这是一篇来自已证抗体库的有关人类 SLC17A7的综述,是根据41篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合SLC17A7 抗体。
SLC17A7 同义词: BNPI; VGLUT1

Synaptic Systems
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s12c
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135303)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s12c). Sci Adv (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; African green monkey; 1:1000; 图 7a
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135303)被用于被用于免疫组化-自由浮动切片在African green monkey样本上浓度为1:1000 (图 7a). Front Neural Circuits (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135,303)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3e
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135303)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3e). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 2c
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135303)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2c). Protein Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6a
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135 303)被用于被用于免疫组化在小鼠样本上 (图 6a). Neural Plast (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:5000; 图 2d1
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135 302)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000 (图 2d1). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 s1c
Synaptic Systems SLC17A7抗体(Synaptic system, 135302)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s1c). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:5000; 图 2a
Synaptic Systems SLC17A7抗体(SYSY, 135302)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000 (图 2a). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135303)被用于被用于免疫印迹在人类样本上 (图 2a). J Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 4c
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135302)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 4c). Front Cell Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6l
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135302)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6l). PLoS Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s7a
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135302)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s7a). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 6d
Synaptic Systems SLC17A7抗体(Synaptic systems, 135-302)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 6d). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s5b
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135302)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5b). Mol Psychiatry (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 s4g
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135302)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s4g). Nat Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135 302)被用于被用于免疫印迹在小鼠样本上 (图 1a). Neuroscience (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:7500; 图 2a
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135 303)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:7500 (图 2a). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 4c
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135 302)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4c). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:1000
  • 免疫细胞化学; 人类; 1:1000; 图 3f
Synaptic Systems SLC17A7抗体(SYSY, 135302)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 和 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3f). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 2a
  • 免疫印迹; 大鼠; 图 1
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135,302)被用于被用于免疫细胞化学在大鼠样本上 (图 2a) 和 被用于免疫印迹在大鼠样本上 (图 1). Front Cell Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:250; 图 1E
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135 302)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 1E). Eneuro (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 2
Synaptic Systems SLC17A7抗体(Synaptic systems, 135 302)被用于被用于免疫组化在人类样本上 (图 2). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135303)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). J Gen Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 4
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135303)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 4). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 表 s4
Synaptic Systems SLC17A7抗体(SYSY, 135303)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (表 s4). Stem Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135303)被用于被用于免疫印迹在大鼠样本上 (图 5). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 3
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135-303)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 表 3
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135 303)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (表 3). Cell Mol Life Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s2
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135 303)被用于被用于免疫细胞化学在人类样本上 (图 s2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135303)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 3
Synaptic Systems SLC17A7抗体(Synaptic Systems, 135 302)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3). J Tissue Eng Regen Med (2017) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 表 1
赛默飞世尔 SLC17A7抗体(Thermo Fisher, 48-2400)被用于被用于免疫印迹在小鼠样本上 (表 1). Front Synaptic Neurosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2b
赛默飞世尔 SLC17A7抗体(Invitrogen, 48-2400)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2b). Protein Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s3b
赛默飞世尔 SLC17A7抗体(Thermo Scientific, 48-C2400)被用于被用于免疫细胞化学在人类样本上 (图 s3b). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1a
赛默飞世尔 SLC17A7抗体(Thermo Fisher, 48-2400)被用于被用于免疫印迹在小鼠样本上 (图 s1a). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 3a
赛默飞世尔 SLC17A7抗体(ThermoFisher Scientific, OSV00007G)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3a). Neurotoxicology (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 SLC17A7抗体(Invitrogen, 48-2400)被用于. Brain Res (2015) ncbi
BioLegend
小鼠 单克隆(N28/9)
  • 免疫细胞化学; 小鼠; 图 s3a
  • 免疫细胞化学; 人类; 图 s3b
BioLegend SLC17A7抗体(BioLegend, MMS5245-100)被用于被用于免疫细胞化学在小鼠样本上 (图 s3a) 和 被用于免疫细胞化学在人类样本上 (图 s3b). Nature (2020) ncbi
小鼠 单克隆(N28/9)
  • 免疫组化; 小鼠; 图 st1
BioLegend SLC17A7抗体(Cell Signalling, 821301)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR10953)
  • 免疫印迹; 小鼠; 1:2000; 图 9a
艾博抗(上海)贸易有限公司 SLC17A7抗体(Abcam, ab180188)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 9a). Sci Rep (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-8)
  • 免疫印迹; 人类; 1 ug/ml; 图 1
圣克鲁斯生物技术 SLC17A7抗体(Santa Cruz, sc-377425)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 1). Nat Commun (2015) ncbi
文章列表
  1. Welch G, Boix C, Schmauch E, Davila Velderrain J, Victor M, Dileep V, et al. Neurons burdened by DNA double-strand breaks incite microglia activation through antiviral-like signaling in neurodegeneration. Sci Adv. 2022;8:eabo4662 pubmed 出版商
  2. Tsolias A, Medalla M. Muscarinic Acetylcholine Receptor Localization on Distinct Excitatory and Inhibitory Neurons Within the ACC and LPFC of the Rhesus Monkey. Front Neural Circuits. 2021;15:795325 pubmed 出版商
  3. Ishii C, Shibano N, Yamazaki M, Arima T, Kato Y, Ishii Y, et al. CAPS1 is involved in hippocampal synaptic plasticity and hippocampus-associated learning. Sci Rep. 2021;11:8656 pubmed 出版商
  4. Safari M, Obexer D, Baier Bitterlich G, zur Nedden S. PKN1 Is a Novel Regulator of Hippocampal GluA1 Levels. Front Synaptic Neurosci. 2021;13:640495 pubmed 出版商
  5. Wu H, Petitpré C, Fontanet P, Sharma A, Bellardita C, Quadros R, et al. Distinct subtypes of proprioceptive dorsal root ganglion neurons regulate adaptive proprioception in mice. Nat Commun. 2021;12:1026 pubmed 出版商
  6. Liang D, Xue Z, Xue J, Xie D, Xiong K, Zhou H, et al. Sinoatrial node pacemaker cells share dominant biological properties with glutamatergic neurons. Protein Cell. 2021;12:545-556 pubmed 出版商
  7. Zhang L, Wu C, Martel D, West M, Sutton M, Shore S. Noise Exposure Alters Glutamatergic and GABAergic Synaptic Connectivity in the Hippocampus and Its Relevance to Tinnitus. Neural Plast. 2021;2021:8833087 pubmed 出版商
  8. Qian H, Kang X, Hu J, Zhang D, Liang Z, Meng F, et al. Reversing a model of Parkinson's disease with in situ converted nigral neurons. Nature. 2020;582:550-556 pubmed 出版商
  9. McCabe M, Cullen E, Barrows C, Shore A, Tooke K, Laprade K, et al. Genetic inactivation of mTORC1 or mTORC2 in neurons reveals distinct functions in glutamatergic synaptic transmission. elife. 2020;9: pubmed 出版商
  10. Ercan Herbst E, Ehrig J, Schöndorf D, Behrendt A, Klaus B, Gomez Ramos B, et al. A post-translational modification signature defines changes in soluble tau correlating with oligomerization in early stage Alzheimer's disease brain. Acta Neuropathol Commun. 2019;7:192 pubmed 出版商
  11. Han W, Li J, Pelkey K, Pandey S, Chen X, Wang Y, et al. Shisa7 is a GABAA receptor auxiliary subunit controlling benzodiazepine actions. Science. 2019;366:246-250 pubmed 出版商
  12. Collins L, Brunjes P. The mouse olfactory peduncle 4: Development of synapses, perineuronal nets, and capillaries. J Comp Neurol. 2019;: pubmed 出版商
  13. Yao W, Tambini M, Liu X, D ADAMIO L. Tuning of glutamate, but not GABA, release by an intra-synaptic vesicles APP domain whose function can be modulated by β- or α-secretase cleavage. J Neurosci. 2019;: pubmed 出版商
  14. Duan J, Pandey S, Li T, Castellano D, Gu X, Li J, et al. Genetic Deletion of GABAA Receptors Reveals Distinct Requirements of Neurotransmitter Receptors for GABAergic and Glutamatergic Synapse Development. Front Cell Neurosci. 2019;13:217 pubmed 出版商
  15. Rojek K, Krzemien J, Dolezyczek H, Boguszewski P, Kaczmarek L, Konopka W, et al. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol. 2019;17:e3000253 pubmed 出版商
  16. Nagai J, Rajbhandari A, Gangwani M, Hachisuka A, Coppola G, Masmanidis S, et al. Hyperactivity with Disrupted Attention by Activation of an Astrocyte Synaptogenic Cue. Cell. 2019;177:1280-1292.e20 pubmed 出版商
  17. Nguyen U, Imamura F. Regional differences in mitral cell development in mouse olfactory bulb. J Comp Neurol. 2019;: pubmed 出版商
  18. Soiza Reilly M, Meye F, Olusakin J, Telley L, Petit E, Chen X, et al. SSRIs target prefrontal to raphe circuits during development modulating synaptic connectivity and emotional behavior. Mol Psychiatry. 2019;24:726-745 pubmed 出版商
  19. Karow M, Camp J, Falk S, Gerber T, Pataskar A, Gac Santel M, et al. Direct pericyte-to-neuron reprogramming via unfolding of a neural stem cell-like program. Nat Neurosci. 2018;21:932-940 pubmed 出版商
  20. zur Nedden S, Eith R, Schwarzer C, Zanetti L, Seitter H, Fresser F, et al. Protein kinase N1 critically regulates cerebellar development and long-term function. J Clin Invest. 2018;128:2076-2088 pubmed 出版商
  21. Richter K, Schmutz I, Darna M, Zander J, Chavan R, Albrecht U, et al. VGLUT1 Binding to Endophilin or Intersectin1 and Dynamin Phosphorylation in a Diurnal Context. Neuroscience. 2018;371:29-37 pubmed 出版商
  22. Hunter D, Manglapus M, Bachay G, Claudepierre T, Dolan M, Gesuelli K, et al. CNS synapses are stabilized trans-synaptically by laminins and laminin-interacting proteins. J Comp Neurol. 2017;: pubmed 出版商
  23. Tanabe Y, Naito Y, Vasuta C, Lee A, Soumounou Y, Linhoff M, et al. IgSF21 promotes differentiation of inhibitory synapses via binding to neurexin2?. Nat Commun. 2017;8:408 pubmed 出版商
  24. Quadrato G, Nguyen T, Macosko E, Sherwood J, Min Yang S, Berger D, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48-53 pubmed 出版商
  25. Latina V, Caioli S, Zona C, Ciotti M, Amadoro G, Calissano P. Impaired NGF/TrkA Signaling Causes Early AD-Linked Presynaptic Dysfunction in Cholinergic Primary Neurons. Front Cell Neurosci. 2017;11:68 pubmed 出版商
  26. Zhong C, Akmentin W, DU C, Role L, Talmage D. Axonal Type III Nrg1 Controls Glutamate Synapse Formation and GluA2 Trafficking in Hippocampal-Accumbens Connections. Eneuro. 2017;4: pubmed 出版商
  27. Hendrickson A, Zhang C. Development of cone photoreceptors and their synapses in the human and monkey fovea. J Comp Neurol. 2019;527:38-51 pubmed 出版商
  28. Wolfes A, Ahmed S, Awasthi A, Stahlberg M, Rajput A, Magruder D, et al. A novel method for culturing stellate astrocytes reveals spatially distinct Ca2+ signaling and vesicle recycling in astrocytic processes. J Gen Physiol. 2017;149:149-170 pubmed 出版商
  29. Alvarez Saavedra M, De Repentigny Y, Yang D, O Meara R, Yan K, Hashem L, et al. Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice. Cell Rep. 2016;17:862-875 pubmed 出版商
  30. Hansen S, Stummann T, Borland H, Hasholt L, Tumer Z, Nielsen J, et al. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3. Stem Cell Res. 2016;17:306-317 pubmed 出版商
  31. Begum A, Aguilar J, Elias L, Hong Y. Silver nanoparticles exhibit coating and dose-dependent neurotoxicity in glutamatergic neurons derived from human embryonic stem cells. Neurotoxicology. 2016;57:45-53 pubmed 出版商
  32. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  33. Yokoi N, Fukata Y, Sekiya A, Murakami T, Kobayashi K, Fukata M. Identification of PSD-95 Depalmitoylating Enzymes. J Neurosci. 2016;36:6431-44 pubmed 出版商
  34. Lazarczyk M, Kemmler J, Eyford B, Short J, Varghese M, Sowa A, et al. Major Histocompatibility Complex class I proteins are critical for maintaining neuronal structural complexity in the aging brain. Sci Rep. 2016;6:26199 pubmed 出版商
  35. Xue Y, Qian H, Hu J, Zhou B, Zhou Y, Hu X, et al. Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. Nat Neurosci. 2016;19:807-15 pubmed 出版商
  36. Bartelt Kirbach B, Moron M, Glomb M, Beck C, Weller M, Golenhofen N. HspB5/?B-crystallin increases dendritic complexity and protects the dendritic arbor during heat shock in cultured rat hippocampal neurons. Cell Mol Life Sci. 2016;73:3761-75 pubmed 出版商
  37. Kim E, Jeon C, Lee S, Hwang I, Chung T. Robust Type-specific Hemisynapses Induced by Artificial Dendrites. Sci Rep. 2016;6:24210 pubmed 出版商
  38. Hayashi Y, Nishimune H, Hozumi K, Saga Y, Harada A, Yuzaki M, et al. A novel non-canonical Notch signaling regulates expression of synaptic vesicle proteins in excitatory neurons. Sci Rep. 2016;6:23969 pubmed 出版商
  39. Leshchyns ka I, Liew H, Shepherd C, Halliday G, Stevens C, Ke Y, et al. Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease. Nat Commun. 2015;6:8836 pubmed 出版商
  40. Ishikawa M, Ohnishi H, Skerleva D, Sakamoto T, Yamamoto N, Hotta A, et al. Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae. J Tissue Eng Regen Med. 2017;11:1766-1778 pubmed 出版商
  41. McGuire B, Fiorillo B, Ryugo D, Lauer A. Auditory nerve synapses persist in ventral cochlear nucleus long after loss of acoustic input in mice with early-onset progressive hearing loss. Brain Res. 2015;1605:22-30 pubmed 出版商