这是一篇来自已证抗体库的有关人类 SLC8A1的综述,是根据21篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合SLC8A1 抗体。
SLC8A1 同义词: NCX1; sodium/calcium exchanger 1; Na(+)/Ca(2+)-exchange protein 1; Na+/Ca++ exchanger; Na+/Ca2+ exchanger; solute carrier family 8 (sodium/calcium exchanger), member 1; solute carrier family 8 member 1

赛默飞世尔
小鼠 单克隆(C2C12)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛默飞世尔 SLC8A1抗体(ThermoFisher, MA3-926)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 4b). elife (2019) ncbi
小鼠 单克隆(C2C12)
  • 免疫印迹; 小鼠; 图 7c
赛默飞世尔 SLC8A1抗体(Thermo Fisher, MA3-926)被用于被用于免疫印迹在小鼠样品上 (图 7c). J Am Heart Assoc (2017) ncbi
小鼠 单克隆(C2C12)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛默飞世尔 SLC8A1抗体(Thermo Pierce, MA3-926)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 1a). Circulation (2016) ncbi
小鼠 单克隆(C2C12)
  • 免疫细胞化学; 猪; 1:200; 图 6
赛默飞世尔 SLC8A1抗体(Thermo Scientific, MA3-926)被用于被用于免疫细胞化学在猪样品上浓度为1:200 (图 6). J Physiol (2016) ncbi
小鼠 单克隆(C2C12)
  • 免疫印迹; 小鼠; 图 7g
赛默飞世尔 SLC8A1抗体(ThermoFisher, MA3-926)被用于被用于免疫印迹在小鼠样品上 (图 7g). Cardiovasc Res (2016) ncbi
小鼠 单克隆(C2C12)
  • 免疫细胞化学; 狗; 1:100; 图 s14
赛默飞世尔 SLC8A1抗体(ThermoFisher Scientific, MA3-926)被用于被用于免疫细胞化学在狗样品上浓度为1:100 (图 s14). Circ Heart Fail (2015) ncbi
小鼠 单克隆(C2C12)
  • 免疫细胞化学; 小鼠; 1:100
赛默飞世尔 SLC8A1抗体(Thermo Scientific, MA3-926)被用于被用于免疫细胞化学在小鼠样品上浓度为1:100. Cardiovasc Res (2015) ncbi
小鼠 单克隆(C2C12)
  • 免疫印迹; 兔
赛默飞世尔 SLC8A1抗体(Thermo Scientific, MA3-926)被用于被用于免疫印迹在兔样品上. Am J Physiol Cell Physiol (2014) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(C2C12)
  • 免疫印迹; 猪
艾博抗(上海)贸易有限公司 SLC8A1抗体(Abcam, ab2869)被用于被用于免疫印迹在猪样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(C2C12)
  • 流式细胞仪; 人类; 图 1
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 SLC8A1抗体(Abcam, ab2869)被用于被用于流式细胞仪在人类样品上 (图 1) 和 被用于免疫细胞化学在人类样品上. PLoS ONE (2013) ncbi
Alomone Labs
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
Alomone Labs SLC8A1抗体(Alomone labs, ANX-011)被用于被用于免疫印迹在小鼠样品上 (图 4). Biochim Biophys Acta (2016) ncbi
SWant
小鼠 单克隆
  • 免疫组化-冰冻切片; 羊; 1:200; 图 4
SWant SLC8A1抗体(Swant, R3F1)被用于被用于免疫组化-冰冻切片在羊样品上浓度为1:200 (图 4). J Muscle Res Cell Motil (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:1000
SWant SLC8A1抗体(Swant, R3F1)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. J Cell Sci (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 图 2
SWant SLC8A1抗体(Swannt, R3F1)被用于被用于免疫印迹在大鼠样品上 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
SWant SLC8A1抗体(Swant, p 11?C13)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3). J Neurosci (2015) ncbi
小鼠 单克隆
  • 免疫细胞化学; 小鼠; 1:200; 表 1
SWant SLC8A1抗体(Swant, R3F1)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (表 1). Front Physiol (2015) ncbi
小鼠 单克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 1
SWant SLC8A1抗体(ind, R3F1)被用于被用于免疫印迹基因敲除验证在小鼠样品上 (图 1). Physiol Rep (2015) ncbi
小鼠 单克隆
  • 免疫组化; 大鼠; 1:100
SWant SLC8A1抗体(SWANT, R3F1)被用于被用于免疫组化在大鼠样品上浓度为1:100. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:1000
SWant SLC8A1抗体(Swant, R3F1)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Circ Arrhythm Electrophysiol (2014) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 6
SWant SLC8A1抗体(SWANT, R3F1)被用于被用于免疫印迹在小鼠样品上 (图 6). J Biol Chem (2014) ncbi
小鼠 单克隆
  • 免疫细胞化学; 大鼠; 1:500
SWant SLC8A1抗体(Swant, R3F1)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500. Am J Physiol Cell Physiol (2013) ncbi
文章列表
  1. Dai W, Laforest B, Tyan L, Shen K, Nadadur R, Alvarado F, et al. A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice. elife. 2019;8: pubmed 出版商
  2. Tanwar V, Gorr M, Velten M, Eichenseer C, Long V, Bonilla I, et al. In Utero Particulate Matter Exposure Produces Heart Failure, Electrical Remodeling, and Epigenetic Changes at Adulthood. J Am Heart Assoc. 2017;6: pubmed 出版商
  3. Munro M, Soeller C. Early transverse tubule development begins in utero in the sheep heart. J Muscle Res Cell Motil. 2016;37:195-202 pubmed 出版商
  4. Munro M, Jayasinghe I, Wang Q, Quick A, Wang W, Baddeley D, et al. Junctophilin-2 in the nanoscale organisation and functional signalling of ryanodine receptor clusters in cardiomyocytes. J Cell Sci. 2016;129:4388-4398 pubmed
  5. Helms A, Alvarado F, Yob J, Tang V, Pagani F, Russell M, et al. Genotype-Dependent and -Independent Calcium Signaling Dysregulation in Human Hypertrophic Cardiomyopathy. Circulation. 2016;134:1738-1748 pubmed
  6. Dries E, Santiago D, Johnson D, Gilbert G, Holemans P, Korte S, et al. Calcium/calmodulin-dependent kinase II and nitric oxide synthase 1-dependent modulation of ryanodine receptors during ?-adrenergic stimulation is restricted to the dyadic cleft. J Physiol. 2016;594:5923-5939 pubmed 出版商
  7. Mederle K, Gess B, Pluteanu F, Plackic J, Tiefenbach K, Grill A, et al. The angiotensin receptor-associated protein Atrap is a stimulator of the cardiac Ca2+-ATPase SERCA2a. Cardiovasc Res. 2016;110:359-70 pubmed 出版商
  8. Zhang H, Cannell M, Kim S, Watson J, Norman R, Calaghan S, et al. Cellular Hypertrophy and Increased Susceptibility to Spontaneous Calcium-Release of Rat Left Atrial Myocytes Due to Elevated Afterload. PLoS ONE. 2015;10:e0144309 pubmed 出版商
  9. Ge W, Yuan M, Ceylan A, Wang X, Ren J. Mitochondrial aldehyde dehydrogenase protects against doxorubicin cardiotoxicity through a transient receptor potential channel vanilloid 1-mediated mechanism. Biochim Biophys Acta. 2016;1862:622-634 pubmed 出版商
  10. Li H, Lichter J, Seidel T, Tomaselli G, Bridge J, Sachse F. Cardiac Resynchronization Therapy Reduces Subcellular Heterogeneity of Ryanodine Receptors, T-Tubules, and Ca2+ Sparks Produced by Dyssynchronous Heart Failure. Circ Heart Fail. 2015;8:1105-14 pubmed 出版商
  11. Formisano L, Guida N, Valsecchi V, Cantile M, Cuomo O, Vinciguerra A, et al. Sp3/REST/HDAC1/HDAC2 Complex Represses and Sp1/HIF-1/p300 Complex Activates ncx1 Gene Transcription, in Brain Ischemia and in Ischemic Brain Preconditioning, by Epigenetic Mechanism. J Neurosci. 2015;35:7332-48 pubmed 出版商
  12. Liu J, Xin L, Benson V, Allen D, Ju Y. Store-operated calcium entry and the localization of STIM1 and Orai1 proteins in isolated mouse sinoatrial node cells. Front Physiol. 2015;6:69 pubmed 出版商
  13. Lugenbiel P, Wenz F, Govorov K, Schweizer P, Katus H, Thomas D. Atrial fibrillation complicated by heart failure induces distinct remodeling of calcium cycling proteins. PLoS ONE. 2015;10:e0116395 pubmed 出版商
  14. Wang Y, Chen L, Li M, Cha H, Iwamoto T, Zhang J. Conditional knockout of smooth muscle sodium calcium exchanger type-1 lowers blood pressure and attenuates Angiotensin II-salt hypertension. Physiol Rep. 2015;3: pubmed 出版商
  15. Lorin C, Vögeli I, Niggli E. Dystrophic cardiomyopathy: role of TRPV2 channels in stretch-induced cell damage. Cardiovasc Res. 2015;106:153-62 pubmed 出版商
  16. Hou Y, Jayasinghe I, Crossman D, Baddeley D, Soeller C. Nanoscale analysis of ryanodine receptor clusters in dyadic couplings of rat cardiac myocytes. J Mol Cell Cardiol. 2015;80:45-55 pubmed 出版商
  17. Chiang D, Kongchan N, Beavers D, Alsina K, Voigt N, Neilson J, et al. Loss of microRNA-106b-25 cluster promotes atrial fibrillation by enhancing ryanodine receptor type-2 expression and calcium release. Circ Arrhythm Electrophysiol. 2014;7:1214-22 pubmed 出版商
  18. Moshal K, Zhang Z, Roder K, Kim T, Cooper L, Patedakis Litvinov B, et al. Progesterone modulates SERCA2a expression and function in rabbit cardiomyocytes. Am J Physiol Cell Physiol. 2014;307:C1050-7 pubmed 出版商
  19. Dweck D, Sanchez Gonzalez M, Chang A, Dulce R, Badger C, Koutnik A, et al. Long term ablation of protein kinase A (PKA)-mediated cardiac troponin I phosphorylation leads to excitation-contraction uncoupling and diastolic dysfunction in a knock-in mouse model of hypertrophic cardiomyopathy. J Biol Chem. 2014;289:23097-111 pubmed 出版商
  20. Ho W, Davis A, Chadha P, Greenwood I. Effective contractile response to voltage-gated Na+ channels revealed by a channel activator. Am J Physiol Cell Physiol. 2013;304:C739-47 pubmed 出版商
  21. Raynaud C, Halabi N, Elliott D, Pasquier J, Elefanty A, Stanley E, et al. Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes. PLoS ONE. 2013;8:e54524 pubmed 出版商