这是一篇来自已证抗体库的有关人类 斯里兰卡肉桂咸受体2 (RYR2) 的综述,是根据36篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合斯里兰卡肉桂咸受体2 抗体。
斯里兰卡肉桂咸受体2 同义词: ARVC2; ARVD2; RYR-2; RyR; VTSIP

赛默飞世尔
小鼠 单克隆(C3-33)
  • 免疫印迹; 大鼠; 1:2000; 图 7a
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Invitrogen, MA3-916)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 7a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 图 2b
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Thermo Fisher, PA5-38329)被用于被用于免疫细胞化学在小鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 2b). Proc Natl Acad Sci U S A (2019) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 小鼠; 图 1b
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Thermo Fisher, MA3-916)被用于被用于免疫印迹在小鼠样本上 (图 1b). Science (2018) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; domestic rabbit; 1:1000; 图 5
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Thermo Fisher, MA3-916)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 5). Exp Ther Med (2017) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Thermo Scientific, MA3-916)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Stem Cell Reports (2017) ncbi
小鼠 单克隆(C3-33)
  • 免疫沉淀; 大鼠
  • 免疫印迹; 大鼠; 1:5000; 图 6a
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Thermo Scientific, MA3-916)被用于被用于免疫沉淀在大鼠样本上 和 被用于免疫印迹在大鼠样本上浓度为1:5000 (图 6a). Cardiovasc Res (2017) ncbi
小鼠 单克隆(C3-33)
  • 免疫组化-冰冻切片; 家羊; 1:100; 图 3a
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Thermo, MA3- 916)被用于被用于免疫组化-冰冻切片在家羊样本上浓度为1:100 (图 3a). J Muscle Res Cell Motil (2016) ncbi
小鼠 单克隆(C3-33)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 7a
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Thermo Fisher Scientific, MA3-916)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 7a). Exp Ther Med (2016) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 小鼠; 1:5000; 图 2g
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Thermo, MA3916)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2g). J Cell Sci (2016) ncbi
小鼠 单克隆(C3-33)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠; 图 1d
  • 免疫沉淀; 人类; 图 1e
  • 免疫印迹; 人类; 图 1e
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Thermo Fisher, MA3-916)被用于被用于免疫细胞化学在小鼠样本上, 被用于免疫印迹在小鼠样本上 (图 1d), 被用于免疫沉淀在人类样本上 (图 1e) 和 被用于免疫印迹在人类样本上 (图 1e). Circ Res (2017) ncbi
小鼠 单克隆(C3-33)
  • 免疫组化; 大鼠; 1:50; 图 3b
  • 免疫组化; 小鼠; 1:50; 图 3c
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Thermo Scientific, MA3-916)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 3b) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 3c). J Biol Chem (2016) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; domestic rabbit; 1:2000; 图 6a
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Thermo Scientific, C3-33)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:2000 (图 6a). Am J Physiol Heart Circ Physiol (2016) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Affinity Bioreagents, MA3-916)被用于被用于免疫印迹在小鼠样本上 (图 5). J Cell Mol Med (2016) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 大鼠; 1:1000; 图 s1
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Thermo Fisher Scientific, MA3-916)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s1). PLoS ONE (2016) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 小鼠; 图 7e
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Thermo Scientific, MA3-916)被用于被用于免疫印迹在小鼠样本上 (图 7e). Cardiovasc Res (2016) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 小鼠; 1:1000; 图 s8a
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Pierce, C3-33)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s8a). Science (2016) ncbi
小鼠 单克隆(C3-33)
  • 免疫细胞化学; 大鼠; 图 3
  • 免疫印迹; 大鼠; 图 2
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Thermo Scientific, MA3916)被用于被用于免疫细胞化学在大鼠样本上 (图 3) 和 被用于免疫印迹在大鼠样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Affinity BioReagents, MA3-916)被用于被用于免疫印迹在小鼠样本上 (图 3). Am J Physiol Heart Circ Physiol (2016) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Affinity Bioreagents, MA3-916)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Nat Med (2015) ncbi
小鼠 单克隆(C3-33)
  • 免疫组化; 大鼠; 图 1
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Affinity Bioreagents, C3-33)被用于被用于免疫组化在大鼠样本上 (图 1). PLoS Comput Biol (2015) ncbi
小鼠 单克隆(C3-33)
  • 免疫组化-冰冻切片; 犬; 1:100; 图 1
赛默飞世尔斯里兰卡肉桂咸受体2抗体(ThermoFisher Scientific, MA3-916)被用于被用于免疫组化-冰冻切片在犬样本上浓度为1:100 (图 1). Circ Heart Fail (2015) ncbi
小鼠 单克隆(C3-33)
  • 免疫细胞化学; 大鼠; 1:200; 图 1
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Thermo Fisher Scientific,, MA3-916)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 1). J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(C3-33)
  • 免疫组化-冰冻切片; 人类; 1:100
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Thermo Scientific, MA3-916)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. Methods (2015) ncbi
小鼠 单克隆(C3-33)
  • 免疫细胞化学; 小鼠; 1:200; 表 1
赛默飞世尔斯里兰卡肉桂咸受体2抗体(ABR, MA3-916)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (表 1). Front Physiol (2015) ncbi
小鼠 单克隆(C3-33)
  • 免疫组化; 大鼠; 1:100
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Thermo Scientific, MA3-916)被用于被用于免疫组化在大鼠样本上浓度为1:100. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(C3-33)
  • 免疫沉淀; 小鼠
  • 免疫印迹; 小鼠; 1:5000
  • 免疫印迹; 人类; 1:5000
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Thermo Fisher Scientific, MA3-916)被用于被用于免疫沉淀在小鼠样本上, 被用于免疫印迹在小鼠样本上浓度为1:5000 和 被用于免疫印迹在人类样本上浓度为1:5000. Circ Arrhythm Electrophysiol (2014) ncbi
小鼠 单克隆(C3-33)
  • 免疫细胞化学; 小鼠
  • 免疫组化; 小鼠
  • 免疫细胞化学; domestic rabbit
  • 免疫组化; domestic rabbit
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Thermo Scientific, MA3-916)被用于被用于免疫细胞化学在小鼠样本上, 被用于免疫组化在小鼠样本上, 被用于免疫细胞化学在domestic rabbit样本上 和 被用于免疫组化在domestic rabbit样本上. Circulation (2014) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Affinity Bioreagents, MA3-916)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 大鼠
  • 免疫印迹; 小鼠
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Thermo Scientific, MA3-916)被用于被用于免疫印迹在大鼠样本上 和 被用于免疫印迹在小鼠样本上. Am J Physiol Heart Circ Physiol (2013) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 大鼠
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Thermo Scientific, MA3-916)被用于被用于免疫印迹在大鼠样本上. Cardiovasc Diabetol (2012) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 小鼠
赛默飞世尔斯里兰卡肉桂咸受体2抗体(Affinity BioReagents, MA3-916)被用于被用于免疫印迹在小鼠样本上. EMBO J (2004) ncbi
Enzo Life Sciences
小鼠 单克隆(34C)
  • 免疫组化; 小鼠; 1:500; 图 1b
  • 免疫细胞化学; 人类; 1:1000; 图 1a
Enzo Life Sciences斯里兰卡肉桂咸受体2抗体(Alexis Biochemicals, 34C)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b) 和 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1a). J Cell Physiol (2018) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-1)
  • 免疫印迹; 小鼠; 图 3g
圣克鲁斯生物技术斯里兰卡肉桂咸受体2抗体(Santa Cruz, sc-376507)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; African green monkey; 1:250; 图 1g
艾博抗(上海)贸易有限公司斯里兰卡肉桂咸受体2抗体(Abcam, ab59225)被用于被用于免疫组化在African green monkey样本上浓度为1:250 (图 1g). Alzheimers Dement (2018) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 2a
西格玛奥德里奇斯里兰卡肉桂咸受体2抗体(Sigma, HPA016697)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 2a). J Cell Sci (2016) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 人类; 图 3f
西格玛奥德里奇斯里兰卡肉桂咸受体2抗体(SigmaAldrich, R129)被用于被用于免疫印迹在人类样本上 (图 3f). J Appl Physiol (1985) (2015) ncbi
Badrilla
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:5000; 图 s1
Badrilla斯里兰卡肉桂咸受体2抗体(Badrilla, A010-31)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:5000; 图 s1
Badrilla斯里兰卡肉桂咸受体2抗体(Badrilla, A010-30)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7f
Badrilla斯里兰卡肉桂咸受体2抗体(Badrilla, A010-30)被用于被用于免疫印迹在小鼠样本上 (图 7f). Cardiovasc Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
Badrilla斯里兰卡肉桂咸受体2抗体(Badrilla, A010-31)被用于被用于免疫印迹在小鼠样本上 (图 2). Arch Biochem Biophys (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
Badrilla斯里兰卡肉桂咸受体2抗体(Badrilla, A010-30)被用于被用于免疫印迹在小鼠样本上 (图 2). Arch Biochem Biophys (2016) ncbi
文章列表
  1. Asghari P, Scriven D, Ng M, Panwar P, Chou K, Van Petegem F, et al. Cardiac ryanodine receptor distribution is dynamic and changed by auxiliary proteins and post-translational modification. elife. 2020;9: pubmed 出版商
  2. Hu J, Gao C, Wei C, Xue Y, Shao C, Hao Y, et al. RBFox2-miR-34a-Jph2 axis contributes to cardiac decompensation during heart failure. Proc Natl Acad Sci U S A. 2019;116:6172-6180 pubmed 出版商
  3. Guo A, Wang Y, Chen B, Wang Y, Yuan J, Zhang L, et al. E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science. 2018;362: pubmed 出版商
  4. Campiglio M, Kaplan M, Flucher B. STAC3 incorporation into skeletal muscle triads occurs independent of the dihydropyridine receptor. J Cell Physiol. 2018;233:9045-9051 pubmed 出版商
  5. Paspalas C, Carlyle B, Leslie S, Preuss T, Crimins J, Huttner A, et al. The aged rhesus macaque manifests Braak stage III/IV Alzheimer's-like pathology. Alzheimers Dement. 2018;14:680-691 pubmed 出版商
  6. Tsuda T, Takefuji M, Wettschureck N, Kotani K, Morimoto R, Okumura T, et al. Corticotropin releasing hormone receptor 2 exacerbates chronic cardiac dysfunction. J Exp Med. 2017;214:1877-1888 pubmed 出版商
  7. Chang S, Chuang H, Chen Y, Kao Y, Lin Y, Yeh Y, et al. Heart failure modulates electropharmacological characteristics of sinoatrial nodes. Exp Ther Med. 2017;13:771-779 pubmed 出版商
  8. Abad M, Hashimoto H, Zhou H, Morales M, Chen B, Bassel Duby R, et al. Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity. Stem Cell Reports. 2017;8:548-560 pubmed 出版商
  9. Kim T, Terentyeva R, Roder K, Li W, Liu M, Greener I, et al. SK channel enhancers attenuate Ca2+-dependent arrhythmia in hypertrophic hearts by regulating mito-ROS-dependent oxidation and activity of RyR. Cardiovasc Res. 2017;113:343-353 pubmed 出版商
  10. Munro M, Soeller C. Early transverse tubule development begins in utero in the sheep heart. J Muscle Res Cell Motil. 2016;37:195-202 pubmed 出版商
  11. Xiao Y, Cai X, Atkinson A, Logantha S, Boyett M, Dobrzynski H. Expression of connexin 43, ion channels and Ca2+-handling proteins in rat pulmonary vein cardiomyocytes. Exp Ther Med. 2016;12:3233-3241 pubmed
  12. Munro M, Jayasinghe I, Wang Q, Quick A, Wang W, Baddeley D, et al. Junctophilin-2 in the nanoscale organisation and functional signalling of ryanodine receptor clusters in cardiomyocytes. J Cell Sci. 2016;129:4388-4398 pubmed
  13. Quick A, Wang Q, Philippen L, Barreto Torres G, Chiang D, Beavers D, et al. SPEG (Striated Muscle Preferentially Expressed Protein Kinase) Is Essential for Cardiac Function by Regulating Junctional Membrane Complex Activity. Circ Res. 2017;120:110-119 pubmed 出版商
  14. de la Fuente S, Fernandez Sanz C, Vail C, Agra E, Holmström K, Sun J, et al. Strategic Positioning and Biased Activity of the Mitochondrial Calcium Uniporter in Cardiac Muscle. J Biol Chem. 2016;291:23343-23362 pubmed
  15. Li Y, Sirenko S, Riordon D, Yang D, Spurgeon H, Lakatta E, et al. CaMKII-dependent phosphorylation regulates basal cardiac pacemaker function via modulation of local Ca2+ releases. Am J Physiol Heart Circ Physiol. 2016;311:H532-44 pubmed 出版商
  16. Zhang L, Lu X, Gui L, Wu Y, Sims S, Wang G, et al. Inhibition of Rac1 reduces store overload-induced calcium release and protects against ventricular arrhythmia. J Cell Mol Med. 2016;20:1513-22 pubmed 出版商
  17. Sadredini M, Danielsen T, Aronsen J, Manotheepan R, Hougen K, Sjaastad I, et al. Beta-Adrenoceptor Stimulation Reveals Ca2+ Waves and Sarcoplasmic Reticulum Ca2+ Depletion in Left Ventricular Cardiomyocytes from Post-Infarction Rats with and without Heart Failure. PLoS ONE. 2016;11:e0153887 pubmed 出版商
  18. Mederle K, Gess B, Pluteanu F, Plackic J, Tiefenbach K, Grill A, et al. The angiotensin receptor-associated protein Atrap is a stimulator of the cardiac Ca2+-ATPase SERCA2a. Cardiovasc Res. 2016;110:359-70 pubmed 出版商
  19. Asensio López M, Soler F, Sánchez Más J, Pascual Figal D, Fernández Belda F, Lax A. Early oxidative damage induced by doxorubicin: Source of production, protection by GKT137831 and effect on Ca(2+) transporters in HL-1 cardiomyocytes. Arch Biochem Biophys. 2016;594:26-36 pubmed 出版商
  20. Nelson B, Makarewich C, Anderson D, Winders B, Troupes C, Wu F, et al. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science. 2016;351:271-5 pubmed 出版商
  21. Zhang H, Cannell M, Kim S, Watson J, Norman R, Calaghan S, et al. Cellular Hypertrophy and Increased Susceptibility to Spontaneous Calcium-Release of Rat Left Atrial Myocytes Due to Elevated Afterload. PLoS ONE. 2015;10:e0144309 pubmed 出版商
  22. Shimura D, Kusakari Y, Sasano T, Nakashima Y, Nakai G, Jiao Q, et al. Heterozygous deletion of sarcolipin maintains normal cardiac function. Am J Physiol Heart Circ Physiol. 2016;310:H92-103 pubmed 出版商
  23. Waning D, Mohammad K, Reiken S, Xie W, Andersson D, John S, et al. Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nat Med. 2015;21:1262-1271 pubmed 出版商
  24. Rajagopal V, Bass G, Walker C, Crossman D, Petzer A, Hickey A, et al. Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes. PLoS Comput Biol. 2015;11:e1004417 pubmed 出版商
  25. Li H, Lichter J, Seidel T, Tomaselli G, Bridge J, Sachse F. Cardiac Resynchronization Therapy Reduces Subcellular Heterogeneity of Ryanodine Receptors, T-Tubules, and Ca2+ Sparks Produced by Dyssynchronous Heart Failure. Circ Heart Fail. 2015;8:1105-14 pubmed 出版商
  26. Hostrup M, Kalsen A, Onslev J, Jessen S, Haase C, Habib S, et al. Mechanisms underlying enhancements in muscle force and power output during maximal cycle ergometer exercise induced by chronic β2-adrenergic stimulation in men. J Appl Physiol (1985). 2015;119:475-86 pubmed 出版商
  27. Bryant S, Kong C, Watson J, Cannell M, James A, Orchard C. Altered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts. J Mol Cell Cardiol. 2015;86:23-31 pubmed 出版商
  28. Crossman D, Hou Y, Jayasinghe I, Baddeley D, Soeller C. Combining confocal and single molecule localisation microscopy: A correlative approach to multi-scale tissue imaging. Methods. 2015;88:98-108 pubmed 出版商
  29. Liu J, Xin L, Benson V, Allen D, Ju Y. Store-operated calcium entry and the localization of STIM1 and Orai1 proteins in isolated mouse sinoatrial node cells. Front Physiol. 2015;6:69 pubmed 出版商
  30. Hou Y, Jayasinghe I, Crossman D, Baddeley D, Soeller C. Nanoscale analysis of ryanodine receptor clusters in dyadic couplings of rat cardiac myocytes. J Mol Cell Cardiol. 2015;80:45-55 pubmed 出版商
  31. Chiang D, Kongchan N, Beavers D, Alsina K, Voigt N, Neilson J, et al. Loss of microRNA-106b-25 cluster promotes atrial fibrillation by enhancing ryanodine receptor type-2 expression and calcium release. Circ Arrhythm Electrophysiol. 2014;7:1214-22 pubmed 出版商
  32. Ljubojević S, Radulovic S, Leitinger G, Sedej S, Sacherer M, Holzer M, et al. Early remodeling of perinuclear Ca2+ stores and nucleoplasmic Ca2+ signaling during the development of hypertrophy and heart failure. Circulation. 2014;130:244-55 pubmed 出版商
  33. Shilling D, Müller M, Takano H, Mak D, Abel T, Coulter D, et al. Suppression of InsP3 receptor-mediated Ca2+ signaling alleviates mutant presenilin-linked familial Alzheimer's disease pathogenesis. J Neurosci. 2014;34:6910-23 pubmed 出版商
  34. Yi T, Vick J, Vecchio M, Begin K, Bell S, Delay R, et al. Identifying cellular mechanisms of zinc-induced relaxation in isolated cardiomyocytes. Am J Physiol Heart Circ Physiol. 2013;305:H706-15 pubmed 出版商
  35. Yi T, Cheema Y, Tremble S, Bell S, Chen Z, Subramanian M, et al. Zinc-induced cardiomyocyte relaxation in a rat model of hyperglycemia is independent of myosin isoform. Cardiovasc Diabetol. 2012;11:135 pubmed 出版商
  36. Ding J, Xu X, Yang D, Chu P, Dalton N, Ye Z, et al. Dilated cardiomyopathy caused by tissue-specific ablation of SC35 in the heart. EMBO J. 2004;23:885-96 pubmed