这是一篇来自已证抗体库的有关人类 RyR1的综述,是根据84篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合RyR1 抗体。
RyR1 同义词: CCO; MHS; MHS1; PPP1R137; RYDR; RYR; RYR-1; SKRR

赛默飞世尔
小鼠 单克隆(C3-33)
  • 免疫印迹; 大鼠; 1:200; 图 7a
赛默飞世尔 RyR1抗体(ABR, C3-33)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 7a). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 大鼠; 1:2000; 图 7a
赛默飞世尔 RyR1抗体(Invitrogen, MA3-916)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 7a). elife (2020) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 小鼠; 1:2000; 图 2a
赛默飞世尔 RyR1抗体(ThermoFisher, MA3-925)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2a). elife (2019) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 小鼠; 图 1b
赛默飞世尔 RyR1抗体(Thermo Fisher, MA3-916)被用于被用于免疫印迹在小鼠样本上 (图 1b). Science (2018) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 小鼠; 图 5a
赛默飞世尔 RyR1抗体(Thermo Fisher Scientific, MA3-925)被用于被用于免疫印迹在小鼠样本上 (图 5a). Physiol Rep (2017) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; domestic rabbit; 1:1000; 图 5
赛默飞世尔 RyR1抗体(Thermo Fisher, MA3-916)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 5). Exp Ther Med (2017) ncbi
小鼠 单克隆(34C)
  • 免疫组化; 小鼠; 1:300; 图 3c
  • 免疫印迹; 小鼠; 1:2000; 图 s2f
赛默飞世尔 RyR1抗体(Thermo Scientific, MA3-925)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 3c) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s2f). Nat Commun (2017) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 人类; 1:500; 图 1b
赛默飞世尔 RyR1抗体(Thermo Fischer, MA3-925)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1b). Acta Neuropathol Commun (2017) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 小鼠; 图 2d
赛默飞世尔 RyR1抗体(Pierce Antibodies, MA3-925)被用于被用于免疫印迹在小鼠样本上 (图 2d). PLoS ONE (2017) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛默飞世尔 RyR1抗体(Thermo Scientific, MA3-916)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Stem Cell Reports (2017) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 大鼠; 图 2e
赛默飞世尔 RyR1抗体(Thermo, MA3-925)被用于被用于免疫印迹在大鼠样本上 (图 2e). PLoS ONE (2017) ncbi
小鼠 单克隆(C3-33)
  • 免疫沉淀; 大鼠
  • 免疫印迹; 大鼠; 1:5000; 图 6a
赛默飞世尔 RyR1抗体(Thermo Scientific, MA3-916)被用于被用于免疫沉淀在大鼠样本上 和 被用于免疫印迹在大鼠样本上浓度为1:5000 (图 6a). Cardiovasc Res (2017) ncbi
小鼠 单克隆(C3-33)
  • 免疫组化-冰冻切片; 家羊; 1:100; 图 3a
赛默飞世尔 RyR1抗体(Thermo, MA3- 916)被用于被用于免疫组化-冰冻切片在家羊样本上浓度为1:100 (图 3a). J Muscle Res Cell Motil (2016) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 大鼠; 1:2500; 图 4a
赛默飞世尔 RyR1抗体(ThermoFisher Scientific, MA-925)被用于被用于免疫印迹在大鼠样本上浓度为1:2500 (图 4a). J Appl Physiol (1985) (2017) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛默飞世尔 RyR1抗体(Thermo Scientific, MA3-925)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Exp Mol Med (2016) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 人类; 图 8a
赛默飞世尔 RyR1抗体(Pierce, MA3-925)被用于被用于免疫印迹在人类样本上 (图 8a). J Biol Chem (2017) ncbi
小鼠 单克隆(C3-33)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 7a
赛默飞世尔 RyR1抗体(Thermo Fisher Scientific, MA3-916)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 7a). Exp Ther Med (2016) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 小鼠; 图 4a
赛默飞世尔 RyR1抗体(Thermo Fisher, MA3-925)被用于被用于免疫印迹在小鼠样本上 (图 4a). Muscle Nerve (2017) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 小鼠; 1:5000; 图 2g
赛默飞世尔 RyR1抗体(Thermo, MA3916)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2g). J Cell Sci (2016) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛默飞世尔 RyR1抗体(Thermo Fisher, MA3-925)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). J Biol Chem (2016) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛默飞世尔 RyR1抗体(Thermo Scientific, MA3-925)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). J Biol Chem (2016) ncbi
小鼠 单克隆(C3-33)
  • 免疫沉淀; 人类; 图 1e
  • 免疫印迹; 人类; 图 1e
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔 RyR1抗体(Thermo Fisher, MA3-916)被用于被用于免疫沉淀在人类样本上 (图 1e), 被用于免疫印迹在人类样本上 (图 1e), 被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上 (图 1d). Circ Res (2017) ncbi
小鼠 单克隆(34C)
  • 免疫组化; 小鼠; 1:500; 图 1a
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 RyR1抗体(Thermo Fisher, MA3-925)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000. J Physiol (2016) ncbi
小鼠 单克隆(C3-33)
  • 免疫组化; 大鼠; 1:50; 图 3b
  • 免疫组化; 小鼠; 1:50; 图 3c
赛默飞世尔 RyR1抗体(Thermo Scientific, MA3-916)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 3b) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 3c). J Biol Chem (2016) ncbi
小鼠 单克隆(34C)
  • 免疫组化; 小鼠; 1:100; 图 2c
赛默飞世尔 RyR1抗体(Pierce, MA3-925)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2c). Cell Rep (2016) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; domestic rabbit; 1:2000; 图 6a
赛默飞世尔 RyR1抗体(Thermo Scientific, C3-33)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:2000 (图 6a). Am J Physiol Heart Circ Physiol (2016) ncbi
小鼠 单克隆(34C)
  • 免疫细胞化学; 小鼠; 图 2e
赛默飞世尔 RyR1抗体(Thermo Scientific, MA3-925)被用于被用于免疫细胞化学在小鼠样本上 (图 2e). Sci Signal (2016) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛默飞世尔 RyR1抗体(Thermo Fisher, MA3-925)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Arch Biochem Biophys (2016) ncbi
小鼠 单克隆(34C)
  • proximity ligation assay; 小鼠; 1:500; 图 4
赛默飞世尔 RyR1抗体(Thermo, MA3-925)被用于被用于proximity ligation assay在小鼠样本上浓度为1:500 (图 4). Cell Death Dis (2016) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔 RyR1抗体(Affinity Bioreagents, MA3-916)被用于被用于免疫印迹在小鼠样本上 (图 5). J Cell Mol Med (2016) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 小鼠; 1:5000; 图 2
赛默飞世尔 RyR1抗体(Thermo Scientific, MA3-925)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(34C)
  • 免疫细胞化学; pigs ; 1:200; 图 6
赛默飞世尔 RyR1抗体(Thermo Scientific, MA3-925)被用于被用于免疫细胞化学在pigs 样本上浓度为1:200 (图 6). J Physiol (2016) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 大鼠; 1:1000; 图 s1
赛默飞世尔 RyR1抗体(Thermo Fisher Scientific, MA3-916)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s1). PLoS ONE (2016) ncbi
小鼠 单克隆(34C)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 1
赛默飞世尔 RyR1抗体(ThermoFisher Scientific, MA3-925)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 1). J Gen Physiol (2016) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 2
赛默飞世尔 RyR1抗体(Affinity BioReagents, MA3-925)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 2). Expert Rev Mol Med (2016) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 小鼠; 图 7e
赛默飞世尔 RyR1抗体(Thermo Scientific, MA3-916)被用于被用于免疫印迹在小鼠样本上 (图 7e). Cardiovasc Res (2016) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 RyR1抗体(Pierce, MA3-925)被用于被用于免疫印迹在小鼠样本上 (图 2). Arch Biochem Biophys (2016) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 小鼠; 1:1000; 图 s8a
赛默飞世尔 RyR1抗体(Pierce, C3-33)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s8a). Science (2016) ncbi
小鼠 单克隆(C3-33)
  • 免疫细胞化学; 大鼠; 图 3
  • 免疫印迹; 大鼠; 图 2
赛默飞世尔 RyR1抗体(Thermo Scientific, MA3916)被用于被用于免疫细胞化学在大鼠样本上 (图 3) 和 被用于免疫印迹在大鼠样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 RyR1抗体(ABR, MA3-925)被用于被用于免疫印迹在小鼠样本上 (图 1). Mol Cells (2016) ncbi
小鼠 单克隆(34C)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6
赛默飞世尔 RyR1抗体(Thermo Pierce, MA3-925)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6). Am J Physiol Heart Circ Physiol (2016) ncbi
小鼠 单克隆(34C)
  • 免疫组化-冰冻切片; 斑马鱼; 图 5
赛默飞世尔 RyR1抗体(Affinity Bioreagents, MA3-925)被用于被用于免疫组化-冰冻切片在斑马鱼样本上 (图 5). J Muscle Res Cell Motil (2016) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 RyR1抗体(Affinity BioReagents, MA3-916)被用于被用于免疫印迹在小鼠样本上 (图 3). Am J Physiol Heart Circ Physiol (2016) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛默飞世尔 RyR1抗体(Affinity Bioreagents, MA3-916)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Nat Med (2015) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 小鼠; 1:2500
赛默飞世尔 RyR1抗体(生活技术, 34C)被用于被用于免疫印迹在小鼠样本上浓度为1:2500. Nat Commun (2015) ncbi
小鼠 单克隆(C3-33)
  • 免疫组化; 大鼠; 图 1
赛默飞世尔 RyR1抗体(Affinity Bioreagents, C3-33)被用于被用于免疫组化在大鼠样本上 (图 1). PLoS Comput Biol (2015) ncbi
小鼠 单克隆(C3-33)
  • 免疫组化-冰冻切片; 犬; 1:100; 图 1
赛默飞世尔 RyR1抗体(ThermoFisher Scientific, MA3-916)被用于被用于免疫组化-冰冻切片在犬样本上浓度为1:100 (图 1). Circ Heart Fail (2015) ncbi
小鼠 单克隆(C3-33)
  • 免疫细胞化学; 大鼠; 1:200; 图 1
赛默飞世尔 RyR1抗体(Thermo Fisher Scientific,, MA3-916)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 1). J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
赛默飞世尔 RyR1抗体(Pierce Antibodies, MA3-925)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Dis Model Mech (2015) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 RyR1抗体(Thermo Scientific, MA3-925)被用于被用于免疫印迹在小鼠样本上 (图 1). Hum Mol Genet (2015) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 人类
赛默飞世尔 RyR1抗体(Thermo Scientific, MA3-925)被用于被用于免疫印迹在人类样本上. Neuromuscul Disord (2015) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 小鼠
赛默飞世尔 RyR1抗体(Thermo Scientific, MA3-925)被用于被用于免疫印迹在小鼠样本上. FEBS Lett (2015) ncbi
小鼠 单克隆(C3-33)
  • 免疫组化-冰冻切片; 人类; 1:100
赛默飞世尔 RyR1抗体(Thermo Scientific, MA3-916)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. Methods (2015) ncbi
小鼠 单克隆(C3-33)
  • 免疫细胞化学; 小鼠; 1:200; 表 1
赛默飞世尔 RyR1抗体(ABR, MA3-916)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (表 1). Front Physiol (2015) ncbi
小鼠 单克隆(C3-33)
  • 免疫组化; 大鼠; 1:100
赛默飞世尔 RyR1抗体(Thermo Scientific, MA3-916)被用于被用于免疫组化在大鼠样本上浓度为1:100. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 人类; 1:5000
  • 免疫沉淀; 小鼠
  • 免疫印迹; 小鼠; 1:5000
赛默飞世尔 RyR1抗体(Thermo Fisher Scientific, MA3-916)被用于被用于免疫印迹在人类样本上浓度为1:5000, 被用于免疫沉淀在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:5000. Circ Arrhythm Electrophysiol (2014) ncbi
小鼠 单克隆(34C)
  • 免疫组化; 小鼠; 1 ug/ml
赛默飞世尔 RyR1抗体(Thermo Scientific, 34C)被用于被用于免疫组化在小鼠样本上浓度为1 ug/ml. Hum Mutat (2014) ncbi
小鼠 单克隆(34C)
  • 免疫组化-自由浮动切片; 小鼠; 图 1
赛默飞世尔 RyR1抗体(Pierce, MA3925)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 1). J Comp Neurol (2014) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 RyR1抗体(Thermo, MA3-925)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Neurosci (2014) ncbi
小鼠 单克隆(G-1)
  • 免疫细胞化学; 大鼠
赛默飞世尔 RyR1抗体(Thermo Scientific, MA1-83782)被用于被用于免疫细胞化学在大鼠样本上. Am J Physiol Heart Circ Physiol (2014) ncbi
小鼠 单克隆(C3-33)
  • 免疫细胞化学; domestic rabbit
  • 免疫组化; domestic rabbit
  • 免疫细胞化学; 小鼠
  • 免疫组化; 小鼠
赛默飞世尔 RyR1抗体(Thermo Scientific, MA3-916)被用于被用于免疫细胞化学在domestic rabbit样本上, 被用于免疫组化在domestic rabbit样本上, 被用于免疫细胞化学在小鼠样本上 和 被用于免疫组化在小鼠样本上. Circulation (2014) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 RyR1抗体(Affinity Bioreagents, MA3-916)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 RyR1抗体(Affinity Bioreagents, MA3-925)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. J Neurosci (2014) ncbi
小鼠 单克隆(34C)
  • 免疫组化-自由浮动切片; 大鼠; 1 ug/ml
赛默飞世尔 RyR1抗体(Pierce, MA3-925)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1 ug/ml. J Comp Neurol (2014) ncbi
小鼠 单克隆(34C)
  • 免疫印迹基因敲除验证; 小鼠; 1:500; 图 s1b
赛默飞世尔 RyR1抗体(Thermo, MA3?C925)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:500 (图 s1b). Channels (Austin) (2014) ncbi
小鼠 单克隆(34C)
  • 免疫细胞化学; 小鼠
赛默飞世尔 RyR1抗体(抗体目录, MA3-925)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(34C)
  • 免疫细胞化学; pigs ; 1:200
赛默飞世尔 RyR1抗体(Affinity BioReagents, MA3-925)被用于被用于免疫细胞化学在pigs 样本上浓度为1:200. J Physiol (2013) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 RyR1抗体(Thermo Scientific, MA3-925)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 大鼠
  • 免疫印迹; 小鼠
赛默飞世尔 RyR1抗体(Thermo Scientific, MA3-916)被用于被用于免疫印迹在大鼠样本上 和 被用于免疫印迹在小鼠样本上. Am J Physiol Heart Circ Physiol (2013) ncbi
小鼠 单克隆(34C)
  • 免疫组化; 小鼠
赛默飞世尔 RyR1抗体(Thermo scientific, MA3-925)被用于被用于免疫组化在小鼠样本上. PLoS Genet (2013) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 大鼠
赛默飞世尔 RyR1抗体(Thermo Scientific, MA3-916)被用于被用于免疫印迹在大鼠样本上. Cardiovasc Diabetol (2012) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 人类
赛默飞世尔 RyR1抗体(Pierce, 34C)被用于被用于免疫印迹在人类样本上. J Card Fail (2012) ncbi
小鼠 单克隆(34C)
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类; 图 1
赛默飞世尔 RyR1抗体(Thermo Scientific, MA3-925)被用于被用于免疫细胞化学在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 1). Hum Mutat (2011) ncbi
小鼠 单克隆(34C)
  • 免疫组化-冰冻切片; 小鼠; 1:800
  • 免疫细胞化学; 小鼠; 1:800
赛默飞世尔 RyR1抗体(Affinity Bioreagents, MA3-925)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800 和 被用于免疫细胞化学在小鼠样本上浓度为1:800. J Comp Neurol (2008) ncbi
小鼠 单克隆(34C)
  • 免疫沉淀; domestic rabbit; 图 5
  • 免疫印迹; domestic rabbit; 图 5
赛默飞世尔 RyR1抗体(ABR, MA-3-925)被用于被用于免疫沉淀在domestic rabbit样本上 (图 5) 和 被用于免疫印迹在domestic rabbit样本上 (图 5). Cell Calcium (2007) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 小鼠
赛默飞世尔 RyR1抗体(Affinity BioReagents, MA3-916)被用于被用于免疫印迹在小鼠样本上. EMBO J (2004) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(C3-33)
  • 免疫细胞化学; domestic rabbit; 1:100; 图 6b
艾博抗(上海)贸易有限公司 RyR1抗体(Abcam, ab2827)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:100 (图 6b). Sci Rep (2017) ncbi
小鼠 单克隆(C3-33)
  • 免疫印迹; 大鼠; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 RyR1抗体(Abcam, Ab2827)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5b). PLoS ONE (2015) ncbi
LifeSpan Biosciences
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 8
  • 免疫印迹; 小鼠; 1:500; 图 7
LifeSpan Biosciences RyR1抗体(LifeSpan Biosciences, LS-C153542)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 8) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 7). Development (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(34C)
  • 免疫印迹; 人类; 图 3f
西格玛奥德里奇 RyR1抗体(SigmaAldrich, R129)被用于被用于免疫印迹在人类样本上 (图 3f). J Appl Physiol (1985) (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-1)
  • 免疫印迹; 小鼠; 图 3g
圣克鲁斯生物技术 RyR1抗体(Santa Cruz, sc-376507)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(34C)
  • 免疫细胞化学; 小鼠; 图 11a
  • 免疫细胞化学; 大鼠; 图 1c
  • 免疫组化; 大鼠; 图 2a
Developmental Studies Hybridoma Bank RyR1抗体(DSHB, RRID:AB_528457)被用于被用于免疫细胞化学在小鼠样本上 (图 11a), 被用于免疫细胞化学在大鼠样本上 (图 1c) 和 被用于免疫组化在大鼠样本上 (图 2a). elife (2019) ncbi
小鼠 单克隆(34C)
  • 免疫组化; 斑马鱼; 1:500; 图 1a
Developmental Studies Hybridoma Bank RyR1抗体(DSHB, 34c)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 1a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 小鼠; 1:100; 图 6
Developmental Studies Hybridoma Bank RyR1抗体(DSHB, 34C)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 6). Amino Acids (2016) ncbi
小鼠 单克隆(34C)
  • 免疫印迹; 小鼠; 图 13
Developmental Studies Hybridoma Bank RyR1抗体(DSHB, 34C)被用于被用于免疫印迹在小鼠样本上 (图 13). Skelet Muscle (2016) ncbi
文章列表
  1. Zheng J, Zhou H, Yang M, Song S, Dai Q, Ji G, et al. Reduced Ca2+ spark activity contributes to detrusor overactivity of rats with partial bladder outlet obstruction. Aging (Albany NY). 2020;12:4163-4177 pubmed 出版商
  2. Asghari P, Scriven D, Ng M, Panwar P, Chou K, Van Petegem F, et al. Cardiac ryanodine receptor distribution is dynamic and changed by auxiliary proteins and post-translational modification. elife. 2020;9: pubmed 出版商
  3. Vierra N, Kirmiz M, van der List D, Santana L, Trimmer J. Kv2.1 mediates spatial and functional coupling of L-type calcium channels and ryanodine receptors in mammalian neurons. elife. 2019;8: pubmed 出版商
  4. Dai W, Laforest B, Tyan L, Shen K, Nadadur R, Alvarado F, et al. A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice. elife. 2019;8: pubmed 出版商
  5. Guo A, Wang Y, Chen B, Wang Y, Yuan J, Zhang L, et al. E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science. 2018;362: pubmed 出版商
  6. Tsuda T, Takefuji M, Wettschureck N, Kotani K, Morimoto R, Okumura T, et al. Corticotropin releasing hormone receptor 2 exacerbates chronic cardiac dysfunction. J Exp Med. 2017;214:1877-1888 pubmed 出版商
  7. Eshima H, Tamura Y, Kakehi S, Kurebayashi N, Murayama T, Nakamura K, et al. Long-term, but not short-term high-fat diet induces fiber composition changes and impaired contractile force in mouse fast-twitch skeletal muscle. Physiol Rep. 2017;5: pubmed 出版商
  8. Chang S, Chuang H, Chen Y, Kao Y, Lin Y, Yeh Y, et al. Heart failure modulates electropharmacological characteristics of sinoatrial nodes. Exp Ther Med. 2017;13:771-779 pubmed 出版商
  9. Lee C, Hanna A, Wang H, Dagnino Acosta A, Joshi A, Knoblauch M, et al. A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun. 2017;8:14659 pubmed 出版商
  10. Amici D, Pinal Fernández I, Mázala D, Lloyd T, Corse A, Christopher Stine L, et al. Calcium dysregulation, functional calpainopathy, and endoplasmic reticulum stress in sporadic inclusion body myositis. Acta Neuropathol Commun. 2017;5:24 pubmed 出版商
  11. Fajardo V, Gamu D, Mitchell A, Bloemberg D, Bombardier E, Chambers P, et al. Sarcolipin deletion exacerbates soleus muscle atrophy and weakness in phospholamban overexpressing mice. PLoS ONE. 2017;12:e0173708 pubmed 出版商
  12. Abad M, Hashimoto H, Zhou H, Morales M, Chen B, Bassel Duby R, et al. Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity. Stem Cell Reports. 2017;8:548-560 pubmed 出版商
  13. Himori K, Abe M, Tatebayashi D, Lee J, Westerblad H, Lanner J, et al. Superoxide dismutase/catalase mimetic EUK-134 prevents diaphragm muscle weakness in monocrotalin-induced pulmonary hypertension. PLoS ONE. 2017;12:e0169146 pubmed 出版商
  14. Kim T, Terentyeva R, Roder K, Li W, Liu M, Greener I, et al. SK channel enhancers attenuate Ca2+-dependent arrhythmia in hypertrophic hearts by regulating mito-ROS-dependent oxidation and activity of RyR. Cardiovasc Res. 2017;113:343-353 pubmed 出版商
  15. Aston D, Capel R, Ford K, Christian H, Mirams G, Rog Zielinska E, et al. High resolution structural evidence suggests the Sarcoplasmic Reticulum forms microdomains with Acidic Stores (lysosomes) in the heart. Sci Rep. 2017;7:40620 pubmed 出版商
  16. Munro M, Soeller C. Early transverse tubule development begins in utero in the sheep heart. J Muscle Res Cell Motil. 2016;37:195-202 pubmed 出版商
  17. Linsley J, Hsu I, Groom L, Yarotskyy V, Lavorato M, Horstick E, et al. Congenital myopathy results from misregulation of a muscle Ca2+ channel by mutant Stac3. Proc Natl Acad Sci U S A. 2017;114:E228-E236 pubmed 出版商
  18. Kanzaki K, Watanabe D, Kuratani M, Yamada T, Matsunaga S, Wada M. Role of calpain in eccentric contraction-induced proteolysis of Ca2+-regulatory proteins and force depression in rat fast-twitch skeletal muscle. J Appl Physiol (1985). 2017;122:396-405 pubmed 出版商
  19. Huang M, Lee K, Kim K, Ahn M, Cho C, Kim D, et al. The maintenance ability and Ca2+ availability of skeletal muscle are enhanced by sildenafil. Exp Mol Med. 2016;48:e278 pubmed 出版商
  20. Søndergaard M, Liu Y, Larsen K, Nani A, Tian X, Holt C, et al. The Arrhythmogenic Calmodulin p.Phe142Leu Mutation Impairs C-domain Ca2+ Binding but Not Calmodulin-dependent Inhibition of the Cardiac Ryanodine Receptor. J Biol Chem. 2017;292:1385-1395 pubmed 出版商
  21. Xiao Y, Cai X, Atkinson A, Logantha S, Boyett M, Dobrzynski H. Expression of connexin 43, ion channels and Ca2+-handling proteins in rat pulmonary vein cardiomyocytes. Exp Ther Med. 2016;12:3233-3241 pubmed
  22. Robison P, Sussan T, Chen H, Biswal S, Schneider M, Hernández Ochoa E. Impaired calcium signaling in muscle fibers from intercostal and foot skeletal muscle in a cigarette smoke-induced mouse model of COPD. Muscle Nerve. 2017;56:282-291 pubmed 出版商
  23. Munro M, Jayasinghe I, Wang Q, Quick A, Wang W, Baddeley D, et al. Junctophilin-2 in the nanoscale organisation and functional signalling of ryanodine receptor clusters in cardiomyocytes. J Cell Sci. 2016;129:4388-4398 pubmed
  24. Sun B, Guo W, Tian X, Yao J, Zhang L, Wang R, et al. The Cytoplasmic Region of Inner Helix S6 Is an Important Determinant of Cardiac Ryanodine Receptor Channel Gating. J Biol Chem. 2016;291:26024-26034 pubmed
  25. Xiao Z, Guo W, Sun B, Hunt D, Wei J, Liu Y, et al. Enhanced Cytosolic Ca2+ Activation Underlies a Common Defect of Central Domain Cardiac Ryanodine Receptor Mutations Linked to Arrhythmias. J Biol Chem. 2016;291:24528-24537 pubmed
  26. Quick A, Wang Q, Philippen L, Barreto Torres G, Chiang D, Beavers D, et al. SPEG (Striated Muscle Preferentially Expressed Protein Kinase) Is Essential for Cardiac Function by Regulating Junctional Membrane Complex Activity. Circ Res. 2017;120:110-119 pubmed 出版商
  27. Oláh T, Bodnár D, Tóth A, Vincze J, Fodor J, Reischl B, et al. Cannabinoid signalling inhibits sarcoplasmic Ca2+ release and regulates excitation-contraction coupling in mammalian skeletal muscle. J Physiol. 2016;594:7381-7398 pubmed 出版商
  28. de la Fuente S, Fernandez Sanz C, Vail C, Agra E, Holmström K, Sun J, et al. Strategic Positioning and Biased Activity of the Mitochondrial Calcium Uniporter in Cardiac Muscle. J Biol Chem. 2016;291:23343-23362 pubmed
  29. Yang S, Ben Shalom R, Ahn M, Liptak A, van Rijn R, Whistler J, et al. ?-Arrestin-Dependent Dopaminergic Regulation of Calcium Channel Activity in the Axon Initial Segment. Cell Rep. 2016;16:1518-1526 pubmed 出版商
  30. Horvath D, Murphy R, Mollica J, Hayes A, Goodman C. The effect of taurine and β-alanine supplementation on taurine transporter protein and fatigue resistance in skeletal muscle from mdx mice. Amino Acids. 2016;48:2635-2645 pubmed
  31. Li Y, Sirenko S, Riordon D, Yang D, Spurgeon H, Lakatta E, et al. CaMKII-dependent phosphorylation regulates basal cardiac pacemaker function via modulation of local Ca2+ releases. Am J Physiol Heart Circ Physiol. 2016;311:H532-44 pubmed 出版商
  32. Lopez R, Byrne S, Vukcevic M, Sekulic Jablanovic M, Xu L, Brink M, et al. An RYR1 mutation associated with malignant hyperthermia is also associated with bleeding abnormalities. Sci Signal. 2016;9:ra68 pubmed 出版商
  33. Salazar Cantú A, Pérez Treviño P, Montalvo Parra D, Balderas Villalobos J, Gómez Víquez N, García N, et al. Role of SERCA and the sarcoplasmic reticulum calcium content on calcium waves propagation in rat ventricular myocytes. Arch Biochem Biophys. 2016;604:11-9 pubmed 出版商
  34. Hall A, Burke N, Dongworth R, Kalkhoran S, Dyson A, Vicencio J, et al. Hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction. Cell Death Dis. 2016;7:e2238 pubmed 出版商
  35. Zhang L, Lu X, Gui L, Wu Y, Sims S, Wang G, et al. Inhibition of Rac1 reduces store overload-induced calcium release and protects against ventricular arrhythmia. J Cell Mol Med. 2016;20:1513-22 pubmed 出版商
  36. Mosca B, Eckhardt J, Bergamelli L, Treves S, Bongianino R, De Negri M, et al. Role of the JP45-Calsequestrin Complex on Calcium Entry in Slow Twitch Skeletal Muscles. J Biol Chem. 2016;291:14555-65 pubmed 出版商
  37. Dries E, Santiago D, Johnson D, Gilbert G, Holemans P, Korte S, et al. Calcium/calmodulin-dependent kinase II and nitric oxide synthase 1-dependent modulation of ryanodine receptors during ?-adrenergic stimulation is restricted to the dyadic cleft. J Physiol. 2016;594:5923-5939 pubmed 出版商
  38. Sadredini M, Danielsen T, Aronsen J, Manotheepan R, Hougen K, Sjaastad I, et al. Beta-Adrenoceptor Stimulation Reveals Ca2+ Waves and Sarcoplasmic Reticulum Ca2+ Depletion in Left Ventricular Cardiomyocytes from Post-Infarction Rats with and without Heart Failure. PLoS ONE. 2016;11:e0153887 pubmed 出版商
  39. Cong X, Doering J, Mázala D, Chin E, Grange R, Jiang H. The SH3 and cysteine-rich domain 3 (Stac3) gene is important to growth, fiber composition, and calcium release from the sarcoplasmic reticulum in postnatal skeletal muscle. Skelet Muscle. 2016;6:17 pubmed 出版商
  40. Sekulic Jablanovic M, Ullrich N, Goldblum D, Palmowski Wolfe A, Zorzato F, Treves S. Functional characterization of orbicularis oculi and extraocular muscles. J Gen Physiol. 2016;147:395-406 pubmed 出版商
  41. Toral Ojeda I, Aldanondo G, Lasa Elgarresta J, Lasa Fernández H, Fernandez Torron R, Lopez de Munain A, et al. Calpain 3 deficiency affects SERCA expression and function in the skeletal muscle. Expert Rev Mol Med. 2016;18:e7 pubmed 出版商
  42. Mederle K, Gess B, Pluteanu F, Plackic J, Tiefenbach K, Grill A, et al. The angiotensin receptor-associated protein Atrap is a stimulator of the cardiac Ca2+-ATPase SERCA2a. Cardiovasc Res. 2016;110:359-70 pubmed 出版商
  43. Asensio López M, Soler F, Sánchez Más J, Pascual Figal D, Fernández Belda F, Lax A. Early oxidative damage induced by doxorubicin: Source of production, protection by GKT137831 and effect on Ca(2+) transporters in HL-1 cardiomyocytes. Arch Biochem Biophys. 2016;594:26-36 pubmed 出版商
  44. Farini A, Sitzia C, Cassinelli L, Colleoni F, Parolini D, Giovanella U, et al. Inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling mediates delayed myogenesis in Duchenne muscular dystrophy fetal muscle. Development. 2016;143:658-69 pubmed 出版商
  45. Nelson B, Makarewich C, Anderson D, Winders B, Troupes C, Wu F, et al. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science. 2016;351:271-5 pubmed 出版商
  46. Zhang H, Cannell M, Kim S, Watson J, Norman R, Calaghan S, et al. Cellular Hypertrophy and Increased Susceptibility to Spontaneous Calcium-Release of Rat Left Atrial Myocytes Due to Elevated Afterload. PLoS ONE. 2015;10:e0144309 pubmed 出版商
  47. Rani S, Park C, Sreenivasaiah P, Kim D. Characterization of Ca(2+)-Dependent Protein-Protein Interactions within the Ca(2+) Release Units of Cardiac Sarcoplasmic Reticulum. Mol Cells. 2016;39:149-55 pubmed 出版商
  48. Brody M, Feng L, Grimes A, Hacker T, Olson T, Kamp T, et al. LRRC10 is required to maintain cardiac function in response to pressure overload. Am J Physiol Heart Circ Physiol. 2016;310:H269-78 pubmed 出版商
  49. Furlan S, Mosole S, Murgia M, Nagaraj N, Argenton F, Volpe P, et al. Calsequestrins in skeletal and cardiac muscle from adult Danio rerio. J Muscle Res Cell Motil. 2016;37:27-39 pubmed 出版商
  50. Shimura D, Kusakari Y, Sasano T, Nakashima Y, Nakai G, Jiao Q, et al. Heterozygous deletion of sarcolipin maintains normal cardiac function. Am J Physiol Heart Circ Physiol. 2016;310:H92-103 pubmed 出版商
  51. Waning D, Mohammad K, Reiken S, Xie W, Andersson D, John S, et al. Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nat Med. 2015;21:1262-1271 pubmed 出版商
  52. Harvey T, Murphy R, Morrison J, Posterino G. Maternal Nutrient Restriction Alters Ca2+ Handling Properties and Contractile Function of Isolated Left Ventricle Bundles in Male But Not Female Juvenile Rats. PLoS ONE. 2015;10:e0138388 pubmed 出版商
  53. Sharma P, Abbasi C, Lazic S, Teng A, Wang D, Dubois N, et al. Evolutionarily conserved intercalated disc protein Tmem65 regulates cardiac conduction and connexin 43 function. Nat Commun. 2015;6:8391 pubmed 出版商
  54. Rajagopal V, Bass G, Walker C, Crossman D, Petzer A, Hickey A, et al. Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes. PLoS Comput Biol. 2015;11:e1004417 pubmed 出版商
  55. Li H, Lichter J, Seidel T, Tomaselli G, Bridge J, Sachse F. Cardiac Resynchronization Therapy Reduces Subcellular Heterogeneity of Ryanodine Receptors, T-Tubules, and Ca2+ Sparks Produced by Dyssynchronous Heart Failure. Circ Heart Fail. 2015;8:1105-14 pubmed 出版商
  56. Hostrup M, Kalsen A, Onslev J, Jessen S, Haase C, Habib S, et al. Mechanisms underlying enhancements in muscle force and power output during maximal cycle ergometer exercise induced by chronic β2-adrenergic stimulation in men. J Appl Physiol (1985). 2015;119:475-86 pubmed 出版商
  57. Bryant S, Kong C, Watson J, Cannell M, James A, Orchard C. Altered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts. J Mol Cell Cardiol. 2015;86:23-31 pubmed 出版商
  58. Fajardo V, Bombardier E, McMillan E, TRAN K, Wadsworth B, Gamu D, et al. Phospholamban overexpression in mice causes a centronuclear myopathy-like phenotype. Dis Model Mech. 2015;8:999-1009 pubmed 出版商
  59. Rokach O, Sekulic Jablanovic M, Voermans N, Wilmshurst J, Pillay K, Heytens L, et al. Epigenetic changes as a common trigger of muscle weakness in congenital myopathies. Hum Mol Genet. 2015;24:4636-47 pubmed 出版商
  60. Kraeva N, Heytens L, Jungbluth H, Treves S, Voermans N, Kamsteeg E, et al. Compound RYR1 heterozygosity resulting in a complex phenotype of malignant hyperthermia susceptibility and a core myopathy. Neuromuscul Disord. 2015;25:567-76 pubmed 出版商
  61. Van B, Nishi M, Komazaki S, Ichimura A, Kakizawa S, Nakanaga K, et al. Mitsugumin 56 (hedgehog acyltransferase-like) is a sarcoplasmic reticulum-resident protein essential for postnatal muscle maturation. FEBS Lett. 2015;589:1095-104 pubmed 出版商
  62. Crossman D, Hou Y, Jayasinghe I, Baddeley D, Soeller C. Combining confocal and single molecule localisation microscopy: A correlative approach to multi-scale tissue imaging. Methods. 2015;88:98-108 pubmed 出版商
  63. Liu J, Xin L, Benson V, Allen D, Ju Y. Store-operated calcium entry and the localization of STIM1 and Orai1 proteins in isolated mouse sinoatrial node cells. Front Physiol. 2015;6:69 pubmed 出版商
  64. Hou Y, Jayasinghe I, Crossman D, Baddeley D, Soeller C. Nanoscale analysis of ryanodine receptor clusters in dyadic couplings of rat cardiac myocytes. J Mol Cell Cardiol. 2015;80:45-55 pubmed 出版商
  65. Chiang D, Kongchan N, Beavers D, Alsina K, Voigt N, Neilson J, et al. Loss of microRNA-106b-25 cluster promotes atrial fibrillation by enhancing ryanodine receptor type-2 expression and calcium release. Circ Arrhythm Electrophysiol. 2014;7:1214-22 pubmed 出版商
  66. Rossi D, Vezzani B, Galli L, Paolini C, Toniolo L, Pierantozzi E, et al. A mutation in the CASQ1 gene causes a vacuolar myopathy with accumulation of sarcoplasmic reticulum protein aggregates. Hum Mutat. 2014;35:1163-70 pubmed 出版商
  67. Mandikian D, Bocksteins E, Parajuli L, Bishop H, Cerda O, Shigemoto R, et al. Cell type-specific spatial and functional coupling between mammalian brain Kv2.1 K+ channels and ryanodine receptors. J Comp Neurol. 2014;522:3555-74 pubmed 出版商
  68. Li B, Jie W, Huang L, Wei P, Li S, Luo Z, et al. Nuclear BK channels regulate gene expression via the control of nuclear calcium signaling. Nat Neurosci. 2014;17:1055-63 pubmed 出版商
  69. Frisk M, Koivumäki J, Norseng P, Maleckar M, Sejersted O, Louch W. Variable t-tubule organization and Ca2+ homeostasis across the atria. Am J Physiol Heart Circ Physiol. 2014;307:H609-20 pubmed 出版商
  70. Ljubojević S, Radulovic S, Leitinger G, Sedej S, Sacherer M, Holzer M, et al. Early remodeling of perinuclear Ca2+ stores and nucleoplasmic Ca2+ signaling during the development of hypertrophy and heart failure. Circulation. 2014;130:244-55 pubmed 出版商
  71. Shilling D, Müller M, Takano H, Mak D, Abel T, Coulter D, et al. Suppression of InsP3 receptor-mediated Ca2+ signaling alleviates mutant presenilin-linked familial Alzheimer's disease pathogenesis. J Neurosci. 2014;34:6910-23 pubmed 出版商
  72. King A, Manning C, Trimmer J. A unique ion channel clustering domain on the axon initial segment of mammalian neurons. J Comp Neurol. 2014;522:2594-608 pubmed 出版商
  73. Liu J, Supnet C, Sun S, Zhang H, Good L, Popugaeva E, et al. The role of ryanodine receptor type 3 in a mouse model of Alzheimer disease. Channels (Austin). 2014;8:230-42 pubmed
  74. Lalioti V, Ilari A, O Connell D, Poser E, Sandoval I, Colotti G. Sorcin links calcium signaling to vesicle trafficking, regulates Polo-like kinase 1 and is necessary for mitosis. PLoS ONE. 2014;9:e85438 pubmed 出版商
  75. Haq K, Daniels R, Miller L, Miura M, ter Keurs H, Bungay S, et al. Evoked centripetal Ca(2+) mobilization in cardiac Purkinje cells: insight from a model of three Ca(2+) release regions. J Physiol. 2013;591:4301-19 pubmed 出版商
  76. Attali R, Aharoni S, Treves S, Rokach O, Becker Cohen M, Fellig Y, et al. Variable myopathic presentation in a single family with novel skeletal RYR1 mutation. PLoS ONE. 2013;8:e69296 pubmed 出版商
  77. Yi T, Vick J, Vecchio M, Begin K, Bell S, Delay R, et al. Identifying cellular mechanisms of zinc-induced relaxation in isolated cardiomyocytes. Am J Physiol Heart Circ Physiol. 2013;305:H706-15 pubmed 出版商
  78. Caruso N, Herberth B, Bartoli M, Puppo F, Dumonceaux J, Zimmermann A, et al. Deregulation of the protocadherin gene FAT1 alters muscle shapes: implications for the pathogenesis of facioscapulohumeral dystrophy. PLoS Genet. 2013;9:e1003550 pubmed 出版商
  79. Yi T, Cheema Y, Tremble S, Bell S, Chen Z, Subramanian M, et al. Zinc-induced cardiomyocyte relaxation in a rat model of hyperglycemia is independent of myosin isoform. Cardiovasc Diabetol. 2012;11:135 pubmed 出版商
  80. Middlekauff H, Vigna C, Verity M, Fonarow G, Horwich T, Hamilton M, et al. Abnormalities of calcium handling proteins in skeletal muscle mirror those of the heart in humans with heart failure: a shared mechanism?. J Card Fail. 2012;18:724-33 pubmed 出版商
  81. Ullrich N, Fischer D, Kornblum C, Walter M, Niggli E, Zorzato F, et al. Alterations of excitation-contraction coupling and excitation coupled Ca(2+) entry in human myotubes carrying CAV3 mutations linked to rippling muscle. Hum Mutat. 2011;32:309-17 pubmed 出版商
  82. Witkovsky P, G briel R, Krizaj D. Anatomical and neurochemical characterization of dopaminergic interplexiform processes in mouse and rat retinas. J Comp Neurol. 2008;510:158-74 pubmed 出版商
  83. Völkers M, Loughrey C, Macquaide N, Remppis A, DeGeorge B, Wegner F, et al. S100A1 decreases calcium spark frequency and alters their spatial characteristics in permeabilized adult ventricular cardiomyocytes. Cell Calcium. 2007;41:135-43 pubmed
  84. Ding J, Xu X, Yang D, Chu P, Dalton N, Ye Z, et al. Dilated cardiomyopathy caused by tissue-specific ablation of SC35 in the heart. EMBO J. 2004;23:885-96 pubmed