这是一篇来自已证抗体库的有关人类 Raf-1的综述,是根据64篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Raf-1 抗体。
Raf-1 同义词: CMD1NN; CRAF; NS5; Raf-1; c-Raf

圣克鲁斯生物技术
小鼠 单克隆(C-10)
  • 免疫印迹; 大鼠; 1:100; 图 s7
圣克鲁斯生物技术 Raf-1抗体(Santa Cruz Biotechnology, sc-373722)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 s7). Cell Rep (2020) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 大鼠; 1:100; 图 s7
圣克鲁斯生物技术 Raf-1抗体(Santa Cruz Biotechnology, sc-271929)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 s7). Cell Rep (2020) ncbi
小鼠 单克隆(E-10)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 Raf-1抗体(Santa Cruz, sc-7267)被用于被用于免疫印迹在人类样本上 (图 3b). Int J Oncol (2018) ncbi
小鼠 单克隆(540)
  • 免疫印迹; 人类; 图 7f
圣克鲁斯生物技术 Raf-1抗体(SantaCruz, sc-52827)被用于被用于免疫印迹在人类样本上 (图 7f). Oncogene (2017) ncbi
小鼠 单克隆(E-10)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 Raf-1抗体(SantaCruz, sc-7267)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2017) ncbi
小鼠 单克隆(H-8)
  • proximity ligation assay; 仓鼠; 图 3d
圣克鲁斯生物技术 Raf-1抗体(Santa Cruz, sc-376142)被用于被用于proximity ligation assay在仓鼠样本上 (图 3d). Mol Cell Biol (2016) ncbi
小鼠 单克隆(E-10)
  • 免疫沉淀; 人类; 1:1000; 图 4
  • 免疫沉淀; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 Raf-1抗体(Santa Cruz Biotechnology, sc-7267)被用于被用于免疫沉淀在人类样本上浓度为1:1000 (图 4) 和 被用于免疫沉淀在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(E-10)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术 Raf-1抗体(Santa Cruz, sc-7267)被用于被用于免疫印迹在小鼠样本上 (图 4). Mol Biol Cell (2015) ncbi
小鼠 单克隆(E-10)
  • proximity ligation assay; 人类; 1:100; 图 8
圣克鲁斯生物技术 Raf-1抗体(Santa Cruz Biotechnology, sc-7267)被用于被用于proximity ligation assay在人类样本上浓度为1:100 (图 8). Biomolecules (2015) ncbi
小鼠 单克隆(E-10)
  • 免疫印迹; 小鼠; 1:500; 图 6g
圣克鲁斯生物技术 Raf-1抗体(Santa Cruz Biotechnology, sc-7267)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6g). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(E-10)
  • proximity ligation assay; 小鼠
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术 Raf-1抗体(Santa, sc7267)被用于被用于proximity ligation assay在小鼠样本上 和 被用于免疫组化-石蜡切片在小鼠样本上. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(E-10)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Raf-1抗体(Santa Cruz, # sc-7267)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(E-10)
  • proximity ligation assay; 人类; 1:100; 图 9d
圣克鲁斯生物技术 Raf-1抗体(Santa Cruz Biotechnology, sc-7267)被用于被用于proximity ligation assay在人类样本上浓度为1:100 (图 9d). Biomolecules (2012) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 7
艾博抗(上海)贸易有限公司 Raf-1抗体(Abcam, ab157201)被用于被用于免疫印迹在人类样本上 (图 7). Aging (Albany NY) (2021) ncbi
赛默飞世尔
domestic rabbit 单克隆(E.838.4)
  • 免疫印迹; 人类; 1:5000; 图 4c
赛默飞世尔 Raf-1抗体(Thermo Pierce, MA5-15176)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4c). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Raf-1抗体(Invitrogen, 44504G)被用于. PLoS ONE (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 9427)被用于被用于免疫印迹在人类样本上 (图 4g). J Clin Invest (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 9422)被用于被用于免疫印迹在人类样本上 (图 4g). J Clin Invest (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Raf-1抗体(CST, 9422T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Raf-1抗体(CST, 9427T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类; 图 3m
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling Technology, 9427)被用于被用于免疫印迹在人类样本上 (图 3m). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling Technology, 9427)被用于被用于免疫印迹在人类样本上 (图 4g). Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling Technology, 9422)被用于被用于免疫印迹在人类样本上 (图 4g). Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s8e
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling Technology, 9422)被用于被用于免疫印迹在人类样本上 (图 s8e). Nature (2020) ncbi
domestic rabbit 单克隆(56A6)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 9427)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 9427)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Science (2018) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, cs-9427)被用于被用于免疫印迹在人类样本上 (图 3b). Int J Oncol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4g
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 9422S)被用于被用于免疫印迹在小鼠样本上 (图 4g). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 小鼠; 图 4g
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 9427S)被用于被用于免疫印迹在小鼠样本上 (图 4g). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signalling, 9427)被用于被用于免疫印迹在人类样本上 (图 3b). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 9422)被用于被用于免疫印迹在人类样本上 (图 3a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 9427)被用于被用于免疫印迹在人类样本上 (图 3a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Raf-1抗体(cell signalling, 9427)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(56A6)
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 Raf-1抗体(CST, 9427)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling Technology, 9427)被用于被用于免疫印迹在人类样本上 (图 4d). Cell (2017) ncbi
domestic rabbit 单克隆(56A6)
  • reverse phase protein lysate microarray; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 9427)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Raf-1抗体(cell signalling, 9427)被用于被用于免疫印迹在小鼠样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Raf-1抗体(cell signalling, 9422)被用于被用于免疫印迹在小鼠样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 9422)被用于被用于免疫印迹在人类样本上 (图 2c). Oncotarget (2017) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 9427)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 表 1
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 9421S)被用于被用于免疫印迹在犬样本上 (表 1). Mol Reprod Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 5g
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 9422)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5g). Cell Cycle (2016) ncbi
小鼠 单克隆(D5X6R)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell signaling, 12552)被用于被用于免疫印迹在人类样本上 (图 5c). Eur J Cancer (2016) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell signaling, 9427)被用于被用于免疫印迹在人类样本上 (图 5c). Eur J Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 9421)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 9422)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Raf-1抗体(CST, 9427)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1c
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 9422)被用于被用于免疫印迹在人类样本上 (图 s1c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell signaling, 9427)被用于被用于免疫印迹在人类样本上 (图 3). FASEB J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell signaling, 9422)被用于被用于免疫印迹在人类样本上 (图 3). FASEB J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 9421)被用于被用于免疫印迹在人类样本上 (图 4). BMC Complement Altern Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 8
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling Technology, 9422BC)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 8). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s1
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling Tech, 9422)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类; 1:500; 图 8
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell signaling, 9427)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 8). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling Tech, 9421S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling Tech, 9422S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling Technology, 9422)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 9427)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Am J Physiol Lung Cell Mol Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling Technology, 9421)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling Technology, 9427)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
小鼠 单克隆(D5X6R)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 12552)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 仓鼠; 图 2f
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 9427S)被用于被用于免疫印迹在仓鼠样本上 (图 2f). elife (2015) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling Technology, 9427)被用于被用于免疫印迹在小鼠样本上 (图 4). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类; 图 S3
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling Technology, 9427)被用于被用于免疫印迹在人类样本上 (图 S3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling Technology, 9427)被用于被用于免疫印迹在人类样本上. Int J Oncol (2015) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 仓鼠
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling technology, 9427)被用于被用于免疫印迹在仓鼠样本上. Med Microbiol Immunol (2014) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signalling, 9427)被用于被用于免疫印迹在人类样本上. Cell Microbiol (2014) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 9427)被用于被用于免疫印迹在人类样本上. Sci Signal (2013) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, #9427P)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Mol Histol (2014) ncbi
domestic rabbit 单克隆(56A6)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Raf-1抗体(Cell Signaling, 9427)被用于被用于免疫印迹在人类样本上. Cancer Cell Int (2013) ncbi
碧迪BD
小鼠 单克隆(53/c-Raf-1)
  • 免疫印迹; 人类; 1:4000; 图 s3d
碧迪BD Raf-1抗体(BD Biosciences, 610151)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 s3d). Science (2019) ncbi
小鼠 单克隆(53/c-Raf-1)
  • 免疫印迹基因敲除验证; 小鼠; 1:500; 图 3b
碧迪BD Raf-1抗体(BD Biosciences, 610152)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:500 (图 3b). Nat Commun (2016) ncbi
小鼠 单克隆(53/c-Raf-1)
  • 免疫沉淀; 人类; 图 6b
  • 免疫印迹; 人类; 图 6b
碧迪BD Raf-1抗体(BD, 610151)被用于被用于免疫沉淀在人类样本上 (图 6b) 和 被用于免疫印迹在人类样本上 (图 6b). Nat Chem Biol (2017) ncbi
小鼠 单克隆(53/c-Raf-1)
  • 免疫沉淀; 人类; 图 1l
  • 免疫印迹; 人类; 1:5000; 图 1a
  • 免疫沉淀; brewer's yeast; 图 2b
  • 免疫印迹; brewer's yeast; 1:5000; 图 1h
碧迪BD Raf-1抗体(BD Biosciences, 610151)被用于被用于免疫沉淀在人类样本上 (图 1l), 被用于免疫印迹在人类样本上浓度为1:5000 (图 1a), 被用于免疫沉淀在brewer's yeast样本上 (图 2b) 和 被用于免疫印迹在brewer's yeast样本上浓度为1:5000 (图 1h). J Biol Chem (2016) ncbi
小鼠 单克隆(53/c-Raf-1)
  • 免疫印迹; 小鼠; 图 5
碧迪BD Raf-1抗体(BD Biosciences, 610152)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(53/c-Raf-1)
  • 免疫沉淀; 人类; 表 3
  • 免疫印迹; 人类; 1:1000; 表 2
碧迪BD Raf-1抗体(BD, 610151)被用于被用于免疫沉淀在人类样本上 (表 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (表 2). elife (2016) ncbi
小鼠 单克隆(53/c-Raf-1)
  • 免疫印迹; 人类
  • 免疫印迹; 犬
碧迪BD Raf-1抗体(BD Biosciences, 610151)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在犬样本上. Carcinogenesis (2014) ncbi
小鼠 单克隆(53/c-Raf-1)
  • 免疫印迹; 人类
碧迪BD Raf-1抗体(BD Transduction Laboratories, 610152)被用于被用于免疫印迹在人类样本上. J Cell Sci (2013) ncbi
小鼠 单克隆(53/c-Raf-1)
  • 免疫印迹; 仓鼠
碧迪BD Raf-1抗体(BD Transduction Laboratories, 610152)被用于被用于免疫印迹在仓鼠样本上. Mol Cell Biol (2013) ncbi
文章列表
  1. Luo Y, Li Z, Kong Y, He W, Zheng H, An M, et al. KRAS mutant-driven SUMOylation controls extracellular vesicle transmission to trigger lymphangiogenesis in pancreatic cancer. J Clin Invest. 2022;132: pubmed 出版商
  2. Xu Y, Chen X, Pan S, Wang Z, Zhu X. TM7SF2 regulates cell proliferation and apoptosis by activation of C-Raf/ERK pathway in cervical cancer. Cell Death Discov. 2021;7:299 pubmed 出版商
  3. Zhang Y, Ding L, Ni Q, Tao R, Qin J. Transcription factor PAX4 facilitates gastric cancer progression through interacting with miR-27b-3p/Grb2 axis. Aging (Albany NY). 2021;13:16786-16803 pubmed 出版商
  4. Pan S, Zhao X, Shao C, Fu B, Huang Y, Zhang N, et al. STIM1 promotes angiogenesis by reducing exosomal miR-145 in breast cancer MDA-MB-231 cells. Cell Death Dis. 2021;12:38 pubmed 出版商
  5. Dai C, Li Q, May H, Li C, Zhang G, Sharma G, et al. Lactate Dehydrogenase A Governs Cardiac Hypertrophic Growth in Response to Hemodynamic Stress. Cell Rep. 2020;32:108087 pubmed 出版商
  6. Koundouros N, Karali E, Tripp A, Valle A, Inglese P, Perry N, et al. Metabolic Fingerprinting Links Oncogenic PIK3CA with Enhanced Arachidonic Acid-Derived Eicosanoids. Cell. 2020;181:1596-1611.e27 pubmed 出版商
  7. Xue J, Zhao Y, Aronowitz J, Mai T, Vides A, Qeriqi B, et al. Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature. 2020;577:421-425 pubmed 出版商
  8. Castel P, Cheng A, Cuevas Navarro A, Everman D, Papageorge A, Simanshu D, et al. RIT1 oncoproteins escape LZTR1-mediated proteolysis. Science. 2019;363:1226-1230 pubmed 出版商
  9. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  10. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920-926 pubmed 出版商
  11. Qi Z, Xu H, Zhang S, Xu J, Li S, Gao H, et al. RIPK4/PEBP1 axis promotes pancreatic cancer cell migration and invasion by activating RAF1/MEK/ERK signaling. Int J Oncol. 2018;52:1105-1116 pubmed 出版商
  12. Kunimoto H, Meydan C, Nazir A, Whitfield J, Shank K, Rapaport F, et al. Cooperative Epigenetic Remodeling by TET2 Loss and NRAS Mutation Drives Myeloid Transformation and MEK Inhibitor Sensitivity. Cancer Cell. 2018;33:44-59.e8 pubmed 出版商
  13. Jiang X, Bao Y, Liu H, Kou X, Zhang Z, Sun F, et al. VPS34 stimulation of p62 phosphorylation for cancer progression. Oncogene. 2017;36:6850-6862 pubmed 出版商
  14. Ferraiuolo R, Tubman J, Sinha I, Hamm C, Porter L. The cyclin-like protein, SPY1, regulates the ER? and ERK1/2 pathways promoting tamoxifen resistance. Oncotarget. 2017;8:23337-23352 pubmed 出版商
  15. Yurugi H, Marini F, Weber C, David K, Zhao Q, Binder H, et al. Targeting prohibitins with chemical ligands inhibits KRAS-mediated lung tumours. Oncogene. 2017;36:4778-4789 pubmed 出版商
  16. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  17. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  18. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  19. Wang T, Yu H, Hughes N, Liu B, Kendirli A, Klein K, et al. Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras. Cell. 2017;168:890-903.e15 pubmed 出版商
  20. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  21. Kidger A, Rushworth L, Stellzig J, Davidson J, Bryant C, Bayley C, et al. Dual-specificity phosphatase 5 controls the localized inhibition, propagation, and transforming potential of ERK signaling. Proc Natl Acad Sci U S A. 2017;114:E317-E326 pubmed 出版商
  22. Rouhi A, Miller C, Grasedieck S, Reinhart S, Stolze B, Döhner H, et al. Prospective identification of resistance mechanisms to HSP90 inhibition in KRAS mutant cancer cells. Oncotarget. 2017;8:7678-7690 pubmed 出版商
  23. Jerić I, Maurer G, Cavallo A, Raguz J, Desideri E, Tarkowski B, et al. A cell-autonomous tumour suppressor role of RAF1 in hepatocarcinogenesis. Nat Commun. 2016;7:13781 pubmed 出版商
  24. Vakana E, Pratt S, Blosser W, Dowless M, Simpson N, Yuan X, et al. LY3009120, a panRAF inhibitor, has significant anti-tumor activity in BRAF and KRAS mutant preclinical models of colorectal cancer. Oncotarget. 2017;8:9251-9266 pubmed 出版商
  25. Spencer Smith R, Koide A, Zhou Y, Eguchi R, Sha F, Gajwani P, et al. Inhibition of RAS function through targeting an allosteric regulatory site. Nat Chem Biol. 2017;13:62-68 pubmed 出版商
  26. Bulldan A, Shihan M, Goericke Pesch S, Scheiner Bobis G. Signaling events associated with gonadotropin releasing hormone-agonist-induced hormonal castration and its reversal in canines. Mol Reprod Dev. 2016;83:1092-1101 pubmed 出版商
  27. Zimmermann M, Arachchige Don A, Donaldson M, Patriarchi T, Horne M. Cyclin G2 promotes cell cycle arrest in breast cancer cells responding to fulvestrant and metformin and correlates with patient survival. Cell Cycle. 2016;15:3278-3295 pubmed
  28. Zhao Y, Fan D, Ru B, Cheng K, Hu S, Zhang J, et al. 6-C-(E-phenylethenyl)naringenin induces cell growth inhibition and cytoprotective autophagy in colon cancer cells. Eur J Cancer. 2016;68:38-50 pubmed 出版商
  29. Mitra S, Ghosh B, Gayen N, Roy J, Mandal A. Bipartite Role of Heat Shock Protein 90 (Hsp90) Keeps CRAF Kinase Poised for Activation. J Biol Chem. 2016;291:24579-24593 pubmed
  30. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  31. Siljamäki E, Abankwa D. SPRED1 Interferes with K-ras but Not H-ras Membrane Anchorage and Signaling. Mol Cell Biol. 2016;36:2612-25 pubmed 出版商
  32. Anta B, Pérez Rodríguez A, Castro J, García Domínguez C, Ibiza S, Martínez N, et al. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes. Cell Death Dis. 2016;7:e2311 pubmed 出版商
  33. Ho J, Hsu R, Wu C, Liao G, Gao H, Wang T, et al. Reduced miR-550a-3p leads to breast cancer initiation, growth, and metastasis by increasing levels of ERK1 and 2. Oncotarget. 2016;7:53853-53868 pubmed 出版商
  34. Subramaniam S, Ozdener M, Abdoul Azize S, Saito K, Malik B, Maquart G, et al. ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans. FASEB J. 2016;30:3489-3500 pubmed
  35. Ahmad F, Chung Y, Tang Y, Hockman S, Liu S, Khan Y, et al. Phosphodiesterase 3B (PDE3B) regulates NLRP3 inflammasome in adipose tissue. Sci Rep. 2016;6:28056 pubmed 出版商
  36. Choi H, Kim M, Choi Y, Shin Y, Cho S, Ko S. Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC Complement Altern Med. 2016;16:122 pubmed 出版商
  37. Kii I, Sumida Y, Goto T, Sonamoto R, Okuno Y, Yoshida S, et al. Selective inhibition of the kinase DYRK1A by targeting its folding process. Nat Commun. 2016;7:11391 pubmed 出版商
  38. Chatelle C, Hövermann D, Muller A, Wagner H, Weber W, Radziwill G. Optogenetically controlled RAF to characterize BRAF and CRAF protein kinase inhibitors. Sci Rep. 2016;6:23713 pubmed 出版商
  39. Wu J, Ivanov A, Fisher P, Fu Z. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling. elife. 2016;5: pubmed 出版商
  40. Bhargava A, Pelech S, Woodard B, Kerwin J, Maherali N. Registered report: RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. elife. 2016;5: pubmed 出版商
  41. Zhang Z, Zhang H, Peng T, Li D, Xu J. Melittin suppresses cathepsin S-induced invasion and angiogenesis via blocking of the VEGF-A/VEGFR-2/MEK1/ERK1/2 pathway in human hepatocellular carcinoma. Oncol Lett. 2016;11:610-618 pubmed
  42. Faltermeier C, Drake J, Clark P, Smith B, Zong Y, Volpe C, et al. Functional screen identifies kinases driving prostate cancer visceral and bone metastasis. Proc Natl Acad Sci U S A. 2016;113:E172-81 pubmed 出版商
  43. Bunda S, Burrell K, Heir P, Zeng L, Alamsahebpour A, Kano Y, et al. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat Commun. 2015;6:8859 pubmed 出版商
  44. Awad K, Elinoff J, Wang S, Gairhe S, Ferreyra G, Cai R, et al. Raf/ERK drives the proliferative and invasive phenotype of BMPR2-silenced pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2016;310:L187-201 pubmed 出版商
  45. Park Y, Kim S, Kwon T, Kim J, Song I, Shin H, et al. Peroxiredoxin II promotes hepatic tumorigenesis through cooperation with Ras/Forkhead box M1 signaling pathway. Oncogene. 2016;35:3503-13 pubmed 出版商
  46. Gong Y, Qiu W, Ning X, Yang X, Liu L, Wang Z, et al. CCDC34 is up-regulated in bladder cancer and regulates bladder cancer cell proliferation, apoptosis and migration. Oncotarget. 2015;6:25856-67 pubmed 出版商
  47. Bunaciu R, Jensen H, Macdonald R, Latocha D, Varner J, Yen A. 6-Formylindolo(3,2-b)Carbazole (FICZ) Modulates the Signalsome Responsible for RA-Induced Differentiation of HL-60 Myeloblastic Leukemia Cells. PLoS ONE. 2015;10:e0135668 pubmed 出版商
  48. Å olman M, Ligabue A, BlaževitÅ¡ O, Jaiswal A, Zhou Y, Liang H, et al. Specific cancer-associated mutations in the switch III region of Ras increase tumorigenicity by nanocluster augmentation. elife. 2015;4:e08905 pubmed 出版商
  49. Boswell B, Musil L. Synergistic interaction between the fibroblast growth factor and bone morphogenetic protein signaling pathways in lens cells. Mol Biol Cell. 2015;26:2561-72 pubmed 出版商
  50. Tate C, Mc Entire J, Pallini R, Vakana E, Wyss L, Blosser W, et al. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology. PLoS ONE. 2015;10:e0125697 pubmed 出版商
  51. Brobeil A, Kämmerer F, Tag C, Steger K, Gattenlöhner S, Wimmer M. PTPIP51—A New RelA-tionship with the NFκB Signaling Pathway. Biomolecules. 2015;5:485-504 pubmed 出版商
  52. Yang Z, Zheng B, Zhang Y, He M, Zhang X, Ma D, et al. miR-155-dependent regulation of mammalian sterile 20-like kinase 2 (MST2) coordinates inflammation, oxidative stress and proliferation in vascular smooth muscle cells. Biochim Biophys Acta. 2015;1852:1477-89 pubmed 出版商
  53. Wang Y, Han A, Chen E, Singh R, Chichester C, Moore R, et al. The cranberry flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and cell cycle arrest and increase cisplatin sensitivity in ovarian cancer cells. Int J Oncol. 2015;46:1924-34 pubmed 出版商
  54. Brobeil A, Viard M, Petri M, Steger K, Tag C, Wimmer M. Memory and PTPIP51--a new protein in hippocampus and cerebellum. Mol Cell Neurosci. 2015;64:61-73 pubmed 出版商
  55. Petti C, Picco G, Martelli M, Trisolini E, Bucci E, Perera T, et al. Truncated RAF kinases drive resistance to MET inhibition in MET-addicted cancer cells. Oncotarget. 2015;6:221-33 pubmed
  56. Brobeil A, Graf M, Eiber M, Wimmer M. Interaction of PTPIP51 with Tubulin, CGI-99 and Nuf2 During Cell Cycle Progression. Biomolecules. 2012;2:122-42 pubmed 出版商
  57. Meng G, Tian C, Wang H, Xu Y, Zhang B, Shi Q, et al. Remarkable reductions of PAKs in the brain tissues of scrapie-infected rodent possibly linked closely with neuron loss. Med Microbiol Immunol. 2014;203:291-302 pubmed 出版商
  58. Eucker T, Samuelson D, Hunzicker Dunn M, Konkel M. The focal complex of epithelial cells provides a signalling platform for interleukin-8 induction in response to bacterial pathogens. Cell Microbiol. 2014;16:1441-55 pubmed 出版商
  59. Kiel C, Verschueren E, Yang J, Serrano L. Integration of protein abundance and structure data reveals competition in the ErbB signaling network. Sci Signal. 2013;6:ra109 pubmed 出版商
  60. Wang Z, Ren Z, Hu Z, Hu X, Zhang H, Wu H, et al. Angiotensin-II induces phosphorylation of ERK1/2 and promotes aortic adventitial fibroblasts differentiating into myofibroblasts during aortic dissection formation. J Mol Histol. 2014;45:401-12 pubmed 出版商
  61. Linch M, Sanz Garcia M, Rosse C, Riou P, Peel N, Madsen C, et al. Regulation of polarized morphogenesis by protein kinase C iota in oncogenic epithelial spheroids. Carcinogenesis. 2014;35:396-406 pubmed 出版商
  62. Barceló C, Paco N, Beckett A, Alvarez Moya B, Garrido E, Gelabert M, et al. Oncogenic K-ras segregates at spatially distinct plasma membrane signaling platforms according to its phosphorylation status. J Cell Sci. 2013;126:4553-9 pubmed 出版商
  63. Lin S, Hoffmann K, Xiao Z, Jin N, Galli U, Mohr E, et al. MEK inhibition induced downregulation of MRP1 and MRP3 expression in experimental hepatocellular carcinoma. Cancer Cell Int. 2013;13:3 pubmed 出版商
  64. van der Hoeven D, Cho K, Ma X, Chigurupati S, Parton R, Hancock J. Fendiline inhibits K-Ras plasma membrane localization and blocks K-Ras signal transmission. Mol Cell Biol. 2013;33:237-51 pubmed 出版商