这是一篇来自已证抗体库的有关人类 Rab11的综述,是根据89篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Rab11 抗体。
Rab11 同义词: YL8

赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛默飞世尔 Rab11抗体(Thermo Fisher Scientific, 71-5300)被用于被用于免疫印迹在人类样本上 (图 5a). Front Cell Dev Biol (2020) ncbi
domestic rabbit 重组(3H18L5)
  • 免疫细胞化学; 人类; 图 s2d
赛默飞世尔 Rab11抗体(Thermo Fisher Scientific, 700184)被用于被用于免疫细胞化学在人类样本上 (图 s2d). Cell Rep (2019) ncbi
小鼠 单克隆(7C10)
  • 免疫细胞化学; 人类; 图 3a
  • 免疫印迹; 人类; 图 3b
赛默飞世尔 Rab11抗体(Thermo Fisher Scientific, MA1- 24919)被用于被用于免疫细胞化学在人类样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 3b). Front Endocrinol (Lausanne) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100
  • 免疫印迹; 小鼠; 图 5f
赛默飞世尔 Rab11抗体(Invitrogen, 71-5300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上 (图 5f). Cell Mol Gastroenterol Hepatol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s4a
赛默飞世尔 Rab11抗体(Invitrogen, 71-5300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s4a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5b
赛默飞世尔 Rab11抗体(生活技术, 71-5300)被用于被用于免疫细胞化学在人类样本上 (图 5b). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1a
赛默飞世尔 Rab11抗体(Invitrogen, 71-5300)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1e
赛默飞世尔 Rab11抗体(Invitrogen, 71-5300)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1e). J Cell Sci (2017) ncbi
domestic rabbit 重组(3H18L5)
  • 免疫组化; 小鼠; 图 4a
赛默飞世尔 Rab11抗体(生活技术, 700184)被用于被用于免疫组化在小鼠样本上 (图 4a). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 s2a
赛默飞世尔 Rab11抗体(Thermo Fisher, 71-5300)被用于被用于免疫细胞化学在大鼠样本上 (图 s2a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 犬; 5 ug/ml; 图 2f
赛默飞世尔 Rab11抗体(Invitrogen, 71-5300)被用于被用于免疫细胞化学在犬样本上浓度为5 ug/ml (图 2f). Expert Opin Drug Deliv (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 2a
  • 免疫印迹; 人类; 图 4b
赛默飞世尔 Rab11抗体(生活技术, 71-5300)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2a) 和 被用于免疫印迹在人类样本上 (图 4b). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1 ug/ml; 图 4b
赛默飞世尔 Rab11抗体(生活技术, 71-5300)被用于被用于免疫细胞化学在小鼠样本上浓度为1 ug/ml (图 4b). Eneuro (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2a
赛默飞世尔 Rab11抗体(Invitrogen, 71-5300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2a). Dev Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s1e
赛默飞世尔 Rab11抗体(Thermo Fisher, 71-5300)被用于被用于免疫组化在小鼠样本上 (图 s1e). Hepatology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; African green monkey; 图 9e
赛默飞世尔 Rab11抗体(Invitrogen, 71-5300)被用于被用于免疫印迹在African green monkey样本上 (图 9e). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; African green monkey; 1:100; 图 s1
赛默飞世尔 Rab11抗体(Zymed, 71-5300)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:100 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Rab11抗体(Thermo Scientific, 71-5300)被用于. J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 犬; 图 3
赛默飞世尔 Rab11抗体(Invitrogen, 715300)被用于被用于免疫细胞化学在犬样本上 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 2
赛默飞世尔 Rab11抗体(生活技术, 715300)被用于被用于免疫细胞化学在大鼠样本上 (图 2). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Rab11抗体(生活技术, 71-5300)被用于被用于免疫印迹在人类样本上 (图 1). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6h
赛默飞世尔 Rab11抗体(Invitrogen, 71-5300)被用于被用于免疫印迹在人类样本上 (图 6h). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 重组(3H18L5)
  • 免疫印迹; 小鼠; 1:1000; 图 s6
赛默飞世尔 Rab11抗体(Invitrogen, 700184)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 Rab11抗体(Invitrogen, 71-5300)被用于被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Rab11抗体(Invitrogen, 71-5300)被用于. J Neurosci (2015) ncbi
domestic rabbit 重组(3H18L5)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Rab11抗体(Invitrogen, 3H18L5)被用于被用于免疫细胞化学在小鼠样本上. J Immunol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Rab11抗体(Invitrogen, 71-5300)被用于. Nature (2015) ncbi
domestic rabbit 重组(3H18L5)
  • 免疫印迹; 大鼠
赛默飞世尔 Rab11抗体(生活技术, 700184)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR7587(B))
  • 免疫印迹; 人类; 图 s4e
艾博抗(上海)贸易有限公司 Rab11抗体(Abcam, ab128913)被用于被用于免疫印迹在人类样本上 (图 s4e). Cell (2019) ncbi
domestic rabbit 单克隆(EPR7587(B))
  • 免疫印迹; 人类; 1:5000; 图 4b
艾博抗(上海)贸易有限公司 Rab11抗体(Abcam, ab128913)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4b). Theranostics (2018) ncbi
domestic rabbit 单克隆(EPR7587(B))
  • 免疫细胞化学; 人类; 图 1d
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司 Rab11抗体(Abcam, ab128913)被用于被用于免疫细胞化学在人类样本上 (图 1d) 和 被用于免疫印迹在人类样本上 (图 1a). Dev Cell (2018) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-3)
  • 免疫细胞化学; 人类; 图 3c
圣克鲁斯生物技术 Rab11抗体(Santa-Cruz, sc-166523)被用于被用于免疫细胞化学在人类样本上 (图 3c). Toxins (Basel) (2017) ncbi
小鼠 单克隆(A-6)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Rab11抗体(Santa Cruz, sc-166912)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 4). J Virol (2016) ncbi
小鼠 单克隆(7C10)
  • 免疫印迹; 大鼠; 1:100
圣克鲁斯生物技术 Rab11抗体(Santa Cruz Biotechnology, sc-58465)被用于被用于免疫印迹在大鼠样本上浓度为1:100. Reprod Toxicol (2014) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 5s1
西格玛奥德里奇 Rab11抗体(Sigma, R5903)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5s1). elife (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D4F5)
  • 免疫印迹; 小鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Rab11抗体(CST, 5589)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling, 2413S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫组化-石蜡切片; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling Technology, D4F5)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a). Bone Rep (2020) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫细胞化学; 小鼠; 图 9e
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling, D4F5)被用于被用于免疫细胞化学在小鼠样本上 (图 9e). J Exp Med (2019) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫细胞化学; 人类; 1:250; 图 s2
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling, 5589S)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 s2). J Cell Sci (2019) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫细胞化学; 人类; 1:100; 图 3d
  • 免疫印迹; 人类; 1:2000; 图 1s1b
  • 免疫细胞化学; 小鼠; 1:100; 图 3d
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling, 5589)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3d), 被用于免疫印迹在人类样本上浓度为1:2000 (图 1s1b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3d). elife (2019) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫印迹; 人类; 图 s4a
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling Technology, D4F5 XP)被用于被用于免疫印迹在人类样本上 (图 s4a). PLoS Pathog (2019) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫细胞化学; 小鼠; 图 s3f
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling, 5589S)被用于被用于免疫细胞化学在小鼠样本上 (图 s3f). Cell (2018) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫细胞化学; 人类; 图 s13a
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling, D4F5)被用于被用于免疫细胞化学在人类样本上 (图 s13a). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling, 3539)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫细胞化学; 人类; 1:200; 图 s4i
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling, 5589 )被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s4i). Science (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling, 3539)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫细胞化学; 小鼠; 1:250; 图 9e
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling, 5589)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 9e). J Neurosci (2018) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫细胞化学; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling, 5589S)被用于被用于免疫细胞化学在人类样本上 (图 4d). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 Rab11抗体(CST, 3539)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫细胞化学; 小鼠; 1:100; 图 6a
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell signaling, D4F5)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling Technology, 3539)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1g
  • 免疫印迹; 小鼠; 图 5o
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling, 2413)被用于被用于免疫细胞化学在小鼠样本上 (图 1g) 和 被用于免疫印迹在小鼠样本上 (图 5o). Exp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling, 2413)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫细胞化学; 人类; 图 5
赛信通(上海)生物试剂有限公司 Rab11抗体(CST, 5589)被用于被用于免疫细胞化学在人类样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫细胞化学; 小鼠; 图 s18n
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling Technology, 5589)被用于被用于免疫细胞化学在小鼠样本上 (图 s18n). Nat Genet (2016) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫细胞化学; 小鼠; 1:200; 图 st2
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling, 5589S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 st2). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫细胞化学; 人类; 图 8a
  • 免疫细胞化学; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling Technology, D4F5)被用于被用于免疫细胞化学在人类样本上 (图 8a) 和 被用于免疫细胞化学在小鼠样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling Technology, 5589)被用于被用于免疫印迹在人类样本上 (图 s2). Autophagy (2016) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫印迹; 小鼠; 1:500; 图 5a
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling, 5589)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). FASEB J (2016) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫细胞化学; 人类; 图 5b
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling, 5589)被用于被用于免疫细胞化学在人类样本上 (图 5b) 和 被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling Technology, 5589)被用于被用于免疫细胞化学在小鼠样本上. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫细胞化学; 人类; 1:100; 图 7
  • 免疫印迹; 人类; 1:2000; 图 7
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling, 5589)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 7). Nat Neurosci (2015) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling Technologies, D4F5)被用于被用于免疫印迹在人类样本上 (图 5). J Virol (2015) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling Technology, D4F5)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D4F5)
  • 免疫细胞化学; 人类; 图 5A
赛信通(上海)生物试剂有限公司 Rab11抗体(Cell Signaling, 5589S)被用于被用于免疫细胞化学在人类样本上 (图 5A). Eur J Immunol (2014) ncbi
碧迪BD
小鼠 单克隆(47/Rab11)
  • 免疫细胞化学; 小鼠; 1:250; 图 s10e
  • 免疫印迹; 小鼠; 1:1000; 图 s10c
碧迪BD Rab11抗体(BD, 610657)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 s10e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10c). Sci Adv (2020) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫细胞化学; 人类; 1:200; 图 6f
碧迪BD Rab11抗体(BD Bioscience, 610656)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6f). elife (2020) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫组化-石蜡切片; 小鼠; 图 3h
碧迪BD Rab11抗体(BD Biosciences, 610656)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3h). Science (2019) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫细胞化学; 小鼠; 图 2c
  • 免疫印迹; 小鼠; 图 s3k
碧迪BD Rab11抗体(BD Transduction Laboratories, 610657)被用于被用于免疫细胞化学在小鼠样本上 (图 2c) 和 被用于免疫印迹在小鼠样本上 (图 s3k). Stem Cell Reports (2019) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫印迹; 人类; 图 4c
碧迪BD Rab11抗体(BD Biosciences, 51-6875GR)被用于被用于免疫印迹在人类样本上 (图 4c). Mol Cell (2018) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫细胞化学; 人类; 图 2c
碧迪BD Rab11抗体(BD Biosciences, 610656)被用于被用于免疫细胞化学在人类样本上 (图 2c). Mol Biol Cell (2018) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫细胞化学; 人类; 图 3e
碧迪BD Rab11抗体(BD Transduction Laboratories, 610656)被用于被用于免疫细胞化学在人类样本上 (图 3e). Dev Cell (2017) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫印迹; 大鼠; 1:1000; 图 5e
碧迪BD Rab11抗体(BD Biosciences, 610656)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5e). J Cell Biol (2017) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫细胞化学; 非洲爪蛙; 图 1
碧迪BD Rab11抗体(BD Biosciences, 610656)被用于被用于免疫细胞化学在非洲爪蛙样本上 (图 1). Open Biol (2016) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫印迹; 大鼠; 图 5b
碧迪BD Rab11抗体(BD Biosciences, 610656)被用于被用于免疫印迹在大鼠样本上 (图 5b). BMC Biol (2016) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫组化-石蜡切片; fruit fly ; 1:100; 图 s2
碧迪BD Rab11抗体(BD, 610657)被用于被用于免疫组化-石蜡切片在fruit fly 样本上浓度为1:100 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫细胞化学; 大鼠; 1:200; 图 3
碧迪BD Rab11抗体(BD Transduction, 610657)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 3). J Cell Sci (2016) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫细胞化学; 大鼠; 图 1
碧迪BD Rab11抗体(BD Bioscience, 610656)被用于被用于免疫细胞化学在大鼠样本上 (图 1). Mol Biol Cell (2016) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫细胞化学; African green monkey; 图 3a
碧迪BD Rab11抗体(BD Biosciences, 610656)被用于被用于免疫细胞化学在African green monkey样本上 (图 3a). elife (2015) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫细胞化学; 人类; 1:1000
碧迪BD Rab11抗体(BD, 610657)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. J Cell Sci (2015) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫组化; fruit fly ; 1:20
碧迪BD Rab11抗体(BD Transduction Laboratories, 610657)被用于被用于免疫组化在fruit fly 样本上浓度为1:20. Development (2015) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫印迹; 人类; 1:1000
碧迪BD Rab11抗体(BD Transduction Laboratories, 610656)被用于被用于免疫印迹在人类样本上浓度为1:1000. Int J Mol Med (2015) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫细胞化学; 猕猴; 图 3
碧迪BD Rab11抗体(BD, 610656)被用于被用于免疫细胞化学在猕猴样本上 (图 3). J Biol Chem (2015) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫细胞化学; 人类; 1:200; 图 3c
碧迪BD Rab11抗体(BD, 610656)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3c). PLoS ONE (2014) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫细胞化学基因敲除验证; 小鼠; 1:200; 图 2
碧迪BD Rab11抗体(BD Transduction Laboratories, 610656)被用于被用于免疫细胞化学基因敲除验证在小鼠样本上浓度为1:200 (图 2). J Biol Chem (2014) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫印迹; 人类; 图 s1
  • 免疫印迹; 小鼠; 图 1
碧迪BD Rab11抗体(BD Biosciences, 47)被用于被用于免疫印迹在人类样本上 (图 s1) 和 被用于免疫印迹在小鼠样本上 (图 1). J Cell Sci (2014) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4a
  • 免疫印迹; 小鼠; 1:500; 图 2b
碧迪BD Rab11抗体(BD, 610657)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 2b). Hum Mol Genet (2014) ncbi
小鼠 单克隆(47/Rab11)
  • 免疫细胞化学; 人类
碧迪BD Rab11抗体(BD Transduction, 610657)被用于被用于免疫细胞化学在人类样本上. J Cell Sci (2012) ncbi
Addgene
Addgene Rab11抗体(Addgene, 12680)被用于. Nat Neurosci (2015) ncbi
文章列表
  1. Ke Y, Weng M, Chhetri G, Usman M, Li Y, Yu Q, et al. Trappc9 deficiency in mice impairs learning and memory by causing imbalance of dopamine D1 and D2 neurons. Sci Adv. 2020;6: pubmed 出版商
  2. Cruz D, Mitash N, Farinha C, Swiatecka Urban A. TGF-β1 Augments the Apical Membrane Abundance of Lemur Tyrosine Kinase 2 to Inhibit CFTR-Mediated Chloride Transport in Human Bronchial Epithelia. Front Cell Dev Biol. 2020;8:58 pubmed 出版商
  3. Kucharava K, Brand Y, Albano G, Sekulic Jablanovic M, Glutz A, Xian X, et al. Sodium-hydrogen exchanger 6 (NHE6) deficiency leads to hearing loss, via reduced endosomal signalling through the BDNF/Trk pathway. Sci Rep. 2020;10:3609 pubmed 出版商
  4. Boukhalfa A, Nascimbeni A, Ramel D, Dupont N, Hirsch E, Gayral S, et al. PI3KC2α-dependent and VPS34-independent generation of PI3P controls primary cilium-mediated autophagy in response to shear stress. Nat Commun. 2020;11:294 pubmed 出版商
  5. Chang L, Kim M, Glinka A, Reinhard C, Niehrs C. The tumor suppressor PTPRK promotes ZNRF3 internalization and is required for Wnt inhibition in the Spemann organizer. elife. 2020;9: pubmed 出版商
  6. Zhang Z, Le K, La Placa D, Armstrong B, Miller M, Shively J. CXCR2 specific endocytosis of immunomodulatory peptide LL-37 in human monocytes and formation of LL-37 positive large vesicles in differentiated monoosteophils. Bone Rep. 2020;12:100237 pubmed 出版商
  7. von Gamm M, Schaub A, Jones A, Wolf C, Behrens G, Lichti J, et al. Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3. J Exp Med. 2019;: pubmed 出版商
  8. Shami Shah A, Batrouni A, Kim D, Punyala A, Cao W, Han C, et al. PLEKHA4/kramer Attenuates Dishevelled Ubiquitination to Modulate Wnt and Planar Cell Polarity Signaling. Cell Rep. 2019;27:2157-2170.e8 pubmed 出版商
  9. Sahgal P, Alanko J, Icha J, Paatero I, Hamidi H, Arjonen A, et al. GGA2 and RAB13 promote activity-dependent β1-integrin recycling. J Cell Sci. 2019;132: pubmed 出版商
  10. Li Y, Li K, Hu W, Ojcius D, Fang J, Li S, et al. Endocytic recycling and vesicular transport systems mediate transcytosis of Leptospira interrogans across cell monolayer. elife. 2019;8: pubmed 出版商
  11. Jeppesen D, Fenix A, Franklin J, Higginbotham J, Zhang Q, Zimmerman L, et al. Reassessment of Exosome Composition. Cell. 2019;177:428-445.e18 pubmed 出版商
  12. Skjesol A, Yurchenko M, Bösl K, Gravastrand C, Nilsen K, Grøvdal L, et al. The TLR4 adaptor TRAM controls the phagocytosis of Gram-negative bacteria by interacting with the Rab11-family interacting protein 2. PLoS Pathog. 2019;15:e1007684 pubmed 出版商
  13. Ladinsky M, Araujo L, Zhang X, Veltri J, Galán Díez M, Soualhi S, et al. Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science. 2019;363: pubmed 出版商
  14. Zhang J, He J, Johnson J, Rahman F, Gavathiotis E, Cuervo A, et al. Chaperone-Mediated Autophagy Upregulation Rescues Megalin Expression and Localization in Cystinotic Proximal Tubule Cells. Front Endocrinol (Lausanne). 2019;10:21 pubmed 出版商
  15. Narayana Y, Gadgil C, Mote R, Rajan R, Subramanyam D. Clathrin-Mediated Endocytosis Regulates a Balance between Opposing Signals to Maintain the Pluripotent State of Embryonic Stem Cells. Stem Cell Reports. 2019;12:152-164 pubmed 出版商
  16. Xu X, Xu J, Wu J, Hu Y, Han Y, Gu Y, et al. Phosphorylation-Mediated IFN-γR2 Membrane Translocation Is Required to Activate Macrophage Innate Response. Cell. 2018;175:1336-1351.e17 pubmed 出版商
  17. Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science. 2018;362: pubmed 出版商
  18. Kim H, Mun Y, Lee K, Park Y, Park J, Park J, et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun. 2018;9:3630 pubmed 出版商
  19. Gut G, Herrmann M, Pelkmans L. Multiplexed protein maps link subcellular organization to cellular states. Science. 2018;361: pubmed 出版商
  20. Li H, Liao Y, Gao L, Zhuang T, Huang Z, Zhu H, et al. Coronary Serum Exosomes Derived from Patients with Myocardial Ischemia Regulate Angiogenesis through the miR-939-mediated Nitric Oxide Signaling Pathway. Theranostics. 2018;8:2079-2093 pubmed 出版商
  21. Puri C, Vicinanza M, Ashkenazi A, Gratian M, Zhang Q, Bento C, et al. The RAB11A-Positive Compartment Is a Primary Platform for Autophagosome Assembly Mediated by WIPI2 Recognition of PI3P-RAB11A. Dev Cell. 2018;45:114-131.e8 pubmed 出版商
  22. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  23. Huang T, Fowler F, Chen C, Shen Z, SLECKMAN B, Tyler J. The Histone Chaperones ASF1 and CAF-1 Promote MMS22L-TONSL-Mediated Rad51 Loading onto ssDNA during Homologous Recombination in Human Cells. Mol Cell. 2018;69:879-892.e5 pubmed 出版商
  24. Cox C, Lu R, Salcin K, Wilson J. The Endosomal Protein Endotubin Is Required for Enterocyte Differentiation. Cell Mol Gastroenterol Hepatol. 2018;5:145-156 pubmed 出版商
  25. Krey J, Dumont R, Wilmarth P, David L, Johnson K, Barr Gillespie P. ELMOD1 Stimulates ARF6-GTP Hydrolysis to Stabilize Apical Structures in Developing Vestibular Hair Cells. J Neurosci. 2018;38:843-857 pubmed 出版商
  26. Toh W, Chia P, Hossain M, Gleeson P. GGA1 regulates signal-dependent sorting of BACE1 to recycling endosomes, which moderates Aβ production. Mol Biol Cell. 2018;29:191-208 pubmed 出版商
  27. Vassilev V, Platek A, Hiver S, Enomoto H, Takeichi M. Catenins Steer Cell Migration via Stabilization of Front-Rear Polarity. Dev Cell. 2017;43:463-479.e5 pubmed 出版商
  28. Maurya D, Bohm S, Alenius M. Hedgehog signaling regulates ciliary localization of mouse odorant receptors. Proc Natl Acad Sci U S A. 2017;114:E9386-E9394 pubmed 出版商
  29. Merrill N, Schipper J, Karnes J, Kauffman A, Martin K, Mackeigan J. PI3K-C2? knockdown decreases autophagy and maturation of endocytic vesicles. PLoS ONE. 2017;12:e0184909 pubmed 出版商
  30. Zhang X, Jiang S, Mitok K, Li L, Attie A, Martin T. BAIAP3, a C2 domain-containing Munc13 protein, controls the fate of dense-core vesicles in neuroendocrine cells. J Cell Biol. 2017;216:2151-2166 pubmed 出版商
  31. Varadaraj A, JENKINS L, Singh P, Chanda A, Snider J, Lee N, et al. TGF-β triggers rapid fibrillogenesis via a novel TβRII-dependent fibronectin-trafficking mechanism. Mol Biol Cell. 2017;28:1195-1207 pubmed 出版商
  32. Gundry C, Marco S, Rainero E, Miller B, Dornier E, Mitchell L, et al. Phosphorylation of Rab-coupling protein by LMTK3 controls Rab14-dependent EphA2 trafficking to promote cell:cell repulsion. Nat Commun. 2017;8:14646 pubmed 出版商
  33. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  34. Bagh M, Peng S, Chandra G, Zhang Z, Singh S, Pattabiraman N, et al. Misrouting of v-ATPase subunit V0a1 dysregulates lysosomal acidification in a neurodegenerative lysosomal storage disease model. Nat Commun. 2017;8:14612 pubmed 出版商
  35. Vidal Quadras M, Holst M, Francis M, Larsson E, Hachimi M, Yau W, et al. Endocytic turnover of Rab8 controls cell polarization. J Cell Sci. 2017;130:1147-1157 pubmed 出版商
  36. Niu Y, Dai Z, Liu W, Zhang C, Yang Y, Guo Z, et al. Ablation of SNX6 leads to defects in synaptic function of CA1 pyramidal neurons and spatial memory. elife. 2017;6: pubmed 出版商
  37. Zimmermann Meisse G, Prevost G, Jover E. Above and beyond C5a Receptor Targeting by Staphylococcal Leucotoxins: Retrograde Transport of Panton-Valentine Leucocidin and ?-Hemolysin. Toxins (Basel). 2017;9: pubmed 出版商
  38. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  39. Bodrikov V, Pauschert A, Kochlamazashvili G, Stuermer C. Reggie-1 and reggie-2 (flotillins) participate in Rab11a-dependent cargo trafficking, spine synapse formation and LTP-related AMPA receptor (GluA1) surface exposure in mouse hippocampal neurons. Exp Neurol. 2017;289:31-45 pubmed 出版商
  40. Dustrude E, Moutal A, Yang X, Wang Y, Khanna M, Khanna R. Hierarchical CRMP2 posttranslational modifications control NaV1.7 function. Proc Natl Acad Sci U S A. 2016;113:E8443-E8452 pubmed 出版商
  41. Müller S, Wilhelm I, Schubert T, Zittlau K, Imberty A, Madl J, et al. Gb3-binding lectins as potential carriers for transcellular drug delivery. Expert Opin Drug Deliv. 2017;14:141-153 pubmed 出版商
  42. Woodruff G, Reyna S, Dunlap M, van der Kant R, Callender J, Young J, et al. Defective Transcytosis of APP and Lipoproteins in Human iPSC-Derived Neurons with Familial Alzheimer's Disease Mutations. Cell Rep. 2016;17:759-773 pubmed 出版商
  43. Hara Y, Fukaya M, Hayashi K, Kawauchi T, Nakajima K, Sakagami H. ADP Ribosylation Factor 6 Regulates Neuronal Migration in the Developing Cerebral Cortex through FIP3/Arfophilin-1-dependent Endosomal Trafficking of N-cadherin. Eneuro. 2016;3: pubmed 出版商
  44. Yang Z, Zimmerman S, Tsunezumi J, Braitsch C, Trent C, Bryant D, et al. Role of CD34 family members in lumen formation in the developing kidney. Dev Biol. 2016;418:66-74 pubmed 出版商
  45. Buckingham E, Jarosinski K, Jackson W, Carpenter J, Grose C. Exocytosis of Varicella-Zoster Virus Virions Involves a Convergence of Endosomal and Autophagy Pathways. J Virol. 2016;90:8673-85 pubmed 出版商
  46. Fernando R, Cotter L, Perrin Tricaud C, Berthelot J, Bartolami S, Pereira J, et al. Optimal myelin elongation relies on YAP activation by axonal growth and inhibition by Crb3/Hippo pathway. Nat Commun. 2016;7:12186 pubmed 出版商
  47. Porat Shliom N, Tietgens A, Van Itallie C, Vitale Cross L, Jarnik M, Harding O, et al. Liver kinase B1 regulates hepatocellular tight junction distribution and function in vivo. Hepatology. 2016;64:1317-29 pubmed 出版商
  48. Want A, Gillespie S, Wang Z, Gordon R, Iomini C, Ritch R, et al. Autophagy and Mitochondrial Dysfunction in Tenon Fibroblasts from Exfoliation Glaucoma Patients. PLoS ONE. 2016;11:e0157404 pubmed 出版商
  49. Villarroel Campos D, Henríquez D, Bodaleo F, Oguchi M, Bronfman F, Fukuda M, et al. Rab35 Functions in Axon Elongation Are Regulated by P53-Related Protein Kinase in a Mechanism That Involves Rab35 Protein Degradation and the Microtubule-Associated Protein 1B. J Neurosci. 2016;36:7298-313 pubmed 出版商
  50. Mukai K, Konno H, Akiba T, Uemura T, Waguri S, Kobayashi T, et al. Activation of STING requires palmitoylation at the Golgi. Nat Commun. 2016;7:11932 pubmed 出版商
  51. Deng H, Shi Y, Yang Y, Ahmeti K, Miller N, Huang C, et al. Identification of TMEM230 mutations in familial Parkinson's disease. Nat Genet. 2016;48:733-9 pubmed 出版商
  52. Konopacki F, Wong H, Dwivedy A, Bellon A, Blower M, Holt C. ESCRT-II controls retinal axon growth by regulating DCC receptor levels and local protein synthesis. Open Biol. 2016;6:150218 pubmed 出版商
  53. Chamberland J, Antonow L, Dias Santos M, Ritter B. NECAP2 controls clathrin coat recruitment to early endosomes for fast endocytic recycling. J Cell Sci. 2016;129:2625-37 pubmed 出版商
  54. Perez Bay A, Schreiner R, Benedicto I, Paz Marzolo M, Banfelder J, Weinstein A, et al. The fast-recycling receptor Megalin defines the apical recycling pathway of epithelial cells. Nat Commun. 2016;7:11550 pubmed 出版商
  55. Homma Y, Fukuda M. Rabin8 regulates neurite outgrowth in both GEF activity-dependent and -independent manners. Mol Biol Cell. 2016;27:2107-18 pubmed 出版商
  56. Wang L, Lee K, Malonis R, SANCHEZ I, Dynlacht B. Tethering of an E3 ligase by PCM1 regulates the abundance of centrosomal KIAA0586/Talpid3 and promotes ciliogenesis. elife. 2016;5: pubmed 出版商
  57. Francavilla C, Papetti M, Rigbolt K, Pedersen A, Sigurdsson J, Cazzamali G, et al. Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking. Nat Struct Mol Biol. 2016;23:608-18 pubmed 出版商
  58. Hersrud S, Kovács A, Pearce D. Antigen presenting cell abnormalities in the Cln3(-/-) mouse model of juvenile neuronal ceroid lipofuscinosis. Biochim Biophys Acta. 2016;1862:1324-36 pubmed 出版商
  59. Jiang H, Zhang X, Lin H. Lysine fatty acylation promotes lysosomal targeting of TNF-?. Sci Rep. 2016;6:24371 pubmed 出版商
  60. Corcelle Termeau E, Vindeløv S, Hämälistö S, Mograbi B, Keldsbo A, Bräsen J, et al. Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure. Autophagy. 2016;12:833-49 pubmed 出版商
  61. Kuzuya A, Zoltowska K, Post K, Arimon M, Li X, Svirsky S, et al. Identification of the novel activity-driven interaction between synaptotagmin 1 and presenilin 1 links calcium, synapse, and amyloid beta. BMC Biol. 2016;14:25 pubmed 出版商
  62. Gschweitl M, Ulbricht A, Barnes C, Enchev R, Stoffel Studer I, Meyer Schaller N, et al. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. elife. 2016;5:e13841 pubmed 出版商
  63. Lisewski U, Koehncke C, Wilck N, Buschmeyer B, Pieske B, Roepke T. Increased aldosterone-dependent Kv1.5 recycling predisposes to pacing-induced atrial fibrillation in Kcne3-/- mice. FASEB J. 2016;30:2476-89 pubmed 出版商
  64. Takahashi Y, Tsotakos N, Liu Y, Young M, Serfass J, Tang Z, et al. The Bif-1-Dynamin 2 membrane fission machinery regulates Atg9-containing vesicle generation at the Rab11-positive reservoirs. Oncotarget. 2016;7:20855-68 pubmed 出版商
  65. Bartuzi P, Billadeau D, Favier R, Rong S, Dekker D, Fedoseienko A, et al. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL. Nat Commun. 2016;7:10961 pubmed 出版商
  66. Woichansky I, Beretta C, Berns N, Riechmann V. Three mechanisms control E-cadherin localization to the zonula adherens. Nat Commun. 2016;7:10834 pubmed 出版商
  67. Nakazawa T, Hashimoto R, Sakoori K, Sugaya Y, Tanimura A, Hashimotodani Y, et al. Emerging roles of ARHGAP33 in intracellular trafficking of TrkB and pathophysiology of neuropsychiatric disorders. Nat Commun. 2016;7:10594 pubmed 出版商
  68. Gupta A, Schell M, Bhattacharjee A, Lutsenko S, Hubbard A. Myosin Vb mediates Cu+ export in polarized hepatocytes. J Cell Sci. 2016;129:1179-89 pubmed 出版商
  69. Fan S, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell. 2016;27:702-15 pubmed 出版商
  70. Baumdick M, Brüggemann Y, Schmick M, Xouri G, Sabet O, Davis L, et al. EGF-dependent re-routing of vesicular recycling switches spontaneous phosphorylation suppression to EGFR signaling. elife. 2015;4: pubmed 出版商
  71. Kurgonaite K, Gandhi H, Kurth T, Pautot S, Schwille P, Weidemann T, et al. Essential role of endocytosis for interleukin-4-receptor-mediated JAK/STAT signalling. J Cell Sci. 2015;128:3781-95 pubmed 出版商
  72. McGowan S, McCoy D. Fibroblast growth factor signaling in myofibroblasts differs from lipofibroblasts during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol. 2015;309:L463-74 pubmed 出版商
  73. Franssen E, Zhao R, Koseki H, Kanamarlapudi V, Hoogenraad C, Eva R, et al. Exclusion of integrins from CNS axons is regulated by Arf6 activation and the AIS. J Neurosci. 2015;35:8359-75 pubmed 出版商
  74. Zhao Z, Sagare A, Ma Q, Halliday M, Kong P, Kisler K, et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci. 2015;18:978-87 pubmed 出版商
  75. SHERRARD K, Fehon R. The transmembrane protein Crumbs displays complex dynamics during follicular morphogenesis and is regulated competitively by Moesin and aPKC. Development. 2015;142:1869-78 pubmed 出版商
  76. Bazdar D, Kalinowska M, Panigrahi S, Sieg S. Recycled IL-7 Can Be Delivered to Neighboring T Cells. J Immunol. 2015;194:4698-704 pubmed 出版商
  77. Ishikawa T, Takizawa T, Iwaki J, Mishima T, Ui Tei K, Takeshita T, et al. Fc gamma receptor IIb participates in maternal IgG trafficking of human placental endothelial cells. Int J Mol Med. 2015;35:1273-89 pubmed 出版商
  78. Prasad H, Rao R. The Na+/H+ exchanger NHE6 modulates endosomal pH to control processing of amyloid precursor protein in a cell culture model of Alzheimer disease. J Biol Chem. 2015;290:5311-27 pubmed 出版商
  79. van Bergeijk P, Adrian M, Hoogenraad C, Kapitein L. Optogenetic control of organelle transport and positioning. Nature. 2015;518:111-114 pubmed 出版商
  80. Rao Y, Hao R, Wang B, Yao T. A Mec17-Myosin II Effector Axis Coordinates Microtubule Acetylation and Actin Dynamics to Control Primary Cilium Biogenesis. PLoS ONE. 2014;9:e114087 pubmed 出版商
  81. Nonnenmacher M, Cintrat J, Gillet D, Weber T. Syntaxin 5-dependent retrograde transport to the trans-Golgi network is required for adeno-associated virus transduction. J Virol. 2015;89:1673-87 pubmed 出版商
  82. Rai S, Tanaka H, Suzuki M, Ogoh H, Taniguchi Y, Morita Y, et al. Clathrin assembly protein CALM plays a critical role in KIT signaling by regulating its cellular transport from early to late endosomes in hematopoietic cells. PLoS ONE. 2014;9:e109441 pubmed 出版商
  83. Yu S, Yehia G, Wang J, Stypulkowski E, Sakamori R, Jiang P, et al. Global ablation of the mouse Rab11a gene impairs early embryogenesis and matrix metalloproteinase secretion. J Biol Chem. 2014;289:32030-43 pubmed 出版商
  84. Lucken Ardjomande Häsler S, Vallis Y, Jolin H, McKenzie A, McMahon H. GRAF1a is a brain-specific protein that promotes lipid droplet clustering and growth, and is enriched at lipid droplet junctions. J Cell Sci. 2014;127:4602-19 pubmed 出版商
  85. Ronzitti G, Bucci G, Emanuele M, Leo D, Sotnikova T, Mus L, et al. Exogenous ?-synuclein decreases raft partitioning of Cav2.2 channels inducing dopamine release. J Neurosci. 2014;34:10603-15 pubmed 出版商
  86. Riffle B, Klinefelter G, Cooper R, Winnik W, Swank A, Jayaraman S, et al. Novel molecular events associated with altered steroidogenesis induced by exposure to atrazine in the intact and castrate male rat. Reprod Toxicol. 2014;47:59-69 pubmed 出版商
  87. Farg M, Sundaramoorthy V, Sultana J, Yang S, Atkinson R, Levina V, et al. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet. 2014;23:3579-95 pubmed 出版商
  88. Lee H, Kim Y, Kim D. Exosomes derived from human macrophages suppress endothelial cell migration by controlling integrin trafficking. Eur J Immunol. 2014;44:1156-69 pubmed 出版商
  89. Ma M, Chircop M. SNX9, SNX18 and SNX33 are required for progression through and completion of mitosis. J Cell Sci. 2012;125:4372-82 pubmed 出版商