这是一篇来自已证抗体库的有关人类 Ras相关C3肉毒杆菌毒素底物1 (Rac1) 的综述,是根据114篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Ras相关C3肉毒杆菌毒素底物1 抗体。
Ras相关C3肉毒杆菌毒素底物1 同义词: MIG5; MRD48; Rac-1; TC-25; p21-Rac1

赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3f
赛默飞世尔Ras相关C3肉毒杆菌毒素底物1抗体(生活技术, 44-214G)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3f). Mol Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛默飞世尔Ras相关C3肉毒杆菌毒素底物1抗体(Thermo Scientific, PA1-091)被用于被用于免疫印迹在小鼠样本上 (图 2a). Food Chem Toxicol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 8d
赛默飞世尔Ras相关C3肉毒杆菌毒素底物1抗体(Thermo Fisher, PA1-091)被用于被用于免疫组化在小鼠样本上 (图 8d). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛默飞世尔Ras相关C3肉毒杆菌毒素底物1抗体(Thermo, PAI-091)被用于被用于免疫印迹在人类样本上 (图 5c). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 8b
赛默飞世尔Ras相关C3肉毒杆菌毒素底物1抗体(ThermoFisher Scientific, PA1-091X)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 8b). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7d
  • 流式细胞仪; 大鼠; 图 4e
赛默飞世尔Ras相关C3肉毒杆菌毒素底物1抗体(Thermo Fisher, PA1-091)被用于被用于免疫印迹在人类样本上 (图 7d) 和 被用于流式细胞仪在大鼠样本上 (图 4e). Reprod Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5e
赛默飞世尔Ras相关C3肉毒杆菌毒素底物1抗体(Thermo Fisher, PA1-091X)被用于被用于免疫印迹在小鼠样本上 (图 5e). Peptides (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛默飞世尔Ras相关C3肉毒杆菌毒素底物1抗体(Thermo Fisher Scientific, PA1-091)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Mol Cells (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛默飞世尔Ras相关C3肉毒杆菌毒素底物1抗体(Thermo Scientific, PA1-091X)被用于被用于免疫印迹在人类样本上 (图 4c). FEMS Microbiol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛默飞世尔Ras相关C3肉毒杆菌毒素底物1抗体(Pierce Biotechnology, PA1-091)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(23A8)
  • 免疫细胞化学; 人类; 图 4c
  • 免疫印迹; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司Ras相关C3肉毒杆菌毒素底物1抗体(Abcam, ab33186)被用于被用于免疫细胞化学在人类样本上 (图 4c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Biochem Biophys Res Commun (2018) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 大鼠; 图 6
艾博抗(上海)贸易有限公司Ras相关C3肉毒杆菌毒素底物1抗体(Abcam, ab33186)被用于被用于免疫印迹在大鼠样本上 (图 6). PLoS ONE (2017) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类; 1:1000; 图 s2g
艾博抗(上海)贸易有限公司Ras相关C3肉毒杆菌毒素底物1抗体(Abcam, ab33186)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2g). J Cell Biol (2016) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; Clostridioides difficile; 图 4
艾博抗(上海)贸易有限公司Ras相关C3肉毒杆菌毒素底物1抗体(Abcam, ab33186)被用于被用于免疫印迹在Clostridioides difficile样本上 (图 4). Infect Immun (2016) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司Ras相关C3肉毒杆菌毒素底物1抗体(Abcam, ab33186)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Ovarian Res (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆
  • 免疫印迹; 人类; 1:100; 图 7
圣克鲁斯生物技术Ras相关C3肉毒杆菌毒素底物1抗体(Santa Cruz, sc-514583)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 7). Oncotarget (2017) ncbi
武汉三鹰
小鼠 单克隆(4A4B11)
  • 免疫印迹; 人类; 1:500; 图 2
武汉三鹰Ras相关C3肉毒杆菌毒素底物1抗体(Proteintech, 66122-1-Ig)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
武汉三鹰Ras相关C3肉毒杆菌毒素底物1抗体(Proteintech, 24072-1-AP)被用于. Oncotarget (2015) ncbi
GeneTex
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
GeneTexRas相关C3肉毒杆菌毒素底物1抗体(GeneTex, GTX100761)被用于被用于免疫印迹在小鼠样本上 (图 5a). Mol Neurobiol (2016) ncbi
NewEast Biosciences
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1a
NewEast BiosciencesRas相关C3肉毒杆菌毒素底物1抗体(NewEast Biosciences, 26903)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1a). Sci Rep (2018) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 图 10c
  • 免疫印迹; 小鼠; 图 10e
NewEast BiosciencesRas相关C3肉毒杆菌毒素底物1抗体(NewEast Biosciences, 26903)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 10c) 和 被用于免疫印迹在小鼠样本上 (图 10e). Dev Biol (2017) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2
NewEast BiosciencesRas相关C3肉毒杆菌毒素底物1抗体(NewEast Biosciences, 26903)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2). J Dent Res (2017) ncbi
小鼠 单克隆
  • 免疫沉淀; 人类; 图 1e
  • 免疫细胞化学; 人类; 图 1f
  • 免疫印迹; 人类; 图 1e
NewEast BiosciencesRas相关C3肉毒杆菌毒素底物1抗体(NewEast Biosciences, 26903)被用于被用于免疫沉淀在人类样本上 (图 1e), 被用于免疫细胞化学在人类样本上 (图 1f) 和 被用于免疫印迹在人类样本上 (图 1e). Oncogene (2017) ncbi
小鼠 单克隆
  • 免疫组化基因敲除验证; 小鼠; 1:50; 图 1
NewEast BiosciencesRas相关C3肉毒杆菌毒素底物1抗体(NewEast Biosciences, 26903)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:50 (图 1). PLoS Genet (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 5
NewEast BiosciencesRas相关C3肉毒杆菌毒素底物1抗体(NewEast Biosciences, 26903)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Nat Commun (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司Ras相关C3肉毒杆菌毒素底物1抗体(Cell Signaling, 2461)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Oncol Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司Ras相关C3肉毒杆菌毒素底物1抗体(Cell Signaling, 2461)被用于被用于免疫印迹在人类样本上 (图 3a). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司Ras相关C3肉毒杆菌毒素底物1抗体(cell signalling, 2465)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s4b
赛信通(上海)生物试剂有限公司Ras相关C3肉毒杆菌毒素底物1抗体(Cell signaling, 2465P)被用于被用于免疫印迹在人类样本上 (图 s4b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:300; 图 2
赛信通(上海)生物试剂有限公司Ras相关C3肉毒杆菌毒素底物1抗体(Cell Signaling, 2465P)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 2). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司Ras相关C3肉毒杆菌毒素底物1抗体(Cell Signaling, 2465)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司Ras相关C3肉毒杆菌毒素底物1抗体(Cell Signaling, 2465)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2017) ncbi
碧迪BD
小鼠 单克隆(102/Rac1)
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 4a
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD, 610650)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 4a). Sci Rep (2020) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类; 图 s1a
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Transduction Laboratories, 10650)被用于被用于免疫印迹在人类样本上 (图 s1a). Cancers (Basel) (2019) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 小鼠; 图 4c
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD, 610650)被用于被用于免疫印迹在小鼠样本上 (图 4c). Sci Signal (2018) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹基因敲除验证; 小鼠; 图 3a
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Biosciences, 610650)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 3a). J Biol Chem (2018) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类; 1:1000; 图 3c
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Biosciences, 102)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Nature (2017) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类; 图 3a
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Transduction Laboratories, 610650)被用于被用于免疫印迹在人类样本上 (图 3a). Hum Mol Genet (2017) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 1d
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Biosciences, 61065)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上 (图 1d). Mol Cancer Res (2017) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类; 图 1b
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Transduction Laboratories, 102)被用于被用于免疫印迹在人类样本上 (图 1b). Front Cell Infect Microbiol (2017) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 小鼠; 图 7D
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD, 610650)被用于被用于免疫印迹在小鼠样本上 (图 7D). elife (2017) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类; 图 6a
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD, 102/Rac1)被用于被用于免疫印迹在人类样本上 (图 6a). PLoS ONE (2017) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 大鼠; 图 3c
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Transduction Laboratories, 610650)被用于被用于免疫印迹在大鼠样本上 (图 3c). J Clin Invest (2017) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类; 1:1000; 图 6b
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD, 610650)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). J Cell Biol (2017) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类; 图 s3c
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Biosciences, 102)被用于被用于免疫印迹在人类样本上 (图 s3c). Nature (2016) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类; 图 5b
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Biosciences, 102)被用于被用于免疫印迹在人类样本上 (图 5b). Oncogene (2017) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫细胞化学; 小鼠; 1:200; 图 s4
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Biosciences, 610650)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s4). Nat Commun (2016) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 小鼠; 图 3A
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Biosciences, 610650)被用于被用于免疫印迹在小鼠样本上 (图 3A). PLoS ONE (2016) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫组化-冰冻切片; 小鼠; 图 4
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Biosciences, 61065)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫细胞化学; 人类; 图 7
  • 免疫印迹; 人类; 图 7
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD, 610650)被用于被用于免疫细胞化学在人类样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 7). J Cell Biol (2016) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类; 1:1000; 图 5
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Pharmingen, 610651)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 小鼠; 1:1000; 图 1
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD, 610650)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 小鼠; 图 s3
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD, 610650)被用于被用于免疫印迹在小鼠样本上 (图 s3). J Cell Biol (2015) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 仓鼠; 图 3e
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Biosciences, 61051)被用于被用于免疫印迹在仓鼠样本上 (图 3e). Blood (2016) ncbi
小鼠 单克隆(102/Rac1)
  • 流式细胞仪; 人类; 图 8
  • 免疫细胞化学; 人类; 图 3
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Transduction, 610650)被用于被用于流式细胞仪在人类样本上 (图 8) 和 被用于免疫细胞化学在人类样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Biosciences, 610650)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Transduction Laboratories, 610650)被用于被用于免疫印迹在人类样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类; 图 5
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Biosciences, 610650)被用于被用于免疫印迹在人类样本上 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Transduction Labs, 610650)被用于被用于免疫印迹在人类样本上. Sci Adv (2015) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类; 图 7
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD, 610650)被用于被用于免疫印迹在人类样本上 (图 7). J Cell Biol (2015) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类; 1:1000; 图 4
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD, 610650)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类; 图  3
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Transduction Laboratories, 610651)被用于被用于免疫印迹在人类样本上 (图  3). Hum Genet (2015) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类; 图 4
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD, 610651)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Biol (2015) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Biosciences, 610650)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 小鼠; 1:1000; 图 4
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Bioscience, 610651)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫细胞化学; 人类; 图 6
  • 免疫印迹; 人类; 图 7
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Transduction Laboratories, 610651)被用于被用于免疫细胞化学在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2015) ncbi
  • 免疫印迹; 人类; 图 1
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Transduction Laboratories, -)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
  • 免疫印迹; 人类; 图 1
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Transduction Laboratories, -)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类; 图 1
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD, 610650)被用于被用于免疫印迹在人类样本上 (图 1). Cell Res (2015) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 小鼠; 1:1000
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Transduction Laboratories, 610650)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Neurosci (2015) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫沉淀; 人类
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Transduction Labs, 610650)被用于被用于免疫沉淀在人类样本上. Comb Chem High Throughput Screen (2015) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Transduction, #610650)被用于被用于免疫印迹在人类样本上. Free Radic Res (2014) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类; 图 s1
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Biosciences, 610650)被用于被用于免疫印迹在人类样本上 (图 s1). EMBO J (2014) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类; 图 5
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD, 610651)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2014) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹; 人类
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD Bioscience, #610650)被用于被用于免疫印迹在人类样本上. Mol Cancer Res (2014) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫印迹基因敲除验证; 小鼠; 图 1
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD, 61051)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 1). Arterioscler Thromb Vasc Biol (2012) ncbi
小鼠 单克隆(102/Rac1)
  • 免疫组化基因敲除验证; 小鼠; 1:200; 图 1e
  • 免疫印迹基因敲除验证; 小鼠; 图 1c
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1e
碧迪BDRas相关C3肉毒杆菌毒素底物1抗体(BD, 610651)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:200 (图 1e), 被用于免疫印迹基因敲除验证在小鼠样本上 (图 1c) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1e). Dev Biol (2011) ncbi
默克密理博中国
小鼠 单克隆(23A8)
  • 免疫沉淀; 人类; 图 s3c
  • 免疫印迹; 人类; 1:500; 图 s3c
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(EMD Millipore, 05-389)被用于被用于免疫沉淀在人类样本上 (图 s3c) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 s3c). Nat Commun (2020) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 小鼠; 图 s1a
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(EMD Millipore, 05-389)被用于被用于免疫印迹在小鼠样本上 (图 s1a). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Merck Millipore, 09-271)被用于被用于免疫印迹在人类样本上 (图 1a). Cancers (Basel) (2019) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类; 图 4h
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 05-389)被用于被用于免疫印迹在人类样本上 (图 4h). Nature (2019) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 大鼠; 1:1000; 图 1c
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(EMD Millipore, 23A8)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1c). J Cell Biol (2017) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类; 1:4000; 图 2c
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 05-389)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 2c). Genes Dev (2017) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类; 图 7e
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 05-389)被用于被用于免疫印迹在人类样本上 (图 7e). Oncogene (2017) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 小鼠; 图 3b
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 05-389)被用于被用于免疫印迹在小鼠样本上 (图 3b). J Biol Chem (2017) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 小鼠; 1:2000; 图 7b
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 23A8)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7b). Nat Commun (2017) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类; 图 1h
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(EMD Millipore, 05-389)被用于被用于免疫印迹在人类样本上 (图 1h). J Cell Sci (2017) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 小鼠; 图 3d
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 05-389)被用于被用于免疫印迹在小鼠样本上 (图 3d). Oncogene (2017) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类; 1:1000; 图 1e
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 05-389)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Front Physiol (2016) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类; 1:500; 图 s5c
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(EMD Millipore, 05-389)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s5c). J Cell Biol (2017) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 小鼠; 图 2b
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 23A8)被用于被用于免疫印迹在小鼠样本上 (图 2b). Sci Signal (2016) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类; 图 2
  • 免疫印迹; 小鼠; 图 2
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 05-389)被用于被用于免疫印迹在人类样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 2). elife (2016) ncbi
小鼠 单克隆(23A8)
  • 免疫细胞化学; 大鼠; 图 6c
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 05-389)被用于被用于免疫细胞化学在大鼠样本上 (图 6c). Reprod Sci (2017) ncbi
小鼠 单克隆(23A8)
  • 免疫细胞化学; 人类; 1:300; 图 4a
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Merck, 05-389)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 4a). Cell Cycle (2016) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 小鼠; 图 s10b
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 23A8)被用于被用于免疫印迹在小鼠样本上 (图 s10b). Nat Chem Biol (2016) ncbi
小鼠 单克隆(23A8)
  • 免疫细胞化学; 小鼠; 图 2b
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 05-389)被用于被用于免疫细胞化学在小鼠样本上 (图 2b). Nat Commun (2016) ncbi
小鼠 单克隆(23A8)
  • 免疫沉淀; 小鼠; 图 5
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 05-389)被用于被用于免疫沉淀在小鼠样本上 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类; 图 4
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 23A8)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹基因敲除验证; 小鼠; 1:2000; 图 1
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Merck Millipore, 05?C389)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:2000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类; 1:1000; 图 2
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(EMD Millipore, 05-389)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类; 图 6a
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 05-389)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类; 图 5b
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 05-389)被用于被用于免疫印迹在人类样本上 (图 5b). J Biol Chem (2016) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 牛; 图 4
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 23A8)被用于被用于免疫印迹在牛样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类; 1:5000; 图 2
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 23A8)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). elife (2016) ncbi
小鼠 单克隆(23A8)
  • 免疫细胞化学; 大鼠; 图 6
  • 免疫印迹; 大鼠; 图 6
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 05-389)被用于被用于免疫细胞化学在大鼠样本上 (图 6) 和 被用于免疫印迹在大鼠样本上 (图 6). Mol Biol Cell (2016) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类; 图 1b
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Merck Millipore, 05-389)被用于被用于免疫印迹在人类样本上 (图 1b). J Biol Chem (2015) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 小鼠; 图 4
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 23A8)被用于被用于免疫印迹在小鼠样本上 (图 4). J Neurosci (2015) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类; 图 2
  • 免疫印迹; 大鼠; 图 4
  • 免疫印迹; 小鼠; 图 7
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 05389)被用于被用于免疫印迹在人类样本上 (图 2), 被用于免疫印迹在大鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 7). J Am Heart Assoc (2015) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 小鼠; 1:500; 图 7
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(millipore, 05-389)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7). Nat Commun (2015) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 大鼠; 1:200; 图 1i
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 05-389)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 1i). Nat Commun (2015) ncbi
小鼠 单克隆(23A8)
  • 免疫细胞化学; 人类; 1:200; 图 s2h
  • 免疫印迹; 人类; 1:200; 图 s2j
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 05-389)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s2h) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 s2j). Nat Cell Biol (2015) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 小鼠; 1:1000
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 05-389)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类; 图 3e
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 23A8)被用于被用于免疫印迹在人类样本上 (图 3e). Cancer Res (2015) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类; 图 4
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Upsate Biotechnology, 23A8)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类; 图 5
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 05-389)被用于被用于免疫印迹在人类样本上 (图 5). Eur J Appl Physiol (2015) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类; 图 1
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 05-389)被用于被用于免疫印迹在人类样本上 (图 1). Cell Res (2015) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 小鼠; 图 8
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 23A8)被用于被用于免疫印迹在小鼠样本上 (图 8). J Biol Chem (2015) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类; 图 6
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 05-389)被用于被用于免疫印迹在人类样本上 (图 6). Cardiovasc Res (2014) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Upstate, 23A8)被用于被用于免疫印迹在人类样本上. J Cell Biochem (2015) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 人类
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(EMD Millipore, 05-389)被用于被用于免疫印迹在人类样本上. Breast Cancer Res (2014) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 小鼠; 图 3
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Upstate, 05-389)被用于被用于免疫印迹在小鼠样本上 (图 3). Oncotarget (2014) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 小鼠
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Upstate Biotechnology, 23A8)被用于被用于免疫印迹在小鼠样本上. J Cell Sci (2014) ncbi
小鼠 单克隆(23A8)
  • 免疫印迹; 小鼠
默克密理博中国Ras相关C3肉毒杆菌毒素底物1抗体(Millipore, 05-389)被用于被用于免疫印迹在小鼠样本上. Circulation (2013) ncbi
文章列表
  1. Nomura Komoike K, Saitoh F, Fujieda H. Phosphatidylserine recognition and Rac1 activation are required for Müller glia proliferation, gliosis and phagocytosis after retinal injury. Sci Rep. 2020;10:1488 pubmed 出版商
  2. Kennedy S, Jarboui M, Srihari S, Raso C, Bryan K, Dernayka L, et al. Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRASG13D. Nat Commun. 2020;11:499 pubmed 出版商
  3. Yang S, Harding A, Sweeney C, Miao D, Swan G, Zhou C, et al. Control of antiviral innate immune response by protein geranylgeranylation. Sci Adv. 2019;5:eaav7999 pubmed 出版商
  4. Ungefroren H, Otterbein H, Fiedler C, Mihara K, Hollenberg M, Gieseler F, et al. RAC1B Suppresses TGF-β1-Dependent Cell Migration in Pancreatic Carcinoma Cells through Inhibition of the TGF-β Type I Receptor ALK5. Cancers (Basel). 2019;11: pubmed 出版商
  5. Huang L, Chambliss K, Gao X, Yuhanna I, Behling Kelly E, Bergaya S, et al. SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature. 2019;569:565-569 pubmed 出版商
  6. Peng J, Liang S, Li L. sFRP1 exerts effects on gastric cancer cells through GSK3β/Rac1‑mediated restraint of TGFβ/Smad3 signaling. Oncol Rep. 2019;41:224-234 pubmed 出版商
  7. Roy N, MacKay J, Robertson T, Hammer D, Burkhardt J. Crk adaptor proteins mediate actin-dependent T cell migration and mechanosensing induced by the integrin LFA-1. Sci Signal. 2018;11: pubmed 出版商
  8. Ge J, Burnier L, Adamopoulou M, Kwa M, Schaks M, Rottner K, et al. RhoA, Rac1, and Cdc42 differentially regulate αSMA and collagen I expression in mesenchymal stem cells. J Biol Chem. 2018;293:9358-9369 pubmed 出版商
  9. Kou W, Xu X, Ji S, Chen M, Liu D, Wang K, et al. The inhibition of the effect and mechanism of vascular intimal hyperplasia in Tiam1 knockout mice. Biochem Biophys Res Commun. 2018;497:248-255 pubmed 出版商
  10. Taguchi K, Yamagishi S, Yokoro M, Ito S, Kodama G, Kaida Y, et al. RAGE-aptamer attenuates deoxycorticosterone acetate/salt-induced renal injury in mice. Sci Rep. 2018;8:2686 pubmed 出版商
  11. Mao X, Fan C, Yu X, Chen B, Jin F. DDEFL1 correlated with Rho GTPases activity in breast cancer. Oncotarget. 2017;8:112487-112497 pubmed 出版商
  12. Polacheck W, Kutys M, Yang J, Eyckmans J, Wu Y, Vasavada H, et al. A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature. 2017;552:258-262 pubmed 出版商
  13. Donnelly S, Cabrera R, Mao S, Christin J, Wu B, Guo W, et al. Rac3 regulates breast cancer invasion and metastasis by controlling adhesion and matrix degradation. J Cell Biol. 2017;216:4331-4349 pubmed 出版商
  14. Yue X, Zhang C, Zhao Y, Liu J, Lin A, Tan V, et al. Gain-of-function mutant p53 activates small GTPase Rac1 through SUMOylation to promote tumor progression. Genes Dev. 2017;31:1641-1654 pubmed 出版商
  15. Jiang X, Bao Y, Liu H, Kou X, Zhang Z, Sun F, et al. VPS34 stimulation of p62 phosphorylation for cancer progression. Oncogene. 2017;36:6850-6862 pubmed 出版商
  16. Barbiero I, Peroni D, Tramarin M, Chandola C, Rusconi L, Landsberger N, et al. The neurosteroid pregnenolone reverts microtubule derangement induced by the loss of a functional CDKL5-IQGAP1 complex. Hum Mol Genet. 2017;26:3520-3530 pubmed 出版商
  17. Logan C, Rajakaruna S, Bowen C, Radice G, Robinson M, Menko A. N-cadherin regulates signaling mechanisms required for lens fiber cell elongation and lens morphogenesis. Dev Biol. 2017;428:118-134 pubmed 出版商
  18. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed 出版商
  19. Zhai L, Liu M, Wang T, Zhang H, Li S, Guo Y. Picroside II protects the blood-brain barrier by inhibiting the oxidative signaling pathway in cerebral ischemia-reperfusion injury. PLoS ONE. 2017;12:e0174414 pubmed 出版商
  20. Ding Y, Lu L, Xuan C, Han J, Ye S, Cao T, et al. Di-n-butyl phthalate exposure negatively influences structural and functional neuroplasticity via Rho-GTPase signaling pathways. Food Chem Toxicol. 2017;105:34-43 pubmed 出版商
  21. Ruhe F, Olling A, Abromeit R, Rataj D, Grieschat M, Zeug A, et al. Overexpression of the Endosomal Anion/Proton Exchanger ClC-5 Increases Cell Susceptibility toward Clostridium difficile Toxins TcdA and TcdB. Front Cell Infect Microbiol. 2017;7:67 pubmed 出版商
  22. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  23. Lavall D, Schuster P, Jacobs N, Kazakov A, Böhm M, Laufs U. Rac1 GTPase regulates 11β hydroxysteroid dehydrogenase type 2 and fibrotic remodeling. J Biol Chem. 2017;292:7542-7553 pubmed 出版商
  24. Li N, Xue W, Yuan H, Dong B, Ding Y, Liu Y, et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017;127:1284-1302 pubmed 出版商
  25. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  26. Grasso S, Chapelle J, Salemme V, Aramu S, Russo I, Vitale N, et al. The scaffold protein p140Cap limits ERBB2-mediated breast cancer progression interfering with Rac GTPase-controlled circuitries. Nat Commun. 2017;8:14797 pubmed 出版商
  27. Jeannot P, Nowosad A, Perchey R, Callot C, Bennana E, Katsube T, et al. p27Kip1 promotes invadopodia turnover and invasion through the regulation of the PAK1/Cortactin pathway. elife. 2017;6: pubmed 出版商
  28. Eppler F, Quast T, Kolanus W. Dynamin2 controls Rap1 activation and integrin clustering in human T lymphocyte adhesion. PLoS ONE. 2017;12:e0172443 pubmed 出版商
  29. Li L, Baxter S, Gu N, Ji M, Zhan X. Missing-in-metastasis protein downregulates CXCR4 by promoting ubiquitylation and interaction with small Rab GTPases. J Cell Sci. 2017;130:1475-1485 pubmed 出版商
  30. Lovric S, Gonçalves S, Gee H, Oskouian B, Srinivas H, Choi W, et al. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. J Clin Invest. 2017;127:912-928 pubmed 出版商
  31. He Y, Northey J, Pelletier A, Kos Z, Meunier L, Haibe Kains B, et al. The Cdc42/Rac1 regulator CdGAP is a novel E-cadherin transcriptional co-repressor with Zeb2 in breast cancer. Oncogene. 2017;36:3490-3503 pubmed 出版商
  32. Ahn B, Coblentz P, Beharry A, Patel N, Judge A, Moylan J, et al. Diaphragm Abnormalities in Patients with End-Stage Heart Failure: NADPH Oxidase Upregulation and Protein Oxidation. Front Physiol. 2016;7:686 pubmed 出版商
  33. Rafiq N, Lieu Z, Jiang T, Yu C, Matsudaira P, Jones G, et al. Podosome assembly is controlled by the GTPase ARF1 and its nucleotide exchange factor ARNO. J Cell Biol. 2017;216:181-197 pubmed 出版商
  34. Sun T, Yang L, Kaur H, Pestel J, Looso M, Nolte H, et al. A reverse signaling pathway downstream of Sema4A controls cell migration via Scrib. J Cell Biol. 2017;216:199-215 pubmed 出版商
  35. Campa C, Germena G, Ciraolo E, Copperi F, Sapienza A, Franco I, et al. Rac signal adaptation controls neutrophil mobilization from the bone marrow. Sci Signal. 2016;9:ra124 pubmed 出版商
  36. Tamasas B, Cox T. Massively Increased Caries Susceptibility in an Irf6 Cleft Lip/Palate Model. J Dent Res. 2017;96:315-322 pubmed 出版商
  37. Polusani S, Kalmykov E, Chandrasekhar A, Zucker S, Nicholson B. Cell coupling mediated by connexin 26 selectively contributes to reduced adhesivity and increased migration. J Cell Sci. 2016;129:4399-4410 pubmed
  38. Sivadasan R, Hornburg D, Drepper C, Frank N, Jablonka S, Hansel A, et al. C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons. Nat Neurosci. 2016;19:1610-1618 pubmed 出版商
  39. Cizmecioglu O, Ni J, Xie S, Zhao J, Roberts T. Rac1-mediated membrane raft localization of PI3K/p110? is required for its activation by GPCRs or PTEN loss. elife. 2016;5: pubmed 出版商
  40. Tao L, Zhang J, Meraner P, Tovaglieri A, Wu X, Gerhard R, et al. Frizzled proteins are colonic epithelial receptors for C. difficile toxin B. Nature. 2016;538:350-355 pubmed 出版商
  41. Frank S, Köllmann C, van Lidth de Jeude J, Thiagarajah J, Engelholm L, Frödin M, et al. The focal adhesion-associated proteins DOCK5 and GIT2 comprise a rheostat in control of epithelial invasion. Oncogene. 2017;36:1816-1828 pubmed 出版商
  42. Ubba V, Soni U, Chadchan S, Maurya V, Kumar V, Maurya R, et al. RHOG-DOCK1-RAC1 Signaling Axis Is Perturbed in DHEA-Induced Polycystic Ovary in Rat Model. Reprod Sci. 2017;24:738-752 pubmed 出版商
  43. Priya R, Wee K, Budnar S, Gomez G, Yap A, Michael M. Coronin 1B supports RhoA signaling at cell-cell junctions through Myosin II. Cell Cycle. 2016;15:3033-3041 pubmed
  44. Liu Z, Chu S, Yao S, Li Y, Fan S, Sun X, et al. CD74 interacts with CD44 and enhances tumorigenesis and metastasis via RHOA-mediated cofilin phosphorylation in human breast cancer cells. Oncotarget. 2016;7:68303-68313 pubmed 出版商
  45. Gaitanos T, Koerner J, Klein R. Tiam-Rac signaling mediates trans-endocytosis of ephrin receptor EphB2 and is important for cell repulsion. J Cell Biol. 2016;214:735-52 pubmed 出版商
  46. Girola N, Matsuo A, Figueiredo C, Massaoka M, Farias C, Arruda D, et al. The Ig VH complementarity-determining region 3-containing Rb9 peptide, inhibits melanoma cells migration and invasion by interactions with Hsp90 and an adhesion G-protein coupled receptor. Peptides. 2016;85:1-15 pubmed 出版商
  47. Efazat G, Novak M, Kaminskyy V, De Petris L, Kanter L, Juntti T, et al. Ephrin B3 interacts with multiple EphA receptors and drives migration and invasion in non-small cell lung cancer. Oncotarget. 2016;7:60332-60347 pubmed 出版商
  48. Hodgson L, Spiering D, Sabouri Ghomi M, Dagliyan O, DerMardirossian C, Danuser G, et al. FRET binding antenna reports spatiotemporal dynamics of GDI-Cdc42 GTPase interactions. Nat Chem Biol. 2016;12:802-809 pubmed 出版商
  49. Shi D, Shi G, Xie J, Du X, Yang H. MicroRNA-27a Inhibits Cell Migration and Invasion of Fibroblast-Like Synoviocytes by Targeting Follistatin-Like Protein 1 in Rheumatoid Arthritis. Mol Cells. 2016;39:611-8 pubmed 出版商
  50. Rodas P, Álamos Musre A, Álvarez F, Escobar A, Tapia C, Osorio E, et al. The NarE protein of Neisseria gonorrhoeae catalyzes ADP-ribosylation of several ADP-ribose acceptors despite an N-terminal deletion. FEMS Microbiol Lett. 2016;363: pubmed 出版商
  51. Desrochers L, Bordeleau F, Reinhart King C, Cerione R, Antonyak M. Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat Commun. 2016;7:11958 pubmed 出版商
  52. Li J, Zhang S, Hu Q, Zhang K, Jin J, Zheng X, et al. The NKD1/Rac1 feedback loop regulates the invasion and migration ability of hepatocarcinoma cells. Sci Rep. 2016;6:26971 pubmed 出版商
  53. Reinhard J, Kriz A, Galic M, Angliker N, Rajalu M, Vogt K, et al. The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory. Nat Commun. 2016;7:11613 pubmed 出版商
  54. Fusté N, Fernández Hernández R, Cemeli T, Mirantes C, Pedraza N, Rafel M, et al. Cytoplasmic cyclin D1 regulates cell invasion and metastasis through the phosphorylation of paxillin. Nat Commun. 2016;7:11581 pubmed 出版商
  55. Bianchi Smiraglia A, Bagati A, Fink E, Moparthy S, Wawrzyniak J, Marvin E, et al. Microphthalmia-associated transcription factor suppresses invasion by reducing intracellular GTP pools. Oncogene. 2017;36:84-96 pubmed 出版商
  56. Hein A, Post C, Sheinin Y, Lakshmanan I, Natarajan A, Enke C, et al. RAC1 GTPase promotes the survival of breast cancer cells in response to hyper-fractionated radiation treatment. Oncogene. 2016;35:6319-6329 pubmed 出版商
  57. Chen L, DeWispelaere A, Dastvan F, Osborne W, Blechner C, Windhorst S, et al. Smooth Muscle-Alpha Actin Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Inhibiting Rac1 Activity. PLoS ONE. 2016;11:e0155726 pubmed 出版商
  58. Takenaka N, Nihata Y, Satoh T. Rac1 Activation Caused by Membrane Translocation of a Guanine Nucleotide Exchange Factor in Akt2-Mediated Insulin Signaling in Mouse Skeletal Muscle. PLoS ONE. 2016;11:e0155292 pubmed 出版商
  59. Marcos Ramiro B, García Weber D, Barroso S, Feito J, Ortega M, Cernuda Morollón E, et al. RhoB controls endothelial barrier recovery by inhibiting Rac1 trafficking to the cell border. J Cell Biol. 2016;213:385-402 pubmed 出版商
  60. Blas Rus N, Bustos Morán E, Perez de Castro I, de Carcer G, Borroto A, Camafeita E, et al. Aurora A drives early signalling and vesicle dynamics during T-cell activation. Nat Commun. 2016;7:11389 pubmed 出版商
  61. Nagase M, Kurihara H, Aiba A, Young M, Sakai T. Deletion of Rac1GTPase in the Myeloid Lineage Protects against Inflammation-Mediated Kidney Injury in Mice. PLoS ONE. 2016;11:e0150886 pubmed 出版商
  62. Tao Y, Hu K, Tan F, Zhang S, Zhou M, Luo J, et al. SH3-domain binding protein 1 in the tumor microenvironment promotes hepatocellular carcinoma metastasis through WAVE2 pathway. Oncotarget. 2016;7:18356-70 pubmed 出版商
  63. Cho C, Lee K, Chen W, Wang C, Chang Y, Huang H, et al. MST3 promotes proliferation and tumorigenicity through the VAV2/Rac1 signal axis in breast cancer. Oncotarget. 2016;7:14586-604 pubmed 出版商
  64. Marei H, Carpy A, Woroniuk A, Vennin C, White G, Timpson P, et al. Differential Rac1 signalling by guanine nucleotide exchange factors implicates FLII in regulating Rac1-driven cell migration. Nat Commun. 2016;7:10664 pubmed 出版商
  65. Pan D, Barber M, Hornigold K, Baker M, Toth J, Oxley D, et al. Norbin Stimulates the Catalytic Activity and Plasma Membrane Localization of the Guanine-Nucleotide Exchange Factor P-Rex1. J Biol Chem. 2016;291:6359-75 pubmed 出版商
  66. Lampi M, Faber C, Huynh J, Bordeleau F, Zanotelli M, Reinhart King C. Simvastatin Ameliorates Matrix Stiffness-Mediated Endothelial Monolayer Disruption. PLoS ONE. 2016;11:e0147033 pubmed 出版商
  67. Quesada Gómez C, López Ureña D, Chumbler N, Kroh H, Castro Peña C, Rodriguez C, et al. Analysis of TcdB Proteins within the Hypervirulent Clade 2 Reveals an Impact of RhoA Glucosylation on Clostridium difficile Proinflammatory Activities. Infect Immun. 2016;84:856-65 pubmed 出版商
  68. Zhang C, Liu J, Zhao Y, Yue X, Zhu Y, Wang X, et al. Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis. elife. 2016;5:e10727 pubmed 出版商
  69. Fan S, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell. 2016;27:702-15 pubmed 出版商
  70. Giampietro C, Disanza A, Bravi L, Barrios Rodiles M, Corada M, Frittoli E, et al. The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling. J Cell Biol. 2015;211:1177-92 pubmed 出版商
  71. Estevez B, Kim K, Delaney M, Stojanovic Terpo A, Shen B, Ruan C, et al. Signaling-mediated cooperativity between glycoprotein Ib-IX and protease-activated receptors in thrombin-induced platelet activation. Blood. 2016;127:626-36 pubmed 出版商
  72. Oprea T, Sklar L, Agola J, Guo Y, Silberberg M, Roxby J, et al. Novel Activities of Select NSAID R-Enantiomers against Rac1 and Cdc42 GTPases. PLoS ONE. 2015;10:e0142182 pubmed 出版商
  73. Zhu J, Wang S, Zhang W, Qiu J, Shan Y, Yang D, et al. Screening key microRNAs for castration-resistant prostate cancer based on miRNA/mRNA functional synergistic network. Oncotarget. 2015;6:43819-30 pubmed 出版商
  74. Wang S, Hsu J, Ko C, Chiu N, Kan W, Lai M, et al. Astrocytic CCAAT/Enhancer-Binding Protein Delta Contributes to Glial Scar Formation and Impairs Functional Recovery After Spinal Cord Injury. Mol Neurobiol. 2016;53:5912-5927 pubmed 出版商
  75. Nagy Z, Wynne K, von Kriegsheim A, Gambaryan S, Smolenski A. Cyclic Nucleotide-dependent Protein Kinases Target ARHGAP17 and ARHGEF6 Complexes in Platelets. J Biol Chem. 2015;290:29974-83 pubmed 出版商
  76. Mayanagi T, Yasuda H, Sobue K. PSD-Zip70 Deficiency Causes Prefrontal Hypofunction Associated with Glutamatergic Synapse Maturation Defects by Dysregulation of Rap2 Activity. J Neurosci. 2015;35:14327-40 pubmed 出版商
  77. Fujimura K, Choi S, Wyse M, Strnadel J, Wright T, Klemke R. Eukaryotic Translation Initiation Factor 5A (EIF5A) Regulates Pancreatic Cancer Metastasis by Modulating RhoA and Rho-associated Kinase (ROCK) Protein Expression Levels. J Biol Chem. 2015;290:29907-19 pubmed 出版商
  78. Yu D, Makkar G, Strickland D, Blanpied T, Stumpo D, Blackshear P, et al. Myristoylated Alanine-Rich Protein Kinase Substrate (MARCKS) Regulates Small GTPase Rac1 and Cdc42 Activity and Is a Critical Mediator of Vascular Smooth Muscle Cell Migration in Intimal Hyperplasia Formation. J Am Heart Assoc. 2015;4:e002255 pubmed 出版商
  79. Yuzugullu H, Baitsch L, Von T, Steiner A, Tong H, Ni J, et al. A PI3K p110β-Rac signalling loop mediates Pten-loss-induced perturbation of haematopoiesis and leukaemogenesis. Nat Commun. 2015;6:8501 pubmed 出版商
  80. Jamieson C, Lui C, Brocardo M, Martino Echarri E, Henderson B. Rac1 augments Wnt signaling by stimulating β-catenin-lymphoid enhancer factor-1 complex assembly independent of β-catenin nuclear import. J Cell Sci. 2015;128:3933-46 pubmed 出版商
  81. Poitelon Y, Bogni S, Matafora V, Della Flora Nunes G, Hurley E, Ghidinelli M, et al. Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination. Nat Commun. 2015;6:8303 pubmed 出版商
  82. Priya R, Gomez G, Budnar S, Verma S, Cox H, Hamilton N, et al. Feedback regulation through myosin II confers robustness on RhoA signalling at E-cadherin junctions. Nat Cell Biol. 2015;17:1282-93 pubmed 出版商
  83. Davila J, Laws M, Kannan A, Li Q, Taylor R, Bagchi M, et al. Rac1 Regulates Endometrial Secretory Function to Control Placental Development. PLoS Genet. 2015;11:e1005458 pubmed 出版商
  84. He S, Zhao Z, Yang Y, O Connell D, Zhang X, Oh S, et al. Truncating mutation in the autophagy gene UVRAG confers oncogenic properties and chemosensitivity in colorectal cancers. Nat Commun. 2015;6:7839 pubmed 出版商
  85. Hahn C, Scott D, Xu X, Roda M, Payne G, Wells J, et al. The matrikine N-α-PGP couples extracellular matrix fragmentation to endothelial permeability. Sci Adv. 2015;1: pubmed
  86. Newell Litwa K, Badoual M, Asmussen H, Patel H, Whitmore L, Horwitz A. ROCK1 and 2 differentially regulate actomyosin organization to drive cell and synaptic polarity. J Cell Biol. 2015;210:225-42 pubmed 出版商
  87. Whalley H, Porter A, Diamantopoulou Z, White G, Castañeda Saucedo E, Malliri A. Cdk1 phosphorylates the Rac activator Tiam1 to activate centrosomal Pak and promote mitotic spindle formation. Nat Commun. 2015;6:7437 pubmed 出版商
  88. Hwang D, Kohl S, Fan X, Vivante A, Chan S, Dworschak G, et al. Mutations of the SLIT2-ROBO2 pathway genes SLIT2 and SRGAP1 confer risk for congenital anomalies of the kidney and urinary tract. Hum Genet. 2015;134:905-16 pubmed 出版商
  89. Suárez Causado A, Caballero Díaz D, Bertrán E, Roncero C, Addante A, García Álvaro M, et al. HGF/c-Met signaling promotes liver progenitor cell migration and invasion by an epithelial-mesenchymal transition-independent, phosphatidyl inositol-3 kinase-dependent pathway in an in vitro model. Biochim Biophys Acta. 2015;1853:2453-63 pubmed 出版商
  90. Razidlo G, Magnine C, Sletten A, Hurley R, Almada L, Fernandez Zapico M, et al. Targeting Pancreatic Cancer Metastasis by Inhibition of Vav1, a Driver of Tumor Cell Invasion. Cancer Res. 2015;75:2907-15 pubmed 出版商
  91. Grikscheit K, Frank T, Wang Y, Grosse R. Junctional actin assembly is mediated by Formin-like 2 downstream of Rac1. J Cell Biol. 2015;209:367-76 pubmed 出版商
  92. Yamana S, Tokiyama A, Mizutani K, Hirata K, Takai Y, Rikitake Y. The Cell Adhesion Molecule Necl-4/CADM4 Serves as a Novel Regulator for Contact Inhibition of Cell Movement and Proliferation. PLoS ONE. 2015;10:e0124259 pubmed 出版商
  93. Lu J, Luo C, Bali K, Xie R, Mains R, Eipper B, et al. A role for Kalirin-7 in nociceptive sensitization via activity-dependent modulation of spinal synapses. Nat Commun. 2015;6:6820 pubmed 出版商
  94. Brohée L, Demine S, Willems J, Arnould T, Colige A, Deroanne C. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment. Oncotarget. 2015;6:11264-80 pubmed
  95. Giehl K, Keller C, Muehlich S, Goppelt Struebe M. Actin-mediated gene expression depends on RhoA and Rac1 signaling in proximal tubular epithelial cells. PLoS ONE. 2015;10:e0121589 pubmed 出版商
  96. Ferru Clément R, Fresquet F, Norez C, Métayé T, Becq F, Kitzis A, et al. Involvement of the Cdc42 pathway in CFTR post-translational turnover and in its plasma membrane stability in airway epithelial cells. PLoS ONE. 2015;10:e0118943 pubmed 出版商
  97. D Hulst G, Sylow L, Hespel P, Deldicque L. Acute systemic insulin intolerance does not alter the response of the Akt/GSK-3 pathway to environmental hypoxia in human skeletal muscle. Eur J Appl Physiol. 2015;115:1219-31 pubmed 出版商
  98. Yuan P, Zhang H, Cai C, Zhu S, Zhou Y, Yang X, et al. Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B. Cell Res. 2015;25:157-68 pubmed 出版商
  99. Delloye Bourgeois C, Jacquier A, Charoy C, Reynaud F, Nawabi H, Thoinet K, et al. PlexinA1 is a new Slit receptor and mediates axon guidance function of Slit C-terminal fragments. Nat Neurosci. 2015;18:36-45 pubmed 出版商
  100. van Adrichem A, Fagerholm A, Turunen L, Lehto A, Saarela J, Koskinen A, et al. Discovery of MINC1, a GTPase-activating protein small molecule inhibitor, targeting MgcRacGAP. Comb Chem High Throughput Screen. 2015;18:3-17 pubmed
  101. Bancroft T, Bouaouina M, Roberts S, Lee M, Calderwood D, Schwartz M, et al. Up-regulation of thrombospondin-2 in Akt1-null mice contributes to compromised tissue repair due to abnormalities in fibroblast function. J Biol Chem. 2015;290:409-22 pubmed 出版商
  102. Menhofer M, Bartel D, Liebl J, Kubisch R, Busse J, Wagner E, et al. In vitro and in vivo characterization of the actin polymerizing compound chondramide as an angiogenic inhibitor. Cardiovasc Res. 2014;104:303-14 pubmed 出版商
  103. Zuo Y, Wu Y, Wehrli B, Chakrabarti S, Chakraborty C. Modulation of ERK5 is a novel mechanism by which Cdc42 regulates migration of breast cancer cells. J Cell Biochem. 2015;116:124-32 pubmed 出版商
  104. Kovacs I, Horvath M, Kovacs T, Somogyi K, Tretter L, Geiszt M, et al. Comparison of proton channel, phagocyte oxidase, and respiratory burst levels between human eosinophil and neutrophil granulocytes. Free Radic Res. 2014;48:1190-9 pubmed 出版商
  105. Takeda A, Oberoi Khanuja T, Glatz G, Schulenburg K, Scholz R, Carpy A, et al. Ubiquitin-dependent regulation of MEKK2/3-MEK5-ERK5 signaling module by XIAP and cIAP1. EMBO J. 2014;33:1784-801 pubmed 出版商
  106. Aguilar H, Urruticoechea A, Halonen P, Kiyotani K, Mushiroda T, Barril X, et al. VAV3 mediates resistance to breast cancer endocrine therapy. Breast Cancer Res. 2014;16:R53 pubmed 出版商
  107. Romanov V, Brichkina A, Morrison H, Pospelova T, Pospelov V, Herrlich P. Novel mechanism of JNK pathway activation by adenoviral E1A. Oncotarget. 2014;5:2176-86 pubmed
  108. Zhu G, Fan Z, Ding M, Mu L, Liang J, Ding Y, et al. DNA damage induces the accumulation of Tiam1 by blocking ?-TrCP-dependent degradation. J Biol Chem. 2014;289:15482-94 pubmed 出版商
  109. Moissoglu K, Kiessling V, Wan C, Hoffman B, Norambuena A, Tamm L, et al. Regulation of Rac1 translocation and activation by membrane domains and their boundaries. J Cell Sci. 2014;127:2565-76 pubmed 出版商
  110. Maurya V, Sangappa C, Kumar V, Mahfooz S, Singh A, Rajender S, et al. Expression and activity of Rac1 is negatively affected in the dehydroepiandrosterone induced polycystic ovary of mouse. J Ovarian Res. 2014;7:32 pubmed 出版商
  111. Zhong J, Bach C, Shum M, O Neill G. NEDD9 regulates 3D migratory activity independent of the Rac1 morphology switch in glioma and neuroblastoma. Mol Cancer Res. 2014;12:264-73 pubmed 出版商
  112. Khan O, Akula M, Skålén K, Karlsson C, Ståhlman M, Young S, et al. Targeting GGTase-I activates RHOA, increases macrophage reverse cholesterol transport, and reduces atherosclerosis in mice. Circulation. 2013;127:782-90 pubmed 出版商
  113. Delaney M, Liu J, Zheng Y, Berndt M, Du X. The role of Rac1 in glycoprotein Ib-IX-mediated signal transduction and integrin activation. Arterioscler Thromb Vasc Biol. 2012;32:2761-8 pubmed 出版商
  114. Maddala R, Chauhan B, Walker C, Zheng Y, Robinson M, Lang R, et al. Rac1 GTPase-deficient mouse lens exhibits defects in shape, suture formation, fiber cell migration and survival. Dev Biol. 2011;360:30-43 pubmed 出版商