubmed 出版商
  28. Ouyang L, Su X, Li W, Tang L, Zhang M, Zhu Y, et al. ALKBH1-demethylated DNA N6-methyladenine modification triggers vascular calcification via osteogenic reprogramming in chronic kidney disease. J Clin Invest. 2021;131: pubmed 出版商
  29. Yuan C, Chen H, Tu S, Huang H, Pan Y, Gui X, et al. A systematic dissection of the epigenomic heterogeneity of lung adenocarcinoma reveals two different subclasses with distinct prognosis and core regulatory networks. Genome Biol. 2021;22:156 pubmed 出版商
  30. Zheng H, Xu W, Zhou W, Yang R, Chen P, Liu T, et al. Beraprost ameliorates postmenopausal osteoporosis by regulating Nedd4-induced Runx2 ubiquitination. Cell Death Dis. 2021;12:497 pubmed 出版商
  31. Li Y, Yang S, Qin L, Yang S. TAZ is required for chondrogenesis and skeletal development. Cell Discov. 2021;7:26 pubmed 出版商
  32. Chen Q, Liu X, Wang D, Zheng J, Chen L, Xie Q, et al. Periodontal Inflammation-Triggered by Periodontal Ligament Stem Cell Pyroptosis Exacerbates Periodontitis. Front Cell Dev Biol. 2021;9:663037 pubmed 出版商
  33. Huang J, Li R, Yang J, Cai M, Lee Y, Wang A, et al. Bioadaptation of implants to In vitro and In vivo oxidative stress pathological conditions via nanotopography-induced FoxO1 signaling pathways to enhance Osteoimmunal regeneration. Bioact Mater. 2021;6:3164-3176 pubmed 出版商
  34. Xu G, Hu X, Han L, Zhao Y, Li Z. The construction of a novel xenograft bovine bone scaffold, (DSS)6-liposome/CKIP-1 siRNA/calcine bone and its osteogenesis evaluation on skull defect in rats. J Orthop Translat. 2021;28:74-82 pubmed 出版商
  35. Brito V, Patrocinio M, Sousa M, Barreto A, Frasnelli S, Lara V, et al. Mast cells contribute to alveolar bone loss in Spontaneously Hypertensive Rats with periodontal disease regulating cytokines production. PLoS ONE. 2021;16:e0247372 pubmed 出版商
  36. Zhou C, Chen D, Ren J, Huang D, Li R, Luo H, et al. FGF8 and BMP2 mediated dynamic regulation of dental mesenchyme proliferation and differentiation via Lhx8/Suv39h1 complex. J Cell Mol Med. 2021;: pubmed 出版商
  37. Tang C, Wu M, Zhao D, Edwards D, McVicar A, Luo Y, et al. Runx1 is a central regulator of osteogenesis for bone homeostasis by orchestrating BMP and WNT signaling pathways. PLoS Genet. 2021;17:e1009233 pubmed 出版商
  38. Feng Y, Liu S, Zha R, Sun X, Li K, ROBLING A, et al. Mechanical Loading-Driven Tumor Suppression Is Mediated by Lrp5-Dependent and Independent Mechanisms. Cancers (Basel). 2021;13: pubmed 出版商
  39. Nam B, Park H, Lee Y, Oh Y, Park J, Kim S, et al. TGFβ1 Suppressed Matrix Mineralization of Osteoblasts Differentiation by Regulating SMURF1-C/EBPβ-DKK1 Axis. Int J Mol Sci. 2020;21: pubmed 出版商
  40. Pavlova N, King B, Josselsohn R, Violante S, Macera V, Vardhana S, et al. Translation in amino-acid-poor environments is limited by tRNAGln charging. elife. 2020;9: pubmed 出版商
  41. Ofiteru A, Becheru D, Gharbia S, Baltă C, Herman H, Mladin B, et al. Qualifying Osteogenic Potency Assay Metrics for Human Multipotent Stromal Cells: TGF-β2 a Telling Eligible Biomarker. Cells. 2020;9: pubmed 出版商
  42. Gu Z, Xie D, Ding R, Huang C, Qiu Y. GPR173 agonist phoenixin 20 promotes osteoblastic differentiation of MC3T3-E1 cells. Aging (Albany NY). 2020;13:4976-4985 pubmed 出版商
  43. He F, Li L, Li P, Deng Y, Yang Y, Deng Y, et al. Cyclooxygenase-2/sclerostin mediates TGF-β1-induced calcification in vascular smooth muscle cells and rats undergoing renal failure. Aging (Albany NY). 2020;12:21220-21235 pubmed 出版商
  44. Lee Thacker S, Jeon H, Choi Y, Taniuchi I, Takarada T, Yoneda Y, et al. Core Binding Factors are essential for ovulation, luteinization, and female fertility in mice. Sci Rep. 2020;10:9921 pubmed 出版商
  45. Kim J, Yang Y, Park K, Ge X, Xu R, Li N, et al. A RUNX2 stabilization pathway mediates physiologic and pathologic bone formation. Nat Commun. 2020;11:2289 pubmed 出版商
  46. Bhat O, Yuan X, Camus S, Salloum F, Li P. Abnormal Lysosomal Positioning and Small Extracellular Vesicle Secretion in Arterial Stiffening and Calcification of Mice Lacking Mucolipin 1 Gene. Int J Mol Sci. 2020;21: pubmed 出版商
  47. Zhao W, Zhang W, Ma H, Yang M. NIPA2 regulates osteoblast function by modulating mitophagy in type 2 diabetes osteoporosis. Sci Rep. 2020;10:3078 pubmed 出版商
  48. Yang X, Yang J, Lei P, Wen T. LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. Aging (Albany NY). 2019;11:8777-8791 pubmed 出版商
  49. Darrieutort Laffite C, Arnolfo P, Garraud T, Adrait A, Coute Y, Louarn G, et al. Rotator Cuff Tenocytes Differentiate into Hypertrophic Chondrocyte-Like Cells to Produce Calcium Deposits in an Alkaline Phosphatase-Dependent Manner. J Clin Med. 2019;8: pubmed 出版商
  50. Sun W, Chi S, Li Y, Ling S, Tan Y, Xu Y, et al. The mechanosensitive Piezo1 channel is required for bone formation. elife. 2019;8: pubmed 出版商
  51. Iwayama T, Okada T, Ueda T, Tomita K, Matsumoto S, Takedachi M, et al. Osteoblastic lysosome plays a central role in mineralization. Sci Adv. 2019;5:eaax0672 pubmed 出版商
  52. Severe N, Karabacak N, Gustafsson K, Baryawno N, Courties G, Kfoury Y, et al. Stress-Induced Changes in Bone Marrow Stromal Cell Populations Revealed through Single-Cell Protein Expression Mapping. Cell Stem Cell. 2019;25:570-583.e7 pubmed 出版商
  53. Mokuda S, Nakamichi R, Matsuzaki T, Ito Y, Sato T, Miyata K, et al. Wwp2 maintains cartilage homeostasis through regulation of Adamts5. Nat Commun. 2019;10:2429 pubmed 出版商
  54. Li J, Wang P, Xie Z, Wang S, Cen S, Li M, et al. TRAF4 positively regulates the osteogenic differentiation of mesenchymal stem cells by acting as an E3 ubiquitin ligase to degrade Smurf2. Cell Death Differ. 2019;: pubmed 出版商
  55. Guo L, Wei X, Zhang Z, Wang X, Wang C, Li P, et al. Ipriflavone attenuates the degeneration of cartilage by blocking the Indian hedgehog pathway. Arthritis Res Ther. 2019;21:109 pubmed 出版商
  56. Nakanishi M, Mitchell R, Benoit Y, Orlando L, Reid J, Shimada K, et al. Human Pluripotency Is Initiated and Preserved by a Unique Subset of Founder Cells. Cell. 2019;177:910-924.e22 pubmed 出版商
  57. Zhou N, Gutierrez Uzquiza A, Zheng X, Chang R, Vogl D, Garfall A, et al. RUNX proteins desensitize multiple myeloma to lenalidomide via protecting IKZFs from degradation. Leukemia. 2019;: pubmed 出版商
  58. Lin X, Zhan J, Zhong J, Wang Y, Wang Y, Li S, et al. lncRNA-ES3/miR-34c-5p/BMF axis is involved in regulating high-glucose-induced calcification/senescence of VSMCs. Aging (Albany NY). 2019;11:523-535 pubmed 出版商
  59. Collins P, Cella M, Porter S, Li S, Gurewitz G, Hong H, et al. Gene Regulatory Programs Conferring Phenotypic Identities to Human NK Cells. Cell. 2019;176:348-360.e12 pubmed 出版商
  60. Chen X, Zhi X, Wang J, Su J. RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Res. 2018;6:34 pubmed 出版商
  61. Liao L, Zhang S, Zhou G, Ye L, Huang J, Zhao L, et al. Deletion of Runx2 in condylar chondrocytes disrupts TMJ tissue homeostasis. J Cell Physiol. 2019;234:3436-3444 pubmed 出版商
  62. Godfrey T, Wildman B, Beloti M, Kemper A, Ferraz E, Roy B, et al. The microRNA-23a cluster regulates the developmental HoxA cluster function during osteoblast differentiation. J Biol Chem. 2018;293:17646-17660 pubmed 出版商
  63. Tay L, Krishnan V, Sankar H, Chong Y, Chuang L, Tan T, et al. RUNX Poly(ADP-Ribosyl)ation and BLM Interaction Facilitate the Fanconi Anemia Pathway of DNA Repair. Cell Rep. 2018;24:1747-1755 pubmed 出版商
  64. Ghanem L, Kromer A, Silverman I, Ji X, Gazzara M, Nguyen N, et al. Poly(C)-Binding Protein Pcbp2 Enables Differentiation of Definitive Erythropoiesis by Directing Functional Splicing of the Runx1 Transcript. Mol Cell Biol. 2018;38: pubmed 出版商
  65. Yang R, Yu T, Kou X, Gao X, Chen C, Liu D, et al. Tet1 and Tet2 maintain mesenchymal stem cell homeostasis via demethylation of the P2rX7 promoter. Nat Commun. 2018;9:2143 pubmed 出版商
  66. Liu L, Liu K, Yan Y, Chu Z, Tang Y, Tang C. Two Transcripts of FBXO5 Promote Migration and Osteogenic Differentiation of Human Periodontal Ligament Mesenchymal Stem Cells. Biomed Res Int. 2018;2018:7849294 pubmed 出版商
  67. Pan B, Wu L, Pan L, Yang Y, Li H, Dai Y, et al. Up-regulation of microRNA-340 promotes osteosarcoma cell apoptosis while suppressing proliferation, migration, and invasion by inactivating the CTNNB1-mediated Notch signaling pathway. Biosci Rep. 2018;38: pubmed 出版商
  68. Bergiers I, Andrews T, Vargel Bölükbaşı Ö, Buness A, Janosz E, Lopez Anguita N, et al. Single-cell transcriptomics reveals a new dynamical function of transcription factors during embryonic hematopoiesis. elife. 2018;7: pubmed 出版商
  69. Ren G, Sun J, Li M, Zhang Y, Li R, Li Y. MicroRNA-23a-5p regulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting mitogen-activated protein kinase-13. Mol Med Rep. 2018;17:4554-4560 pubmed 出版商
  70. Chen X, Chen J, Xu D, Zhao S, Song H, Peng Y. Effects of Osteoglycin (OGN) on treating senile osteoporosis by regulating MSCs. BMC Musculoskelet Disord. 2017;18:423 pubmed 出版商
  71. Fujita S, Mukai T, Mito T, Kodama S, Nagasu A, Kittaka M, et al. Pharmacological inhibition of tankyrase induces bone loss in mice by increasing osteoclastogenesis. Bone. 2018;106:156-166 pubmed 出版商
  72. Jiang X, Hawkins J, Lee J, Lizama C, Bos F, Zape J, et al. Let-7 microRNA-dependent control of leukotriene signaling regulates the transition of hematopoietic niche in mice. Nat Commun. 2017;8:128 pubmed 出版商
  73. Hadden W, Young J, Holle A, McFetridge M, Kim D, Wijesinghe P, et al. Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc Natl Acad Sci U S A. 2017;114:5647-5652 pubmed 出版商
  74. Li S, Wang J. Salvianolic acid B prevents steroid-induced osteonecrosis of the femoral head via PPAR? expression in rats. Exp Ther Med. 2017;13:651-656 pubmed 出版商
  75. Kasaai B, Caolo V, Peacock H, Lehoux S, Gomez Perdiguero E, Luttun A, et al. Erythro-myeloid progenitors can differentiate from endothelial cells and modulate embryonic vascular remodeling. Sci Rep. 2017;7:43817 pubmed 出版商
  76. Fitter S, Matthews M, Martin S, Xie J, Ooi S, Walkley C, et al. mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation. Mol Cell Biol. 2017;37: pubmed 出版商
  77. Shi N, Li C, Cui X, Tomarev S, Chen S. Olfactomedin 2 Regulates Smooth Muscle Phenotypic Modulation and Vascular Remodeling Through Mediating Runt-Related Transcription Factor 2 Binding to Serum Response Factor. Arterioscler Thromb Vasc Biol. 2017;37:446-454 pubmed 出版商
  78. Zhang Y, Yin J, Ding H, Zhang W, Zhang C, Gao Y. Protective effect of VK2 on glucocorticoid-treated MC3T3-E1 cells. Int J Mol Med. 2017;39:160-166 pubmed 出版商
  79. Rimando M, Wu H, Liu Y, Lee C, Kuo S, Lo Y, et al. Glucocorticoid receptor and Histone deacetylase 6 mediate the differential effect of dexamethasone during osteogenesis of mesenchymal stromal cells (MSCs). Sci Rep. 2016;6:37371 pubmed 出版商
  80. Matsumoto Y, La Rose J, Kent O, Wagner M, Narimatsu M, Levy A, et al. Reciprocal stabilization of ABL and TAZ regulates osteoblastogenesis through transcription factor RUNX2. J Clin Invest. 2016;126:4482-4496 pubmed 出版商
  81. Jain S, Krishna Meka S, Chatterjee K. Curcumin eluting nanofibers augment osteogenesis toward phytochemical based bone tissue engineering. Biomed Mater. 2016;11:055007 pubmed
  82. Huang X, ZHu B, Wang X, Xiao R, Wang C. Three-dimensional co-culture of mesenchymal stromal cells and differentiated osteoblasts on human bio-derived bone scaffolds supports active multi-lineage hematopoiesis in vitro: Functional implication of the biomimetic HSC niche. Int J Mol Med. 2016;38:1141-51 pubmed 出版商
  83. Xu X, Tang X, Guo W, Yang K, Ren T. TCF-1 participates in the occurrence of dedifferentiated chondrosarcoma. Tumour Biol. 2016;37:14129-14140 pubmed
  84. Yao Y, Deng Q, Song W, Zhang H, Li Y, Yang Y, et al. MIF Plays a Key Role in Regulating Tissue-Specific Chondro-Osteogenic Differentiation Fate of Human Cartilage Endplate Stem Cells under Hypoxia. Stem Cell Reports. 2016;7:249-62 pubmed 出版商
  85. Li P, Xu Y, Gan Y, Song L, Zhang C, Wang L, et al. Role of the ERK1/2 Signaling Pathway in Osteogenesis of Rat Tendon-Derived Stem Cells in Normoxic and Hypoxic Cultures. Int J Med Sci. 2016;13:629-37 pubmed 出版商
  86. Srikanth L, Sunitha M, Kumar P, Chandrasekhar C, Vengamma B, Sarma P. Gel based in vitro 3D model exploring the osteocytic potentiality of human CD34+ stem cells. Mol Biol Rep. 2016;43:1233-1242 pubmed
  87. Fan C, Jia L, Zheng Y, Jin C, Liu Y, Liu H, et al. MiR-34a Promotes Osteogenic Differentiation of Human Adipose-Derived Stem Cells via the RBP2/NOTCH1/CYCLIN D1 Coregulatory Network. Stem Cell Reports. 2016;7:236-48 pubmed 出版商
  88. Jiang S, Chen G, Feng L, Jiang Z, Yu M, Bao J, et al. Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway. Mol Med Rep. 2016;14:1891-900 pubmed 出版商
  89. CARR F, Tai P, Barnum M, Gillis N, Evans K, Taber T, et al. Thyroid Hormone Receptor-? (TR?) Mediates Runt-Related Transcription Factor 2 (Runx2) Expression in Thyroid Cancer Cells: A Novel Signaling Pathway in Thyroid Cancer. Endocrinology. 2016;157:3278-92 pubmed 出版商
  90. Li B, Sun J, Dong Z, Xue P, He X, Liao L, et al. GCN5 modulates osteogenic differentiation of periodontal ligament stem cells through DKK1 acetylation in inflammatory microenvironment. Sci Rep. 2016;6:26542 pubmed 出版商
  91. Kam J, Dumontier E, Baim C, Brignall A, Mendes da Silva D, Cowan M, et al. RGMB and neogenin control cell differentiation in the developing olfactory epithelium. Development. 2016;143:1534-46 pubmed 出版商
  92. Noda K, Kitami M, Kitami K, Kaku M, Komatsu Y. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc Natl Acad Sci U S A. 2016;113:E2589-97 pubmed 出版商
  93. Sonomoto K, Yamaoka K, Kaneko H, Yamagata K, Sakata K, Zhang X, et al. Spontaneous Differentiation of Human Mesenchymal Stem Cells on Poly-Lactic-Co-Glycolic Acid Nano-Fiber Scaffold. PLoS ONE. 2016;11:e0153231 pubmed 出版商
  94. Caron M, Emans P, Sanen K, Surtel D, Cremers A, Ophelders D, et al. The Role of Prostaglandins and COX-Enzymes in Chondrogenic Differentiation of ATDC5 Progenitor Cells. PLoS ONE. 2016;11:e0153162 pubmed 出版商
  95. Yan B, Zhang Z, Jin D, Cai C, Jia C, Liu W, et al. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation. Nat Commun. 2016;7:11151 pubmed 出版商
  96. Shin M, He Y, Marrogi E, Piperdi S, Ren L, Khanna C, et al. A RUNX2-Mediated Epigenetic Regulation of the Survival of p53 Defective Cancer Cells. PLoS Genet. 2016;12:e1005884 pubmed 出版商
  97. Ying M, Zhang L, Zhou Q, Shao X, Cao J, Zhang N, et al. The E3 ubiquitin protein ligase MDM2 dictates all-trans retinoic acid-induced osteoblastic differentiation of osteosarcoma cells by modulating the degradation of RARα. Oncogene. 2016;35:4358-67 pubmed 出版商
  98. El Gendi S, Mostafa M. Runx2 Expression as a Potential Prognostic Marker in Invasive Ductal Breast Carcinoma. Pathol Oncol Res. 2016;22:461-70 pubmed 出版商
  99. Wang Y, Zhu G, Wang J, Chen J. Irradiation alters the differentiation potential of bone marrow mesenchymal stem cells. Mol Med Rep. 2016;13:213-23 pubmed 出版商
  100. Li S, TANG J, Chen J, Zhang P, Wang T, Chen T, et al. Regulation of bone formation by baicalein via the mTORC1 pathway. Drug Des Devel Ther. 2015;9:5169-83 pubmed 出版商
  101. Brusgard J, Choe M, Chumsri S, Renoud K, MacKerell A, Sudol M, et al. RUNX2 and TAZ-dependent signaling pathways regulate soluble E-Cadherin levels and tumorsphere formation in breast cancer cells. Oncotarget. 2015;6:28132-50 pubmed 出版商
  102. Uchiyama T, Kawabata H, Miura Y, Yoshioka S, Iwasa M, Yao H, et al. The role of growth differentiation factor 15 in the pathogenesis of primary myelofibrosis. Cancer Med. 2015;4:1558-72 pubmed 出版商
  103. He D, Lu Y, Hu H, Zhang J, Qin B, Wang Y, et al. The Wnt11 Signaling Pathway in Potential Cellular EMT and Osteochondral Differentiation Progression in Nephrolithiasis Formation. Int J Mol Sci. 2015;16:16313-29 pubmed 出版商
  104. Koh F, Lizama C, Wong P, Hawkins J, Zovein A, Ramalho Santos M. Emergence of hematopoietic stem and progenitor cells involves a Chd1-dependent increase in total nascent transcription. Proc Natl Acad Sci U S A. 2015;112:E1734-43 pubmed 出版商
  105. Guan J, Zhang J, Zhu Z, Niu X, Guo S, Wang Y, et al. Bone morphogenetic protein 2 gene transduction enhances the osteogenic potential of human urine-derived stem cells. Stem Cell Res Ther. 2015;6:5 pubmed 出版商
  106. Van Bragt M, Hu X, Xie Y, Li Z. RUNX1, a transcription factor mutated in breast cancer, controls the fate of ER-positive mammary luminal cells. elife. 2014;3:e03881 pubmed 出版商
  107. Mochin M, Underwood K, Cooper B, McLenithan J, Pierce A, Nalvarte C, et al. Hyperglycemia and redox status regulate RUNX2 DNA-binding and an angiogenic phenotype in endothelial cells. Microvasc Res. 2015;97:55-64 pubmed 出版商
  108. Li X, Liang W, Ye H, Weng X, Liu F, Liu X. Overexpression of Shox2 leads to congenital dysplasia of the temporomandibular joint in mice. Int J Mol Sci. 2014;15:13135-50 pubmed 出版商
  109. Choi Y, Kim Y, Jeong H, Jin Y, Yeo C, Lee K. Akt enhances Runx2 protein stability by regulating Smurf2 function during osteoblast differentiation. FEBS J. 2014;281:3656-66 pubmed 出版商
  110. Wang Y, Li J, Song W, Yu J. Mineral trioxide aggregate upregulates odonto/osteogenic capacity of bone marrow stromal cells from craniofacial bones via JNK and ERK MAPK signalling pathways. Cell Prolif. 2014;47:241-8 pubmed 出版商
  111. Wang H, Sun W, Ma J, Pan Y, Wang L, Zhang W. Polycystin-1 mediates mechanical strain-induced osteoblastic mechanoresponses via potentiation of intracellular calcium and Akt/?-catenin pathway. PLoS ONE. 2014;9:e91730 pubmed 出版商
  112. Dai J, Li Y, Zhou H, Chen J, Chen M, Xiao Z. Genistein promotion of osteogenic differentiation through BMP2/SMAD5/RUNX2 signaling. Int J Biol Sci. 2013;9:1089-98 pubmed 出版商
  113. Li X, Liu H, Gu S, Liu C, Sun C, Zheng Y, et al. Replacing Shox2 with human SHOX leads to congenital disc degeneration of the temporomandibular joint in mice. Cell Tissue Res. 2014;355:345-54 pubmed 出版商
  114. Kazantseva J, Kivil A, Tints K, Kazantseva A, Neuman T, Palm K. Alternative splicing targeting the hTAF4-TAFH domain of TAF4 represses proliferation and accelerates chondrogenic differentiation of human mesenchymal stem cells. PLoS ONE. 2013;8:e74799 pubmed 出版商
  115. Pilia M, Guda T, Shiels S, Appleford M. Influence of substrate curvature on osteoblast orientation and extracellular matrix deposition. J Biol Eng. 2013;7:23 pubmed 出版商
  116. Andersen T, Abdelgawad M, Kristensen H, Hauge E, Rolighed L, Bollerslev J, et al. Understanding coupling between bone resorption and formation: are reversal cells the missing link?. Am J Pathol. 2013;183:235-46 pubmed 出版商
  117. Wang L, Yan M, Wang Y, Lei G, Yu Y, Zhao C, et al. Proliferation and osteo/odontoblastic differentiation of stem cells from dental apical papilla in mineralization-inducing medium containing additional KH(2)PO(4). Cell Prolif. 2013;46:214-22 pubmed 出版商