这是一篇来自已证抗体库的有关人类 SLC32A1的综述,是根据49篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合SLC32A1 抗体。
SLC32A1 同义词: VGAT; VIAAT

Synaptic Systems
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 5f
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131 003)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5f). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s8a
Synaptic Systems SLC32A1抗体(Synaptic System, 131003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s8a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6a
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6a). J Neurophysiol (2021) ncbi
小鼠 单克隆(117G4)
  • 免疫组化; 小鼠; 1:300; 图 7a
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131011)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 7a). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 1i
Synaptic Systems SLC32A1抗体(SySy, 131 103 C3)被用于被用于免疫细胞化学在大鼠样本上 (图 1i). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(117G4)
  • 免疫印迹; 大鼠; 图 5s1
Synaptic Systems SLC32A1抗体(synaptic systems, 131 011)被用于被用于免疫印迹在大鼠样本上 (图 5s1). elife (2020) ncbi
小鼠 单克隆(117G4)
  • 免疫组化; 小鼠; 1:500; 图 4c
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131 011)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4c). elife (2020) ncbi
小鼠 单克隆(117G4)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 1f
Synaptic Systems SLC32A1抗体(Sysy, 131011)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 1f). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:500; 图 1e
  • 免疫组化; 小鼠; 1:500; 图 5j
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131 003)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 1e) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 5j). Brain Struct Funct (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1c
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131 002)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1c). J Comp Neurol (2019) ncbi
小鼠 单克隆(117G4)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 7s1a
  • 免疫细胞化学; 人类; 1:200; 图 5g
  • 免疫印迹; 人类; 1:500; 图 5i
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131 011)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 7s1a), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 5g) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 5i). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 1a
Synaptic Systems SLC32A1抗体(Synaptic systems, 131002)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1a). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 3d
Synaptic Systems SLC32A1抗体(SYSY, 131002)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3d). Sci Adv (2019) ncbi
小鼠 单克隆(117G4)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 2a
Synaptic Systems SLC32A1抗体(SYSY, 131011)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 2a). J Comp Neurol (2019) ncbi
小鼠 单克隆(117G4)
  • 免疫组化; 小鼠; 1:200; 图 5c
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131 011)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5c). Neuron (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1500; 图 3a
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131002)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1500 (图 3a). Front Cell Neurosci (2019) ncbi
小鼠 单克隆(117G4)
  • 免疫组化; 小鼠; 1:1000; 图 2i
Synaptic Systems SLC32A1抗体(SYSY, 131011)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2i). J Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6h
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131002)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6h). PLoS Biol (2019) ncbi
小鼠 单克隆(117G4)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 8d
Synaptic Systems SLC32A1抗体(SYSY, 131011)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 8d). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(117G4)
  • 免疫细胞化学; 小鼠; 图 s1h
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131011)被用于被用于免疫细胞化学在小鼠样本上 (图 s1h). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 豚鼠; 1:1000; 图 3b
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131 003)被用于被用于免疫细胞化学在豚鼠样本上浓度为1:1000 (图 3b). J Neurosci (2019) ncbi
小鼠 单克隆(117G4)
  • 免疫印迹; 小鼠; 1:1250; 图 3g
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131011)被用于被用于免疫印迹在小鼠样本上浓度为1:1250 (图 3g). Mol Neurobiol (2019) ncbi
小鼠 单克隆(117G4)
  • proximity ligation assay; 小鼠; 1:200; 图 s14e
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131011)被用于被用于proximity ligation assay在小鼠样本上浓度为1:200 (图 s14e). Mol Syst Biol (2018) ncbi
小鼠 单克隆(117G4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2a
Synaptic Systems SLC32A1抗体(Synaptic systems, 131011)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2a). Exp Neurobiol (2018) ncbi
小鼠 单克隆(117G4)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 7g
  • 免疫组化; 小鼠; 1:1000; 图 4a
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131-011)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 7g) 和 被用于免疫组化在小鼠样本上浓度为1:1000 (图 4a). Brain Res (2019) ncbi
小鼠 单克隆(117G4)
  • 免疫组化; 大鼠; 1:200; 图 5f
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131011)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 5f). Hum Mol Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 1b
  • 免疫印迹; 小鼠; 1:10,000; 图 4c
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131 003)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4c). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 4b
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131 003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 4b). J Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1b
Synaptic Systems SLC32A1抗体(Synaptic systems, 131-003)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b). Front Neural Circuits (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 2b
  • 免疫印迹; 大鼠; 图 1
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131,003)被用于被用于免疫细胞化学在大鼠样本上 (图 2b) 和 被用于免疫印迹在大鼠样本上 (图 1). Front Cell Neurosci (2017) ncbi
小鼠 单克隆(117G4)
  • 免疫印迹; 小鼠; 图 6d
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131011)被用于被用于免疫印迹在小鼠样本上 (图 6d). Front Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1 mg/l; 图 4c
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131003)被用于被用于免疫组化在小鼠样本上浓度为1 mg/l (图 4c). Front Neuroanat (2016) ncbi
小鼠 单克隆(117G4)
  • 免疫细胞化学; 小鼠; 图 3b
Synaptic Systems SLC32A1抗体(Synaptic Systems, 117G4)被用于被用于免疫细胞化学在小鼠样本上 (图 3b). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 非洲爪蛙; 1:400; 图 4d
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131 003)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:400 (图 4d). J Neurophysiol (2016) ncbi
小鼠 单克隆(117G4)
  • 免疫组化; 小鼠; 1:5000; 图 5b
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131011)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 5b). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 6a
Synaptic Systems SLC32A1抗体(Synaptic System, 131003)被用于被用于免疫细胞化学在大鼠样本上 (图 6a). ACS Nano (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:400; 表 3
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131 002)被用于被用于免疫细胞化学在大鼠样本上浓度为1:400 (表 3). Cell Mol Life Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131002)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131003)被用于被用于免疫印迹在小鼠样本上 (图 1). Stem Cell Reports (2016) ncbi
小鼠 单克隆(117G4)
  • 免疫印迹; 大鼠; 1:500
Synaptic Systems SLC32A1抗体(Synaptic System, 131011)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Front Cell Neurosci (2015) ncbi
小鼠 单克隆(117G4)
  • 免疫细胞化学; 小鼠; 1:500; 图 6
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131 011)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 6). Nat Neurosci (2015) ncbi
小鼠 单克隆(117G4)
  • 免疫组化; 小鼠; 图 4
Synaptic Systems SLC32A1抗体(SynapticSystems, 131 011)被用于被用于免疫组化在小鼠样本上 (图 4). Front Neuroanat (2015) ncbi
小鼠 单克隆(117G4)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 s8
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131 011)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 s8). Nature (2015) ncbi
小鼠 单克隆(117G4)
  • 免疫组化; 小鼠; 1:1000; 图 8E
Synaptic Systems SLC32A1抗体(Synaptic Systems, 131 011)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 8E). J Comp Neurol (2015) ncbi
小鼠 单克隆(117G4)
  • 免疫组化-冰冻切片; 大鼠
Synaptic Systems SLC32A1抗体(sysy, 131011)被用于被用于免疫组化-冰冻切片在大鼠样本上. Brain Res (2015) ncbi
小鼠 单克隆(117G4)
  • 免疫细胞化学; 小鼠; 1:100; 图 s4
Synaptic Systems SLC32A1抗体(SYSY, 131011)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s4). Nat Neurosci (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 1000 ng/ml; 图 1
圣克鲁斯生物技术 SLC32A1抗体(Santa Cruz, sc-393373)被用于被用于免疫印迹在人类样本上浓度为1000 ng/ml (图 1). Nat Commun (2015) ncbi
赛默飞世尔
小鼠 单克隆(CL2793)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3s2a
赛默飞世尔 SLC32A1抗体(分子探针, MA5-24643)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3s2a). elife (2018) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 2d
西格玛奥德里奇 SLC32A1抗体(Sigma-Aldrich, V5764)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2d). Histochem Cell Biol (2016) ncbi
文章列表
  1. Tamada K, Fukumoto K, Toya T, Nakai N, Awasthi J, Tanaka S, et al. Genetic dissection identifies Necdin as a driver gene in a mouse model of paternal 15q duplications. Nat Commun. 2021;12:4056 pubmed 出版商
  2. Amegandjin C, Choudhury M, Jadhav V, Carriço J, Quintal A, Berryer M, et al. Sensitive period for rescuing parvalbumin interneurons connectivity and social behavior deficits caused by TSC1 loss. Nat Commun. 2021;12:3653 pubmed 出版商
  3. Jami S, Cameron S, Wong J, Daly E, McAllister A, Gray J. Increased excitation-inhibition balance and loss of GABAergic synapses in the serine racemase knockout model of NMDA receptor hypofunction. J Neurophysiol. 2021;126:11-27 pubmed 出版商
  4. Frew J, Nygaard H. Neuropathological and behavioral characterization of aged Grn R493X progranulin-deficient frontotemporal dementia knockin mice. Acta Neuropathol Commun. 2021;9:57 pubmed 出版商
  5. Cho I, Panzera L, Chin M, Alpizar S, Olveda G, Hill R, et al. The potassium channel subunit Kvβ1 serves as a major control point for synaptic facilitation. Proc Natl Acad Sci U S A. 2020;117:29937-29947 pubmed 出版商
  6. Kreutzberger A, Kiessling V, Doyle C, Schenk N, Upchurch C, Elmer Dixon M, et al. Distinct insulin granule subpopulations implicated in the secretory pathology of diabetes types 1 and 2. elife. 2020;9: pubmed 出版商
  7. Granger A, Wang W, Robertson K, El Rifai M, Zanello A, Bistrong K, et al. Cortical ChAT+ neurons co-transmit acetylcholine and GABA in a target- and brain-region-specific manner. elife. 2020;9: pubmed 出版商
  8. Lorenzo L, Godin A, Ferrini F, Bachand K, Plasencia Fernandez I, Labrecque S, et al. Enhancing neuronal chloride extrusion rescues α2/α3 GABAA-mediated analgesia in neuropathic pain. Nat Commun. 2020;11:869 pubmed 出版商
  9. Katona L, Hartwich K, Tomioka R, Somogyi J, Roberts J, Wagner K, et al. Synaptic organisation and behaviour-dependent activity of mGluR8a-innervated GABAergic trilaminar cells projecting from the hippocampus to the subiculum. Brain Struct Funct. 2020;225:705-734 pubmed 出版商
  10. Carceller H, Guirado R, Nacher J. Dark exposure affects plasticity-related molecules and interneurons throughout the visual system during adulthood. J Comp Neurol. 2019;: pubmed 出版商
  11. Ghatak S, Dolatabadi N, Trudler D, Zhang X, Wu Y, Mohata M, et al. Mechanisms of hyperexcitability in Alzheimer's disease hiPSC-derived neurons and cerebral organoids vs isogenic controls. elife. 2019;8: pubmed 出版商
  12. Han W, Li J, Pelkey K, Pandey S, Chen X, Wang Y, et al. Shisa7 is a GABAA receptor auxiliary subunit controlling benzodiazepine actions. Science. 2019;366:246-250 pubmed 出版商
  13. Guo H, Li Y, Shen L, Wang T, Jia X, Liu L, et al. Disruptive variants of CSDE1 associate with autism and interfere with neuronal development and synaptic transmission. Sci Adv. 2019;5:eaax2166 pubmed 出版商
  14. Collins L, Brunjes P. The mouse olfactory peduncle 4: Development of synapses, perineuronal nets, and capillaries. J Comp Neurol. 2019;: pubmed 出版商
  15. Pan H, Fatima M, Li A, Lee H, Cai W, Horwitz L, et al. Identification of a Spinal Circuit for Mechanical and Persistent Spontaneous Itch. Neuron. 2019;103:1135-1149.e6 pubmed 出版商
  16. Duan J, Pandey S, Li T, Castellano D, Gu X, Li J, et al. Genetic Deletion of GABAA Receptors Reveals Distinct Requirements of Neurotransmitter Receptors for GABAergic and Glutamatergic Synapse Development. Front Cell Neurosci. 2019;13:217 pubmed 出版商
  17. Popova D, Desai N, Blendy J, Pang Z. Synaptic regulation by OPRM1 variants in reward neurocircuitry. J Neurosci. 2019;: pubmed 出版商
  18. Rojek K, Krzemien J, Dolezyczek H, Boguszewski P, Kaczmarek L, Konopka W, et al. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol. 2019;17:e3000253 pubmed 出版商
  19. Duan W, Guo M, Yi L, Zhang J, Bi Y, Liu Y, et al. Deletion of Tbk1 disrupts autophagy and reproduces behavioral and locomotor symptoms of FTD-ALS in mice. Aging (Albany NY). 2019;11:2457-2476 pubmed 出版商
  20. Awasthi A, Ramachandran B, Ahmed S, Benito E, Shinoda Y, Nitzan N, et al. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science. 2019;363: pubmed 出版商
  21. Olthof B, Gartside S, Rees A. Puncta of Neuronal Nitric Oxide Synthase (nNOS) Mediate NMDA Receptor Signaling in the Auditory Midbrain. J Neurosci. 2019;39:876-887 pubmed 出版商
  22. Kaczmarek Hájek K, Zhang J, Kopp R, Grosche A, Rissiek B, Saul A, et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. elife. 2018;7: pubmed 出版商
  23. Chmielewska J, Kuzniewska B, Milek J, Urbanska K, Dziembowska M. Neuroligin 1, 2, and 3 Regulation at the Synapse: FMRP-Dependent Translation and Activity-Induced Proteolytic Cleavage. Mol Neurobiol. 2019;56:2741-2759 pubmed 出版商
  24. Trepte P, Kruse S, Kostova S, Hoffmann S, Buntru A, Tempelmeier A, et al. LuTHy: a double-readout bioluminescence-based two-hybrid technology for quantitative mapping of protein-protein interactions in mammalian cells. Mol Syst Biol. 2018;14:e8071 pubmed 出版商
  25. Nam M, Han K, Lee J, Bae J, An H, Park S, et al. Expression of µ-Opioid Receptor in CA1 Hippocampal Astrocytes. Exp Neurobiol. 2018;27:120-128 pubmed 出版商
  26. Dunn A, Hoffman C, Stout K, Ozawa M, Dhamsania R, Miller G. Immunochemical analysis of the expression of SV2C in mouse, macaque and human brain. Brain Res. 2019;1702:85-95 pubmed 出版商
  27. Farhan S, Nixon K, Everest M, Edwards T, Long S, Segal D, et al. Identification of a novel synaptic protein, TMTC3, involved in periventricular nodular heterotopia with intellectual disability and epilepsy. Hum Mol Genet. 2017;26:4278-4289 pubmed 出版商
  28. Tanabe Y, Naito Y, Vasuta C, Lee A, Soumounou Y, Linhoff M, et al. IgSF21 promotes differentiation of inhibitory synapses via binding to neurexin2?. Nat Commun. 2017;8:408 pubmed 出版商
  29. Schaefer N, Berger A, van Brederode J, Zheng F, Zhang Y, Leacock S, et al. Disruption of a Structurally Important Extracellular Element in the Glycine Receptor Leads to Decreased Synaptic Integration and Signaling Resulting in Severe Startle Disease. J Neurosci. 2017;37:7948-7961 pubmed 出版商
  30. Zhang X, Sullivan C, Kratz M, Kasten M, Maness P, Manis P. NCAM Regulates Inhibition and Excitability in Layer 2/3 Pyramidal Cells of Anterior Cingulate Cortex. Front Neural Circuits. 2017;11:19 pubmed 出版商
  31. Latina V, Caioli S, Zona C, Ciotti M, Amadoro G, Calissano P. Impaired NGF/TrkA Signaling Causes Early AD-Linked Presynaptic Dysfunction in Cholinergic Primary Neurons. Front Cell Neurosci. 2017;11:68 pubmed 出版商
  32. Larimore J, Zlatic S, Arnold M, Singleton K, Cross R, Rudolph H, et al. Dysbindin Deficiency Modifies the Expression of GABA Neuron and Ion Permeation Transcripts in the Developing Hippocampus. Front Genet. 2017;8:28 pubmed 出版商
  33. Sohn J, Okamoto S, Kataoka N, Kaneko T, Nakamura K, Hioki H. Differential Inputs to the Perisomatic and Distal-Dendritic Compartments of VIP-Positive Neurons in Layer 2/3 of the Mouse Barrel Cortex. Front Neuroanat. 2016;10:124 pubmed 出版商
  34. Egashira Y, Takase M, Watanabe S, Ishida J, Fukamizu A, Kaneko R, et al. Unique pH dynamics in GABAergic synaptic vesicles illuminates the mechanism and kinetics of GABA loading. Proc Natl Acad Sci U S A. 2016;113:10702-7 pubmed 出版商
  35. Gambrill A, Faulkner R, Cline H. Experience-dependent plasticity of excitatory and inhibitory intertectal inputs in Xenopus tadpoles. J Neurophysiol. 2016;116:2281-2297 pubmed 出版商
  36. Hamamoto M, Kiyokage E, Sohn J, Hioki H, Harada T, Toida K. Structural basis for cholinergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol. 2017;525:574-591 pubmed 出版商
  37. Bramini M, Sacchetti S, Armirotti A, Rocchi A, Vazquez E, León Castellanos V, et al. Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca(2+) Homeostasis, and Synaptic Transmission in Primary Cortical Neurons. ACS Nano. 2016;10:7154-71 pubmed 出版商
  38. Bartelt Kirbach B, Moron M, Glomb M, Beck C, Weller M, Golenhofen N. HspB5/?B-crystallin increases dendritic complexity and protects the dendritic arbor during heat shock in cultured rat hippocampal neurons. Cell Mol Life Sci. 2016;73:3761-75 pubmed 出版商
  39. Hayashi Y, Nishimune H, Hozumi K, Saga Y, Harada A, Yuzaki M, et al. A novel non-canonical Notch signaling regulates expression of synaptic vesicle proteins in excitatory neurons. Sci Rep. 2016;6:23969 pubmed 出版商
  40. Uda Y, Xu S, Matsumura T, Takei Y. P2Y4 Nucleotide Receptor in Neuronal Precursors Induces Glutamatergic Subtype Markers in Their Descendant Neurons. Stem Cell Reports. 2016;6:474-482 pubmed 出版商
  41. Schwale C, Schumacher S, Bruehl C, Titz S, Schlicksupp A, Kokocinska M, et al. KCC2 knockdown impairs glycinergic synapse maturation in cultured spinal cord neurons. Histochem Cell Biol. 2016;145:637-46 pubmed 出版商
  42. Leshchyns ka I, Liew H, Shepherd C, Halliday G, Stevens C, Ke Y, et al. Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease. Nat Commun. 2015;6:8836 pubmed 出版商
  43. Bragina L, Bonifacino T, Bassi S, Milanese M, Bonanno G, Conti F. Differential expression of metabotropic glutamate and GABA receptors at neocortical glutamatergic and GABAergic axon terminals. Front Cell Neurosci. 2015;9:345 pubmed 出版商
  44. Aoto J, Földy C, Ilcus S, Tabuchi K, Südhof T. Distinct circuit-dependent functions of presynaptic neurexin-3 at GABAergic and glutamatergic synapses. Nat Neurosci. 2015;18:997-1007 pubmed 出版商
  45. Blanqué A, Repetto D, Rohlmann A, Brockhaus J, Duning K, Pavenstädt H, et al. Deletion of KIBRA, protein expressed in kidney and brain, increases filopodial-like long dendritic spines in neocortical and hippocampal neurons in vivo and in vitro. Front Neuroanat. 2015;9:13 pubmed 出版商
  46. Saunders A, Oldenburg I, Berezovskii V, Johnson C, Kingery N, Elliott H, et al. A direct GABAergic output from the basal ganglia to frontal cortex. Nature. 2015;521:85-9 pubmed 出版商
  47. Pérez de Sevilla Müller L, Sargoy A, Fernández Sánchez L, Rodriguez A, Liu J, Cuenca N, et al. Expression and cellular localization of the voltage-gated calcium channel α2δ3 in the rodent retina. J Comp Neurol. 2015;523:1443-60 pubmed 出版商
  48. Lee J, Lee E, Lee H. Hypothalamic, feeding/arousal-related peptidergic projections to the paraventricular thalamic nucleus in the rat. Brain Res. 2015;1598:97-113 pubmed 出版商
  49. Atasoy D, Betley J, Li W, Su H, Sertel S, Scheffer L, et al. A genetically specified connectomics approach applied to long-range feeding regulatory circuits. Nat Neurosci. 2014;17:1830-9 pubmed 出版商