这是一篇来自已证抗体库的有关人类 SLC17A6的综述,是根据19篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合SLC17A6 抗体。
SLC17A6 同义词: DNPI; VGLUT2

Synaptic Systems
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:500; 图 s2d
Synaptic Systems SLC17A6抗体(Synaptic Systems, 135403)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 s2d). Neurotherapeutics (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 7a
Synaptic Systems SLC17A6抗体(Synaptic Systems, 135 403)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7a). Neural Plast (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 7e
Synaptic Systems SLC17A6抗体(Synaptic systems, 135402)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 7e). iScience (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6m
Synaptic Systems SLC17A6抗体(Synaptic Systems, 135402)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6m). PLoS Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3h
Synaptic Systems SLC17A6抗体(Synaptic systems, 135,403)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3h). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 豚鼠; 1:1000; 图 3a
Synaptic Systems SLC17A6抗体(Synaptic Systems, 135 403)被用于被用于免疫细胞化学在豚鼠样本上浓度为1:1000 (图 3a). J Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 4a
Synaptic Systems SLC17A6抗体(Synaptic Systems, 135403)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 4a). Neuron (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2s2b
Synaptic Systems SLC17A6抗体(Synaptic Systems, 135 403)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2s2b). elife (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 3g
Synaptic Systems SLC17A6抗体(Synaptic Systems, 135403)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3g). Mol Neurobiol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3b
Synaptic Systems SLC17A6抗体(Synaptic Systems, 135 402)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b). Neuron (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
Synaptic Systems SLC17A6抗体(Synaptic Systems, 135 402)被用于被用于免疫印迹在小鼠样本上 (图 3a). Neuroscience (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:2000; 图 5c
Synaptic Systems SLC17A6抗体(Synaptic Systems, 135402)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 5c). Hum Mol Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1d
Synaptic Systems SLC17A6抗体(Synaptic Systems, 135402)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1d). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2d
Synaptic Systems SLC17A6抗体(Synaptic Systems, 135-402)被用于被用于免疫组化在小鼠样本上 (图 2d). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 8
Synaptic Systems SLC17A6抗体(Synaptic Systems, 135 403)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 8). J Neurosci Methods (2016) ncbi
赛默飞世尔
小鼠 单克隆(S29-29)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4h
赛默飞世尔 SLC17A6抗体(Invitrogen, MA5-27613)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4h). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300; 图 2
赛默飞世尔 SLC17A6抗体(生活技术, 42-7800)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2). Exp Eye Res (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 SLC17A6抗体(Invitrogen, 42-7800)被用于. Brain Struct Funct (2015) ncbi
Frontier Institute
  • 免疫组化-冰冻切片; 人类; 1:100
Frontier Institute SLC17A6抗体(Frontier Science, VGluT2-GP-Af670-1)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. J Comp Neurol (2015) ncbi
文章列表
  1. Nuber S, Chung C, Tardiff D, Bechade P, McCaffery T, Shimanaka K, et al. A Brain-Penetrant Stearoyl-CoA Desaturase Inhibitor Reverses α-Synuclein Toxicity. Neurotherapeutics. 2022;19:1018-1036 pubmed 出版商
  2. Zhang L, Wu C, Martel D, West M, Sutton M, Shore S. Noise Exposure Alters Glutamatergic and GABAergic Synaptic Connectivity in the Hippocampus and Its Relevance to Tinnitus. Neural Plast. 2021;2021:8833087 pubmed 出版商
  3. Zhang J, Chen D, Sweeney P, Yang Y. An excitatory ventromedial hypothalamus to paraventricular thalamus circuit that suppresses food intake. Nat Commun. 2020;11:6326 pubmed 出版商
  4. Mercurio S, Serra L, Motta A, Gesuita L, Sánchez Arrones L, Inverardi F, et al. Sox2 Acts in Thalamic Neurons to Control the Development of Retina-Thalamus-Cortex Connectivity. iScience. 2019;15:257-273 pubmed 出版商
  5. Rojek K, Krzemien J, Dolezyczek H, Boguszewski P, Kaczmarek L, Konopka W, et al. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol. 2019;17:e3000253 pubmed 出版商
  6. Ch ng S, Fu J, Brown R, Smith C, Hossain M, McDougall S, et al. Characterization of the relaxin family peptide receptor 3 system in the mouse bed nucleus of the stria terminalis. J Comp Neurol. 2019;: pubmed 出版商
  7. Olthof B, Gartside S, Rees A. Puncta of Neuronal Nitric Oxide Synthase (nNOS) Mediate NMDA Receptor Signaling in the Auditory Midbrain. J Neurosci. 2019;39:876-887 pubmed 出版商
  8. Zhu F, Cizeron M, Qiu Z, Benavides Piccione R, Kopanitsa M, Skene N, et al. Architecture of the Mouse Brain Synaptome. Neuron. 2018;99:781-799.e10 pubmed 出版商
  9. Kaczmarek Hájek K, Zhang J, Kopp R, Grosche A, Rissiek B, Saul A, et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. elife. 2018;7: pubmed 出版商
  10. Chmielewska J, Kuzniewska B, Milek J, Urbanska K, Dziembowska M. Neuroligin 1, 2, and 3 Regulation at the Synapse: FMRP-Dependent Translation and Activity-Induced Proteolytic Cleavage. Mol Neurobiol. 2019;56:2741-2759 pubmed 出版商
  11. Rousseaux M, Tschumperlin T, Lu H, Lackey E, Bondar V, Wan Y, et al. ATXN1-CIC Complex Is the Primary Driver of Cerebellar Pathology in Spinocerebellar Ataxia Type 1 through a Gain-of-Function Mechanism. Neuron. 2018;97:1235-1243.e5 pubmed 出版商
  12. Richter K, Schmutz I, Darna M, Zander J, Chavan R, Albrecht U, et al. VGLUT1 Binding to Endophilin or Intersectin1 and Dynamin Phosphorylation in a Diurnal Context. Neuroscience. 2018;371:29-37 pubmed 出版商
  13. Farhan S, Nixon K, Everest M, Edwards T, Long S, Segal D, et al. Identification of a novel synaptic protein, TMTC3, involved in periventricular nodular heterotopia with intellectual disability and epilepsy. Hum Mol Genet. 2017;26:4278-4289 pubmed 出版商
  14. Moreno Juan V, Filipchuk A, Antón Bolaños N, Mezzera C, Gezelius H, Andrés B, et al. Prenatal thalamic waves regulate cortical area size prior to sensory processing. Nat Commun. 2017;8:14172 pubmed 出版商
  15. Forsberg D, Horn Z, Tserga E, Smedler E, Silberberg G, Shvarev Y, et al. CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture. elife. 2016;5: pubmed 出版商
  16. De Groef L, Dekeyster E, Geeraerts E, Lefevere E, Stalmans I, Salinas Navarro M, et al. Differential visual system organization and susceptibility to experimental models of optic neuropathies in three commonly used mouse strains. Exp Eye Res. 2016;145:235-247 pubmed 出版商
  17. White J, Lin T, Brown A, Arancillo M, Lackey E, Stay T, et al. An optimized surgical approach for obtaining stable extracellular single-unit recordings from the cerebellum of head-fixed behaving mice. J Neurosci Methods. 2016;262:21-31 pubmed 出版商
  18. Lowe M, Faull R, Christie D, Waldvogel H. Distribution of the creatine transporter throughout the human brain reveals a spectrum of creatine transporter immunoreactivity. J Comp Neurol. 2015;523:699-725 pubmed 出版商
  19. Verslegers M, Van Hove I, Dekeyster E, Gantois I, Hu T, D Hooge R, et al. MMP-2 mediates Purkinje cell morphogenesis and spine development in the mouse cerebellum. Brain Struct Funct. 2015;220:1601-17 pubmed 出版商