这是一篇来自已证抗体库的有关人类 SLUG的综述,是根据147篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合SLUG 抗体。
SLUG 同义词: SLUG; SLUGH; SLUGH1; SNAIL2; WS2D

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5j
  • 免疫印迹; 人类; 图 5i
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab27568)被用于被用于免疫印迹在小鼠样本上 (图 5j) 和 被用于免疫印迹在人类样本上 (图 5i). Cell Death Dis (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3f
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab27568)被用于被用于免疫印迹在大鼠样本上 (图 3f). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2e, 5e
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab27568)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e, 5e). Front Oncol (2021) ncbi
小鼠 单克隆(CL3700)
  • 免疫细胞化学; 人类; 图 5d
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab224731)被用于被用于免疫细胞化学在人类样本上 (图 5d). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s3b
艾博抗(上海)贸易有限公司 SLUG抗体(Abeam, ab180714)被用于被用于免疫组化在小鼠样本上 (图 s3b). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6c
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab180714)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6c). Genes (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8b
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab106077)被用于被用于免疫印迹在人类样本上 (图 8b). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a, 3c
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab27568)被用于被用于免疫印迹在人类样本上 (图 3a, 3c). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 6d
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab180714)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6d). Sci Adv (2020) ncbi
小鼠 单克隆(mAbcam51772)
  • 免疫印迹; 人类; 图 s1d
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab51772)被用于被用于免疫印迹在人类样本上 (图 s1d). BMC Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 5f
  • 免疫印迹; 大鼠; 1:1000; 图 7b
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab27568)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 5f) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7b). EMBO Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab106077)被用于被用于免疫印迹在人类样本上 (图 3b). Exp Ther Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 图 6a
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab180714)被用于被用于免疫印迹在犬样本上 (图 6a). Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 10g
艾博抗(上海)贸易有限公司 SLUG抗体(abcam, ab27568)被用于被用于免疫组化在小鼠样本上 (图 10g). Dev Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 9d
  • 免疫印迹; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab180714)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 9d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab27568)被用于被用于免疫细胞化学在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1i
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab27568)被用于被用于免疫印迹在人类样本上 (图 1i). Biosci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab27568)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab180714)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2e
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab106077)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 SLUG抗体(abcam, ab180714)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 6
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab180714)被用于被用于免疫印迹在大鼠样本上 (图 6). Evid Based Complement Alternat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab180714)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). Am J Transl Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:75; 图 2
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab180714)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:75 (图 2). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:100; 图 3
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab-180714)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 3). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 5
艾博抗(上海)贸易有限公司 SLUG抗体(abcam, ab27568)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:125; 图 2
艾博抗(上海)贸易有限公司 SLUG抗体(abcam, ab 27568)被用于被用于免疫细胞化学在人类样本上浓度为1:125 (图 2). Cytotechnology (2016) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 SLUG抗体(Abcam, ab27568)被用于. Biomed Res Int (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-7)
  • 免疫印迹; 人类; 1:200; 图 5a
圣克鲁斯生物技术 SLUG抗体(Santa Cruz Biotechnology, sc-166476)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5a). Cancers (Basel) (2021) ncbi
小鼠 单克隆(A-7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
圣克鲁斯生物技术 SLUG抗体(Santa Cruz, sc-166476)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5). Int J Mol Sci (2021) ncbi
小鼠 单克隆(A-7)
  • 免疫印迹; 小鼠; 图 4a
圣克鲁斯生物技术 SLUG抗体(Santa Cruz, A-7)被用于被用于免疫印迹在小鼠样本上 (图 4a). Oncogene (2018) ncbi
小鼠 单克隆(C-7)
  • 免疫印迹; 人类; 1:1000; 图 3c
圣克鲁斯生物技术 SLUG抗体(Santa Cruz, sc-166902)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Mol Med Rep (2017) ncbi
小鼠 单克隆(A-7)
  • 免疫印迹; 人类; 1:400; 图 4d
圣克鲁斯生物技术 SLUG抗体(Santa Cruz, A-7)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 4d). Nucleic Acids Res (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:400; 图 4d
圣克鲁斯生物技术 SLUG抗体(Santa Cruz, A-7)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 4d). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(A-7)
  • 免疫印迹; 人类; 1:200; 图 5c
圣克鲁斯生物技术 SLUG抗体(SantaCruz, sc-166476)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5c). Oncotarget (2016) ncbi
小鼠 单克隆(A-7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
圣克鲁斯生物技术 SLUG抗体(Santa Cruz, 166476)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(A-7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
圣克鲁斯生物技术 SLUG抗体(Santa Cruz, sc-166476)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). BMC Cancer (2015) ncbi
小鼠 单克隆(A-7)
  • 免疫印迹; 人类; 1:500; 图 6c
圣克鲁斯生物技术 SLUG抗体(santa cruz, sc-166476)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6c). Oncol Rep (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
圣克鲁斯生物技术 SLUG抗体(Santa Cruz, clone A-7)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Osteoarthritis Cartilage (2015) ncbi
小鼠 单克隆(A-7)
  • 免疫印迹; 人类; 1:500; 图 2d
圣克鲁斯生物技术 SLUG抗体(Santa Cruz, sc-166476)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2d). Cancer Lett (2015) ncbi
小鼠 单克隆(A-7)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 SLUG抗体(Santa Cruz Biotechnology, sc-166476)被用于被用于免疫印迹在人类样本上浓度为1:500. Cell Death Dis (2014) ncbi
Novus Biologicals
小鼠 单克隆(OTI1A6)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 3k, 3l
Novus Biologicals SLUG抗体(Novus Biologicals, OTI1A6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 3k, 3l). Cancers (Basel) (2021) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 4a, 4d
赛信通(上海)生物试剂有限公司 SLUG抗体(CST, 9585S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a, 4d). Cell Death Discov (2022) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 SLUG抗体(CST, 9585)被用于被用于免疫印迹在人类样本上 (图 4b). Cell Death Discov (2022) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 小鼠; 图 6g
赛信通(上海)生物试剂有限公司 SLUG抗体(CST, 9585)被用于被用于免疫印迹在小鼠样本上 (图 6g). Front Oncol (2022) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:100; 图 3e
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell signaling, C19G7)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3e). Am J Cancer Res (2022) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 s9c
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s9c). Proc Natl Acad Sci U S A (2022) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上 (图 5a). Transl Oncol (2022) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 8e
赛信通(上海)生物试剂有限公司 SLUG抗体(CST, 9585)被用于被用于免疫印迹在人类样本上 (图 8e). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 5a, 5c
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a, 5c). Mol Med Rep (2021) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 6a, 6b
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, 9585S)被用于被用于免疫印迹在人类样本上 (图 6a, 6b). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 SLUG抗体(CST, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Cancer Sci (2021) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5e
  • 免疫细胞化学; 小鼠; 1:400; 图 s6d
  • 免疫印迹; 小鼠; 1:1000; 图 6i
赛信通(上海)生物试剂有限公司 SLUG抗体(CST, 9585)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5e), 被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 s6d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6i). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 SLUG抗体(CST, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). Front Oncol (2021) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 4c, 4d
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c, 4d). Acta Pharm Sin B (2021) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, 9585)被用于被用于免疫印迹在人类样本上 (图 6d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Biology (Basel) (2021) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, 9585)被用于被用于免疫印迹在人类样本上 (图 3b). Biomol Ther (Seoul) (2021) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫组化; 小鼠; 图 s3b
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, 9585)被用于被用于免疫组化在小鼠样本上 (图 s3b). Cell Rep (2021) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Exp Hematol Oncol (2021) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上 (图 3c). J Cell Mol Med (2021) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:500; 图 3h
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3h). Commun Biol (2021) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 s5d
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, 9585 s)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Biosci (2020) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, C19G7)被用于被用于免疫印迹在人类样本上 (图 5b). Sci Adv (2020) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Cell Prolif (2020) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2020) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 5b,
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, Danvers, MA;, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b, ). Integr Cancer Ther (2020) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 SLUG抗体(CST, 9585)被用于被用于免疫印迹在人类样本上 (图 5e). Sci Adv (2020) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell signaling, 9585)被用于被用于免疫印迹在人类样本上 (图 4e). Oncogenesis (2020) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 3e
  • 免疫印迹; 小鼠; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 3e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3h). Cancer Cell (2020) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 2k
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, C19G7)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2k). Front Oncol (2019) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 SLUG抗体(CST, 9585)被用于被用于免疫印迹在人类样本上 (图 3c). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell signaling, 9585S)被用于被用于免疫印迹在人类样本上 (图 2e). Sci Rep (2019) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, 9585)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2020) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:500; 图 3f
赛信通(上海)生物试剂有限公司 SLUG抗体(CST, 9585)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3f). Med Sci Monit (2019) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 SLUG抗体(CST, 9585)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在小鼠样本上 (图 4a). Cell Rep (2019) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 s11b
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上 (图 s11b). Theranostics (2019) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:500; 图 s2a
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s2a). Sci Adv (2019) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 大鼠; 1:250; 图 s3b
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, C19G7)被用于被用于免疫印迹在大鼠样本上浓度为1:250 (图 s3b). J Cell Sci (2019) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, 9585)被用于被用于免疫印迹在人类样本上 (图 5a). Exp Cell Res (2019) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫组化-石蜡切片; 小鼠; 图 s4c
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, 95855)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4c). Cell (2019) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s3d
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell signaling, C1967)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 s3d). Science (2018) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上 (图 3b). J Cell Mol Med (2018) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 s6i
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6i). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C19G7)
  • ChIP-Seq; 人类; 图 s3a
  • 免疫印迹; 人类; 1:300; 图 4e
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于ChIP-Seq在人类样本上 (图 s3a) 和 被用于免疫印迹在人类样本上浓度为1:300 (图 4e). Cell Rep (2017) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 7j
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7j). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上 (图 4b). Nat Genet (2017) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫细胞化学; 人类; 图 4c
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫细胞化学在人类样本上 (图 4c) 和 被用于免疫印迹在人类样本上 (图 4a). Mol Cancer Res (2017) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:500; 图 4C
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585P)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4C). Oncol Lett (2017) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫细胞化学; 小鼠; 1:200; 图 1a
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1a). elife (2017) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 s1e
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signalling, 9585S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1e). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上 (图 s2). Neoplasia (2017) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, 9585)被用于被用于免疫印迹在人类样本上. Neoplasia (2017) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Rep (2017) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫组化; 鸡; 1:100; 图 4g
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, C19G7)被用于被用于免疫组化在鸡样本上浓度为1:100 (图 4g). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上 (图 1a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 2h
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上 (图 2h). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 SLUG抗体(cell signalling, 9585)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Anticancer Res (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Drug Des Devel Ther (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫细胞化学; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, 9585)被用于被用于免疫细胞化学在小鼠样本上 (图 3b). Oncogene (2017) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫组化; 小鼠; 图 8j
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫组化在小鼠样本上 (图 8j). Oncogene (2017) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 SLUG抗体(cell signalling, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Front Pharmacol (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell signaling, 9585)被用于被用于免疫印迹在人类样本上 (图 2). Mol Biol Rep (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上 (图 s3). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell signaling, C19G7)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell signaling, C19G7)被用于被用于免疫印迹在人类样本上 (图 6). Cancer Lett (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Tech, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 染色质免疫沉淀 ; 人类; 1:500; 图 3
  • 免疫印迹; 人类; 1:500; 图 2
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, 9585)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:500 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 4h
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4h). Int J Oncol (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:500; 图 3
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Nature (2015) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上 (图 3c). Oncogene (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, 9585)被用于被用于免疫印迹在人类样本上 (图 6a). Oncogene (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Cancer Lett (2015) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, C19G7)被用于被用于免疫印迹在人类样本上 (图 7a). Sci Rep (2015) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585S)被用于被用于免疫印迹在人类样本上 (图 4). J Biomed Sci (2015) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫组化-石蜡切片; 人类; 1:30; 图 2
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signalling, 9585)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30 (图 2). Breast Cancer Res Treat (2015) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在小鼠样本上 (图 1). Oncogene (2015) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 s7
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上 (图 s7). Oncogene (2016) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Tech, 9585)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technologies, 9585)被用于被用于免疫印迹在人类样本上 (图 3). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(C19G7)
  • 流式细胞仪; 人类
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, 9585)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2015) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signalling, 9585)被用于被用于免疫印迹在小鼠样本上. Stem Cells (2015) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:3000; 图 s3c
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling,, C19G7)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 s3c). Nat Commun (2014) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, 9585)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫组化-石蜡切片; 人类; 1:10
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, C19G7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10. J Pathol (2015) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, C19G7)被用于被用于免疫印迹在人类样本上浓度为1:500. Cancer Lett (2014) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫印迹在人类样本上. Cancer Cell (2014) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, 9585)被用于被用于免疫印迹在人类样本上浓度为1:500. Urol Oncol (2014) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫组化-石蜡切片; 人类; 1:200
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technologies, 9585)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. J Histochem Cytochem (2014) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, 9585)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫组化; 人类; 1:100
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫组化在人类样本上浓度为1:100. BMC Res Notes (2014) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Gastroenterology (2014) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585p)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫组化; 人类; 1:100
赛信通(上海)生物试剂有限公司 SLUG抗体(CST, 9585)被用于被用于免疫组化在人类样本上浓度为1:100. Clin Neuropathol (2013) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, 9585)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncogene (2014) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫组化-冰冻切片; 小鼠
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫组化-冰冻切片在小鼠样本上. Nature (2013) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling Technology, 9585)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫组化-石蜡切片; 人类; 1:100
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. PLoS ONE (2012) ncbi
domestic rabbit 单克隆(C19G7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 SLUG抗体(Cell Signaling, 9585S)被用于被用于免疫印迹在人类样本上. J Biol Chem (2012) ncbi
文章列表
  1. Mukherjee B, Tiwari A, Palo A, Pattnaik N, Samantara S, Dixit M. Reduced expression of FRG1 facilitates breast cancer progression via GM-CSF/MEK-ERK axis by abating FRG1 mediated transcriptional repression of GM-CSF. Cell Death Discov. 2022;8:442 pubmed 出版商
  2. Wu T, Wang W, Shi G, Hao M, Wang Y, Yao M, et al. Targeting HIC1/TGF-β axis-shaped prostate cancer microenvironment restrains its progression. Cell Death Dis. 2022;13:624 pubmed 出版商
  3. Yun E, Kim D, Hsieh J, Baek S. Stanniocalcin 2 drives malignant transformation of human glioblastoma cells by targeting SNAI2 and Matrix Metalloproteinases. Cell Death Discov. 2022;8:308 pubmed 出版商
  4. Chi R, Yao C, Chen S, Liu Y, He Y, Zhang J, et al. Elevated BCAA Suppresses the Development and Metastasis of Breast Cancer. Front Oncol. 2022;12:887257 pubmed 出版商
  5. Castillo P, Aisagbonhi O, Saenz C, ElShamy W. Novel insights linking BRCA1-IRIS role in mammary gland development to formation of aggressive PABCs: the case for longer breastfeeding. Am J Cancer Res. 2022;12:396-426 pubmed
  6. Wolpaw A, Grossmann L, Dessau J, Dong M, Aaron B, Brafford P, et al. Epigenetic state determines inflammatory sensing in neuroblastoma. Proc Natl Acad Sci U S A. 2022;119: pubmed 出版商
  7. Yang J, Liao Q, Price M, Moriarity B, Wolf N, Felices M, et al. Chondroitin sulfate proteoglycan 4, a targetable oncoantigen that promotes ovarian cancer growth, invasion, cisplatin resistance and spheroid formation. Transl Oncol. 2022;16:101318 pubmed 出版商
  8. Zhu H, Su Z, Ning J, Zhou L, Tan L, Sayed S, et al. Transmembrane protein 97 exhibits oncogenic properties via enhancing LRP6-mediated Wnt signaling in breast cancer. Cell Death Dis. 2021;12:912 pubmed 出版商
  9. Chen R, Sheng C, Ma R, Zhang L, Yang L, Chen Y. PLAC1 is an independent predictor of poor survival, and promotes cell proliferation and invasion in cervical cancer. Mol Med Rep. 2021;24: pubmed 出版商
  10. Shi Y, Hu Y, Wang Y, Ma X, Tang L, Tao M, et al. Blockade of Autophagy Prevents the Development and Progression of Peritoneal Fibrosis. Front Pharmacol. 2021;12:724141 pubmed 出版商
  11. Wang C, Yang Z, Xu E, Shen X, Wang X, Li Z, et al. Apolipoprotein C-II induces EMT to promote gastric cancer peritoneal metastasis via PI3K/AKT/mTOR pathway. Clin Transl Med. 2021;11:e522 pubmed 出版商
  12. Wang K, Liu S, Dou Z, Zhang S, Yang X. Loss of Krüppel-like factor 9 facilitates stemness in ovarian cancer ascites-derived multicellular spheroids via Notch1/slug signaling. Cancer Sci. 2021;112:4220-4233 pubmed 出版商
  13. Shao C, Lou P, Liu R, Bi X, Li G, Yang X, et al. Hormone-Responsive BMP Signaling Expands Myoepithelial Cell Lineages and Prevents Alveolar Precocity in Mammary Gland. Front Cell Dev Biol. 2021;9:691050 pubmed 出版商
  14. Yu D, Yang X, Lin J, Cao Z, Lu C, Yang Z, et al. Super-Enhancer Induced IL-20RA Promotes Proliferation/Metastasis and Immune Evasion in Colorectal Cancer. Front Oncol. 2021;11:724655 pubmed 出版商
  15. Fan M, Zhang G, Chen W, Qi L, Xie M, Zhang Y, et al. Siglec-15 Promotes Tumor Progression in Osteosarcoma via DUSP1/MAPK Pathway. Front Oncol. 2021;11:710689 pubmed 出版商
  16. Zou J, Zhu X, Xiang D, Zhang Y, Li J, Su Z, et al. LIX1-like protein promotes liver cancer progression via miR-21-3p-mediated inhibition of fructose-1,6-bisphosphatase. Acta Pharm Sin B. 2021;11:1578-1591 pubmed 出版商
  17. Cheng X, Wang J, Liu C, Jiang T, Yang N, Liu D, et al. Zinc transporter SLC39A13/ZIP13 facilitates the metastasis of human ovarian cancer cells via activating Src/FAK signaling pathway. J Exp Clin Cancer Res. 2021;40:199 pubmed 出版商
  18. Xu Z, Cheng C, Kong R, Liu Y, Wang S, Ma Y, et al. S100A8 and S100A9, both transcriptionally regulated by PU.1, promote epithelial-mesenchymal transformation (EMT) and invasive growth of dermal keratinocytes during scar formation post burn. Aging (Albany NY). 2021;13:15523-15537 pubmed 出版商
  19. Urdiciain A, Erausquin E, Zelaya M, Zazpe I, Lanciego J, Melendez B, et al. Silencing of Histone Deacetylase 6 Decreases Cellular Malignancy and Contributes to Primary Cilium Restoration, Epithelial-to-Mesenchymal Transition Reversion, and Autophagy Inhibition in Glioblastoma Cell Lines. Biology (Basel). 2021;10: pubmed 出版商
  20. Lin C, Tsai M, Chen Y, Liu W, Lin C, Hsu K, et al. Platelet-Derived Growth Factor Receptor-α Subunit Targeting Suppresses Metastasis in Advanced Thyroid Cancer In Vitro and In Vivo. Biomol Ther (Seoul). 2021;29:551-561 pubmed 出版商
  21. Sbiera I, Kircher S, Altieri B, Fassnacht M, Kroiss M, Sbiera S. Epithelial and Mesenchymal Markers in Adrenocortical Tissues: How Mesenchymal Are Adrenocortical Tissues?. Cancers (Basel). 2021;13: pubmed 出版商
  22. Loureiro J, Raimundo L, Calheiros J, Carvalho C, Barcherini V, Lima N, et al. Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers (Basel). 2021;13: pubmed 出版商
  23. Carstens J, Yang S, Correa de Sampaio P, Zheng X, Barua S, McAndrews K, et al. Stabilized epithelial phenotype of cancer cells in primary tumors leads to increased colonization of liver metastasis in pancreatic cancer. Cell Rep. 2021;35:108990 pubmed 出版商
  24. Yang S, Zhang H, Yang H, Zhang J, Wang J, Luo T, et al. SEPHS1 promotes SMAD2/3/4 expression and hepatocellular carcinoma cells invasion. Exp Hematol Oncol. 2021;10:17 pubmed 出版商
  25. Blasiak J, Koskela A, Pawlowska E, Liukkonen M, Ruuth J, Toropainen E, et al. Epithelial-Mesenchymal Transition and Senescence in the Retinal Pigment Epithelium of NFE2L2/PGC-1α Double Knock-Out Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  26. Ding L, Fang Y, Li Y, Hu Q, Ai M, Deng K, et al. AIMP3 inhibits cell growth and metastasis of lung adenocarcinoma through activating a miR-96-5p-AIMP3-p53 axis. J Cell Mol Med. 2021;25:3019-3030 pubmed 出版商
  27. Burgess S, Gibbs H, Toomes C, Coletta P, Bell S. The Role of Csmd1 during Mammary Gland Development. Genes (Basel). 2021;12: pubmed 出版商
  28. Hu X, Villodre E, Larson R, Rahal O, Wang X, Gong Y, et al. Decorin-mediated suppression of tumorigenesis, invasion, and metastasis in inflammatory breast cancer. Commun Biol. 2021;4:72 pubmed 出版商
  29. Jiang Y, Han Q, Zhao H, Zhang J. Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. J Exp Clin Cancer Res. 2021;40:13 pubmed 出版商
  30. Jiang X, Xu Y, Ren H, Jiang J, Wudu M, Wang Q, et al. KLHL18 inhibits the proliferation, migration, and invasion of non-small cell lung cancer by inhibiting PI3K/PD-L1 axis activity. Cell Biosci. 2020;10:139 pubmed 出版商
  31. Shi H, Tao T, Abraham B, Durbin A, Zimmerman M, Kadoch C, et al. ARID1A loss in neuroblastoma promotes the adrenergic-to-mesenchymal transition by regulating enhancer-mediated gene expression. Sci Adv. 2020;6:eaaz3440 pubmed 出版商
  32. Huang W, Yu D, Wang M, Han Y, Lin J, Wei D, et al. ITGBL1 promotes cell migration and invasion through stimulating the TGF-β signalling pathway in hepatocellular carcinoma. Cell Prolif. 2020;53:e12836 pubmed 出版商
  33. Liang W, Gao R, Yang M, Wang X, Cheng K, Shi X, et al. MARCKSL1 promotes the proliferation, migration and invasion of lung adenocarcinoma cells. Oncol Lett. 2020;19:2272-2280 pubmed 出版商
  34. Chen Z, Zhang J, Xue H, Qian M, Guo X, Gao X, et al. Nitidine Chloride Is a Potential Alternative Therapy for Glioma Through Inducing Endoplasmic Reticulum Stress and Alleviating Epithelial-Mesenchymal Transition. Integr Cancer Ther. 2020;19:1534735419900927 pubmed 出版商
  35. Tian S, Peng P, Li J, Deng H, Zhan N, Zeng Z, et al. SERPINH1 regulates EMT and gastric cancer metastasis via the Wnt/β-catenin signaling pathway. Aging (Albany NY). 2020;12:3574-3593 pubmed 出版商
  36. Aldonza M, Ku J, Hong J, Kim D, Yu S, Lee M, et al. Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms. Sci Adv. 2020;6:eaav7416 pubmed 出版商
  37. Chandrasekaran B, Dahiya N, Tyagi A, Kolluru V, Saran U, Baby B, et al. Chronic exposure to cadmium induces a malignant transformation of benign prostate epithelial cells. Oncogenesis. 2020;9:23 pubmed 出版商
  38. Gu Y, Zhu Z, Pei H, Xu D, Jiang Y, Zhang L, et al. Long non-coding RNA NNT-AS1 promotes cholangiocarcinoma cells proliferation and epithelial-to-mesenchymal transition through down-regulating miR-203. Aging (Albany NY). 2020;12:2333-2346 pubmed 出版商
  39. Brill Karniely Y, Dror D, Duanis Assaf T, Goldstein Y, Schwob O, Millo T, et al. Triangular correlation (TrC) between cancer aggressiveness, cell uptake capability, and cell deformability. Sci Adv. 2020;6:eaax2861 pubmed 出版商
  40. Cheung E, DeNicola G, Nixon C, Blyth K, Labuschagne C, Tuveson D, et al. Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell. 2020;37:168-182.e4 pubmed 出版商
  41. Cai H, Li J, Zhang Y, Liao Y, Zhu Y, Wang C, et al. LDHA Promotes Oral Squamous Cell Carcinoma Progression Through Facilitating Glycolysis and Epithelial-Mesenchymal Transition. Front Oncol. 2019;9:1446 pubmed 出版商
  42. Liu X, Ma F, Liu C, Zhu K, Li W, Xu Y, et al. UBE2O promotes the proliferation, EMT and stemness properties of breast cancer cells through the UBE2O/AMPKα2/mTORC1-MYC positive feedback loop. Cell Death Dis. 2020;11:10 pubmed 出版商
  43. Hu Y, Ma Y, Liu J, Cai Y, Zhang M, Fang X. LINC01128 expedites cervical cancer progression by regulating miR-383-5p/SFN axis. BMC Cancer. 2019;19:1157 pubmed 出版商
  44. Zhou S, da Silva S, Siegel P, Philip A. CD109 acts as a gatekeeper of the epithelial trait by suppressing epithelial to mesenchymal transition in squamous cell carcinoma cells in vitro. Sci Rep. 2019;9:16317 pubmed 出版商
  45. Chen X, Xiong X, Cui D, Yang F, Wei D, Li H, et al. DEPTOR is an in vivo tumor suppressor that inhibits prostate tumorigenesis via the inactivation of mTORC1/2 signals. Oncogene. 2020;39:1557-1571 pubmed 出版商
  46. Jiao X, Ye J, Wang X, Yin X, Zhang G, Cheng X. KIAA1199, a Target of MicoRNA-486-5p, Promotes Papillary Thyroid Cancer Invasion by Influencing Epithelial-Mesenchymal Transition (EMT). Med Sci Monit. 2019;25:6788-6796 pubmed 出版商
  47. Ruffenach G, Umar S, Vaillancourt M, Hong J, Cao N, Sarji S, et al. Histological hallmarks and role of Slug/PIP axis in pulmonary hypertension secondary to pulmonary fibrosis. EMBO Mol Med. 2019;11:e10061 pubmed 出版商
  48. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  49. Chang Z. Downregulation of SOX2 may be targeted by miR-590-5p and inhibits epithelial-to-mesenchymal transition in non-small-cell lung cancer. Exp Ther Med. 2019;18:1189-1195 pubmed 出版商
  50. Gross K, Zhou W, Breindel J, Ouyang J, Jin D, Sokol E, et al. Loss of Slug Compromises DNA Damage Repair and Accelerates Stem Cell Aging in Mammary Epithelium. Cell Rep. 2019;28:394-407.e6 pubmed 出版商
  51. Du F, Qiao C, Li X, Chen Z, Liu H, Wu S, et al. Forkhead box K2 promotes human colorectal cancer metastasis by upregulating ZEB1 and EGFR. Theranostics. 2019;9:3879-3902 pubmed 出版商
  52. Sonego M, Pellarin I, Costa A, Vinciguerra G, Coan M, Kraut A, et al. USP1 links platinum resistance to cancer cell dissemination by regulating Snail stability. Sci Adv. 2019;5:eaav3235 pubmed 出版商
  53. Jalal S, Shi S, Acharya V, Huang R, Viasnoff V, Bershadsky A, et al. Actin cytoskeleton self-organization in single epithelial cells and fibroblasts under isotropic confinement. J Cell Sci. 2019;132: pubmed 出版商
  54. Guan H, Li N, Wang X, Shan X, Li Z, Lin Z. Role of Paip1 on angiogenesis and invasion in pancreatic cancer. Exp Cell Res. 2019;376:198-209 pubmed 出版商
  55. Sharon N, Chawla R, Mueller J, Vanderhooft J, Whitehorn L, Rosenthal B, et al. A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets. Cell. 2019;176:790-804.e13 pubmed 出版商
  56. Pommier A, Anaparthy N, Memos N, Kelley Z, Gouronnec A, Yan R, et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science. 2018;360: pubmed 出版商
  57. Vl kov K, Vachtenheim J, R da J, Hor k P, Ondru ov L. Inducibly decreased MITF levels do not affect proliferation and phenotype switching but reduce differentiation of melanoma cells. J Cell Mol Med. 2018;22:2240-2251 pubmed 出版商
  58. Palesch D, Bosinger S, Tharp G, Vanderford T, Paiardini M, Chahroudi A, et al. Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host. Nature. 2018;553:77-81 pubmed 出版商
  59. Wang J, Ye Q, Cao Y, Guo Y, Huang X, Mi W, et al. Snail determines the therapeutic response to mTOR kinase inhibitors by transcriptional repression of 4E-BP1. Nat Commun. 2017;8:2207 pubmed 出版商
  60. Noutsou M, Li J, Ling J, Jones J, Wang Y, Chen Y, et al. The Cohesin Complex Is Necessary for Epidermal Progenitor Cell Function through Maintenance of Self-Renewal Genes. Cell Rep. 2017;20:3005-3013 pubmed 出版商
  61. Comiskey D, Jacob A, Sanford B, Montes M, Goodwin A, Steiner H, et al. A novel mouse model of rhabdomyosarcoma underscores the dichotomy of MDM2-ALT1 function in vivo. Oncogene. 2018;37:95-106 pubmed 出版商
  62. Caino M, Seo J, Wang Y, Rivadeneira D, Gabrilovich D, Kim E, et al. Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. J Clin Invest. 2017;127:3755-3769 pubmed 出版商
  63. Saxon J, Baer D, Barton J, Hawkins T, Wu B, Trusk T, et al. BMP2 expression in the endocardial lineage is required for AV endocardial cushion maturation and remodeling. Dev Biol. 2017;430:113-128 pubmed 出版商
  64. van Groningen T, Koster J, Valentijn L, Zwijnenburg D, Akogul N, Hasselt N, et al. Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nat Genet. 2017;49:1261-1266 pubmed 出版商
  65. Lu J, Yang Y, Guo G, Liu Y, Zhang Z, Dong S, et al. IKBKE regulates cell proliferation and epithelial-mesenchymal transition of human malignant glioma via the Hippo pathway. Oncotarget. 2017;8:49502-49514 pubmed 出版商
  66. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed 出版商
  67. Hu X, Zhang Z, Liang Z, Xie D, Zhang T, Yu D, et al. Downregulation of feline sarcoma-related protein inhibits cell migration, invasion and epithelial-mesenchymal transition via the ERK/AP-1 pathway in bladder urothelial cell carcinoma. Oncol Lett. 2017;13:686-694 pubmed 出版商
  68. Shen C, Kuo Y, Chen C, Chen M, Cheng Y. MMP1 expression is activated by Slug and enhances multi-drug resistance (MDR) in breast cancer. PLoS ONE. 2017;12:e0174487 pubmed 出版商
  69. Jang S, Choubey S, Furchtgott L, Zou L, Doyle A, Menon V, et al. Dynamics of embryonic stem cell differentiation inferred from single-cell transcriptomics show a series of transitions through discrete cell states. elife. 2017;6: pubmed 出版商
  70. Li X, Liu W, Chen X, Wang Y, Shi D, Zhang H, et al. Overexpression of TMPRSS4 promotes tumor proliferation and aggressiveness in breast cancer. Int J Mol Med. 2017;39:927-935 pubmed 出版商
  71. Chen S, Wang Y, Zhang W, Dong M, Zhang J. Sclareolide enhances gemcitabine?induced cell death through mediating the NICD and Gli1 pathways in gemcitabine?resistant human pancreatic cancer. Mol Med Rep. 2017;15:1461-1470 pubmed 出版商
  72. Zhang L, Liu H, Mu X, Cui J, Peng Z. Dysregulation of Fra1 expression by Wnt/β-catenin signalling promotes glioma aggressiveness through epithelial-mesenchymal transition. Biosci Rep. 2017;37: pubmed 出版商
  73. Kim N, Cha Y, Lee J, Lee S, Yang J, Yun J, et al. Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress. Nat Commun. 2017;8:14374 pubmed 出版商
  74. Qiu X, Pascal L, Song Q, Zang Y, Ai J, O Malley K, et al. Physical and Functional Interactions between ELL2 and RB in the Suppression of Prostate Cancer Cell Proliferation, Migration, and Invasion. Neoplasia. 2017;19:207-215 pubmed 出版商
  75. Zhai S, Liu C, Zhang L, Zhu J, Guo J, Zhang J, et al. PLCE1 Promotes Esophageal Cancer Cell Progression by Maintaining the Transcriptional Activity of Snail. Neoplasia. 2017;19:154-164 pubmed 出版商
  76. Gonzalez M, Martin E, Anwar T, Arellano Garcia C, Medhora N, Lama A, et al. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth. Cell Rep. 2017;18:1215-1228 pubmed 出版商
  77. Fang S, Yu L, Mei H, Yang J, Gao T, Cheng A, et al. Cisplatin promotes mesenchymal-like characteristics in osteosarcoma through Snail. Oncol Lett. 2016;12:5007-5014 pubmed 出版商
  78. Zangari J, Ilie M, Rouaud F, Signetti L, Ohanna M, Didier R, et al. Rapid decay of engulfed extracellular miRNA by XRN1 exonuclease promotes transient epithelial-mesenchymal transition. Nucleic Acids Res. 2017;45:4131-4141 pubmed 出版商
  79. Schiffmacher A, Xie V, Taneyhill L. Cadherin-6B proteolysis promotes the neural crest cell epithelial-to-mesenchymal transition through transcriptional regulation. J Cell Biol. 2016;215:735-747 pubmed
  80. Zhao X, Li L, Wang X, Fu R, Lv Y, Jin W, et al. Inhibition of Snail Family Transcriptional Repressor 2 (SNAI2) Enhances Multidrug Resistance of Hepatocellular Carcinoma Cells. PLoS ONE. 2016;11:e0164752 pubmed 出版商
  81. Karthikeyan S, Lantvit D, Chae D, Burdette J. Cadherin-6 type 2, K-cadherin (CDH6) is regulated by mutant p53 in the fallopian tube but is not expressed in the ovarian surface. Oncotarget. 2016;7:69871-69882 pubmed 出版商
  82. Matkar P, Singh K, Rudenko D, Kim Y, Kuliszewski M, Prud homme G, et al. Novel regulatory role of neuropilin-1 in endothelial-to-mesenchymal transition and fibrosis in pancreatic ductal adenocarcinoma. Oncotarget. 2016;7:69489-69506 pubmed 出版商
  83. Greenwood E, Maisel S, Ebertz D, Russ A, Pandey R, SCHROEDER J. Llgl1 prevents metaplastic survival driven by epidermal growth factor dependent migration. Oncotarget. 2016;7:60776-60792 pubmed 出版商
  84. Li C, Li Q, Cai Y, He Y, Lan X, Wang W, et al. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis. Cancer Gene Ther. 2016;23:295-302 pubmed 出版商
  85. Chiang K, Hsu S, Lin S, Yeh C, Pang J, Wang S, et al. PTEN Insufficiency Increases Breast Cancer Cell Metastasis In Vitro and In Vivo in a Xenograft Zebrafish Model. Anticancer Res. 2016;36:3997-4005 pubmed
  86. Wei M, He W, Lu X, Ni L, Yang Y, Chen L, et al. JiaWeiDangGui Decoction Ameliorates Proteinuria and Kidney Injury in Adriamycin-Induced Rat by Blockade of TGF-?/Smad Signaling. Evid Based Complement Alternat Med. 2016;2016:5031890 pubmed 出版商
  87. Yang S, Tsai C, Pan Y, Yeh C, Pang J, Takano M, et al. MART-10, a newly synthesized vitamin D analog, represses metastatic potential of head and neck squamous carcinoma cells. Drug Des Devel Ther. 2016;10:1995-2002 pubmed 出版商
  88. Berens E, Sharif G, Schmidt M, Yan G, Shuptrine C, Weiner L, et al. Keratin-associated protein 5-5 controls cytoskeletal function and cancer cell vascular invasion. Oncogene. 2017;36:593-605 pubmed 出版商
  89. Zhang Q, Liu S, Parajuli K, Zhang W, Zhang K, Mo Z, et al. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene. 2017;36:687-699 pubmed 出版商
  90. Shriver M, Marimuthu S, Paul C, Geist J, Seale T, Konstantopoulos K, et al. Giant obscurins regulate the PI3K cascade in breast epithelial cells via direct binding to the PI3K/p85 regulatory subunit. Oncotarget. 2016;7:45414-45428 pubmed 出版商
  91. Tisza M, Zhao W, Fuentes J, Prijic S, Chen X, Levental I, et al. Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts. Oncotarget. 2016;7:51553-51568 pubmed 出版商
  92. Chuang H, Su H, Li C, Lin S, Yen S, Huang M, et al. The Role of Butylidenephthalide in Targeting the Microenvironment Which Contributes to Liver Fibrosis Amelioration. Front Pharmacol. 2016;7:112 pubmed 出版商
  93. Lin S, Wang B, Lin C, Chien P, Wu Y, Ko J, et al. Chidamide alleviates TGF-?-induced epithelial-mesenchymal transition in lung cancer cell lines. Mol Biol Rep. 2016;43:687-95 pubmed 出版商
  94. Ding H, Xu Y, Gao D, Wang L. Glioma-associated oncogene homolog 1 promotes epithelial-mesenchymal transition in human renal tubular epithelial cell. Am J Transl Res. 2016;8:662-9 pubmed
  95. Chiang K, Yeh T, Chen S, Pang J, Yeh C, Hsu J, et al. The Vitamin D Analog, MART-10, Attenuates Triple Negative Breast Cancer Cells Metastatic Potential. Int J Mol Sci. 2016;17: pubmed 出版商
  96. Zhuang L, Yang Y, Ma X, Han B, Wang Z, Zhao Q, et al. MicroRNA-92b promotes hepatocellular carcinoma progression by targeting Smad7 and is mediated by long non-coding RNA XIST. Cell Death Dis. 2016;7:e2203 pubmed 出版商
  97. Liu S, Zhou F, Shen Y, Zhang Y, Yin H, Zeng Y, et al. Fluid shear stress induces epithelial-mesenchymal transition (EMT) in Hep-2 cells. Oncotarget. 2016;7:32876-92 pubmed 出版商
  98. Bassey Archibong B, Kwiecien J, Milosavljevic S, Hallett R, Rayner L, Erb M, et al. Kaiso depletion attenuates transforming growth factor-? signaling and metastatic activity of triple-negative breast cancer cells. Oncogenesis. 2016;5:e208 pubmed 出版商
  99. Ananthula S, Sinha A, El Gassim M, Batth S, Marshall G, Gardner L, et al. Geminin overexpression-dependent recruitment and crosstalk with mesenchymal stem cells enhance aggressiveness in triple negative breast cancers. Oncotarget. 2016;7:20869-89 pubmed 出版商
  100. Tsui K, Lin Y, Chung L, Chuang S, Feng T, Chiang K, et al. Prostate-derived ets factor represses tumorigenesis and modulates epithelial-to-mesenchymal transition in bladder carcinoma cells. Cancer Lett. 2016;375:142-151 pubmed 出版商
  101. Zaldumbide L, Erramuzpe A, Guarch R, Pulido R, Cortés J, López J. Snail heterogeneity in clear cell renal cell carcinoma. BMC Cancer. 2016;16:194 pubmed 出版商
  102. Thakur A, Nigri J, Lac S, Leca J, Bressy C, Berthezene P, et al. TAp73 loss favors Smad-independent TGF-β signaling that drives EMT in pancreatic ductal adenocarcinoma. Cell Death Differ. 2016;23:1358-70 pubmed 出版商
  103. Chang T, Chen C, Wu Y, Liu J, Kuo Y, Lee K, et al. Inflammation Promotes Expression of Stemness-Related Properties in HBV-Related Hepatocellular Carcinoma. PLoS ONE. 2016;11:e0149897 pubmed 出版商
  104. Lehmann W, Mossmann D, Kleemann J, Mock K, Meisinger C, Brummer T, et al. ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat Commun. 2016;7:10498 pubmed 出版商
  105. Weyemi U, Redon C, Choudhuri R, Aziz T, Maeda D, Boufraqech M, et al. The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition. Nat Commun. 2016;7:10711 pubmed 出版商
  106. Gao Y, Zhao Y, Zhang J, Lu Y, Liu X, Geng P, et al. The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1. Sci Rep. 2016;6:19874 pubmed 出版商
  107. Gho C, Schomann T, de Groot S, Frijns J, Rivolta M, Neumann M, et al. Isolation, expansion and neural differentiation of stem cells from human plucked hair: a further step towards autologous nerve recovery. Cytotechnology. 2016;68:1849-58 pubmed 出版商
  108. Yan L, Liu Y, Xiang J, Wu Q, Xu L, Luo X, et al. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer. Int J Oncol. 2016;48:471-84 pubmed 出版商
  109. Werner A, Iwasaki S, McGourty C, Medina Ruiz S, Teerikorpi N, Fedrigo I, et al. Cell-fate determination by ubiquitin-dependent regulation of translation. Nature. 2015;525:523-7 pubmed 出版商
  110. Luanpitpong S, Li J, Manke A, Brundage K, Ellis E, McLaughlin S, et al. SLUG is required for SOX9 stabilization and functions to promote cancer stem cells and metastasis in human lung carcinoma. Oncogene. 2016;35:2824-33 pubmed 出版商
  111. Yokdang N, Hatakeyama J, Wald J, Simion C, Tellez J, Chang D, et al. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene. 2016;35:2932-47 pubmed 出版商
  112. Zhao Y, Londono P, Cao Y, Sharpe E, Proenza C, O Rourke R, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun. 2015;6:8243 pubmed 出版商
  113. Chiang K, Kuo S, Chen C, Ng S, Lin S, Yeh C, et al. MART-10, the vitamin D analog, is a potent drug to inhibit anaplastic thyroid cancer cell metastatic potential. Cancer Lett. 2015;369:76-85 pubmed 出版商
  114. Pickup M, Hover L, Guo Y, Gorska A, Chytil A, Novitskiy S, et al. Deletion of the BMP receptor BMPR1a impairs mammary tumor formation and metastasis. Oncotarget. 2015;6:22890-904 pubmed
  115. Tsui K, Hsu S, Chung L, Lin Y, Feng T, Lee T, et al. Growth differentiation factor-15: a p53- and demethylation-upregulating gene represses cell proliferation, invasion, and tumorigenesis in bladder carcinoma cells. Sci Rep. 2015;5:12870 pubmed 出版商
  116. Mego M, Cierna Z, Janega P, Karaba M, Minarik G, Benca J, et al. Relationship between circulating tumor cells and epithelial to mesenchymal transition in early breast cancer. BMC Cancer. 2015;15:533 pubmed 出版商
  117. Seo G, Ho M, Bui N, Kim Y, Koh D, Lim Y, et al. Novel naphthochalcone derivative accelerate dermal wound healing through induction of epithelial-mesenchymal transition of keratinocyte. J Biomed Sci. 2015;22:47 pubmed 出版商
  118. Cheung S, Boey Y, Koh V, Thike A, Lim J, Iqbal J, et al. Role of epithelial-mesenchymal transition markers in triple-negative breast cancer. Breast Cancer Res Treat. 2015;152:489-98 pubmed 出版商
  119. Castillo Lluva S, Hontecillas Prieto L, Blanco Gómez A, Del Mar Sáez Freire M, García Cenador B, García Criado J, et al. A new role of SNAI2 in postlactational involution of the mammary gland links it to luminal breast cancer development. Oncogene. 2015;34:4777-90 pubmed 出版商
  120. Min K, Liggett J, Silva G, Wu W, Wang R, Shen R, et al. NAG-1/GDF15 accumulates in the nucleus and modulates transcriptional regulation of the Smad pathway. Oncogene. 2016;35:377-88 pubmed 出版商
  121. Li S, Wu X, Dong C, Xie X, Wu J, Zhang X. The differential expression of OCT4 isoforms in cervical carcinoma. PLoS ONE. 2015;10:e0118033 pubmed 出版商
  122. Xu T, Fan B, Lv C, Xiao D. Slug mediates nasopharyngeal carcinoma radioresistance via downregulation of PUMA in a p53-dependent and -independent manner. Oncol Rep. 2015;33:2631-8 pubmed 出版商
  123. Piva R, Lambertini E, Manferdini C, Capanni C, Penolazzi L, Gabusi E, et al. Slug transcription factor and nuclear Lamin B1 are upregulated in osteoarthritic chondrocytes. Osteoarthritis Cartilage. 2015;23:1226-30 pubmed 出版商
  124. Knezevic J, Pfefferle A, Petrovic I, Greene S, Perou C, Rosen J. Expression of miR-200c in claudin-low breast cancer alters stem cell functionality, enhances chemosensitivity and reduces metastatic potential. Oncogene. 2015;34:5997-6006 pubmed 出版商
  125. Joseph J, Conroy S, Pavlov K, Sontakke P, Tomar T, Eggens Meijer E, et al. Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1α-ZEB1 axis. Cancer Lett. 2015;359:107-16 pubmed 出版商
  126. Cheng Y, Chen P, Chiang H, Suen C, Hwang M, Lin T, et al. Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT. Cell Death Dis. 2015;6:e1584 pubmed 出版商
  127. Satelli A, Mitra A, Brownlee Z, Xia X, Bellister S, Overman M, et al. Epithelial-mesenchymal transitioned circulating tumor cells capture for detecting tumor progression. Clin Cancer Res. 2015;21:899-906 pubmed 出版商
  128. Galvagni F, Lentucci C, Neri F, Dettori D, De Clemente C, Orlandini M, et al. Snai1 promotes ESC exit from the pluripotency by direct repression of self-renewal genes. Stem Cells. 2015;33:742-50 pubmed 出版商
  129. Pathania S, Bade S, Le Guillou M, Burke K, Reed R, Bowman Colin C, et al. BRCA1 haploinsufficiency for replication stress suppression in primary cells. Nat Commun. 2014;5:5496 pubmed 出版商
  130. Shriver M, Stroka K, Vitolo M, Martin S, Huso D, Konstantopoulos K, et al. Loss of giant obscurins from breast epithelium promotes epithelial-to-mesenchymal transition, tumorigenicity and metastasis. Oncogene. 2015;34:4248-59 pubmed 出版商
  131. Joseph J, Conroy S, Tomar T, Eggens Meijer E, Bhat K, Copray S, et al. TGF-β is an inducer of ZEB1-dependent mesenchymal transdifferentiation in glioblastoma that is associated with tumor invasion. Cell Death Dis. 2014;5:e1443 pubmed 出版商
  132. Sun Y, Hu L, Zheng H, Bagnoli M, Guo Y, Rupaimoole R, et al. MiR-506 inhibits multiple targets in the epithelial-to-mesenchymal transition network and is associated with good prognosis in epithelial ovarian cancer. J Pathol. 2015;235:25-36 pubmed 出版商
  133. Lee J, Chung L, Chen Y, Feng T, Juang H. N-myc downstream-regulated gene 1 downregulates cell proliferation, invasiveness, and tumorigenesis in human oral squamous cell carcinoma. Cancer Lett. 2014;355:242-52 pubmed 出版商
  134. Lu G, Zhang Q, Huang Y, Song J, Tomaino R, Ehrenberger T, et al. Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor. Cancer Cell. 2014;26:222-34 pubmed 出版商
  135. Liang W, Hao Z, Han J, Zhu D, Jin Z, Xie W. CAV-1 contributes to bladder cancer progression by inducing epithelial-to-mesenchymal transition. Urol Oncol. 2014;32:855-63 pubmed 出版商
  136. Adham S, Al Harrasi I, Al Haddabi I, Al Rashdi A, Al Sinawi S, Al Maniri A, et al. Immunohistological insight into the correlation between neuropilin-1 and epithelial-mesenchymal transition markers in epithelial ovarian cancer. J Histochem Cytochem. 2014;62:619-31 pubmed 出版商
  137. Subramani R, Lopez Valdez R, Arumugam A, Nandy S, Boopalan T, Lakshmanaswamy R. Targeting insulin-like growth factor 1 receptor inhibits pancreatic cancer growth and metastasis. PLoS ONE. 2014;9:e97016 pubmed 出版商
  138. Kim M, Kim M, Kim H, Kim Y, Song Y. Expression profiles of epithelial-mesenchymal transition-associated proteins in epithelial ovarian carcinoma. Biomed Res Int. 2014;2014:495754 pubmed 出版商
  139. Fukai J, Fujita K, Yamoto T, Sasaki T, Uematsu Y, Nakao N. Intracranial extension of adenoid cystic carcinoma: potential involvement of EphA2 expression and epithelial-mesenchymal transition in tumor metastasis: a case report. BMC Res Notes. 2014;7:131 pubmed 出版商
  140. Li A, Morton J, Ma Y, Karim S, Zhou Y, Faller W, et al. Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology. 2014;146:1386-96.e1-17 pubmed 出版商
  141. Wu K, Chen K, Wang C, Jiao X, Wang L, Zhou J, et al. Cell fate factor DACH1 represses YB-1-mediated oncogenic transcription and translation. Cancer Res. 2014;74:829-39 pubmed 出版商
  142. Shintaku M, Yoneda H, Hirato J, Nagaishi M, Okabe H. Gliosarcoma with ependymal and PNET-like differentiation. Clin Neuropathol. 2013;32:508-14 pubmed 出版商
  143. Devine D, Rostas J, Metge B, Das S, Mulekar M, Tucker J, et al. Loss of N-Myc interactor promotes epithelial-mesenchymal transition by activation of TGF-?/SMAD signaling. Oncogene. 2014;33:2620-8 pubmed 出版商
  144. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013;498:492-6 pubmed 出版商
  145. Chu I, Lai W, Aprelikova O, El Touny L, Kouros Mehr H, Green J. Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß. PLoS ONE. 2013;8:e61125 pubmed 出版商
  146. Nagaishi M, Nobusawa S, Tanaka Y, Ikota H, Yokoo H, Nakazato Y. Slug, twist, and E-cadherin as immunohistochemical biomarkers in meningeal tumors. PLoS ONE. 2012;7:e46053 pubmed 出版商
  147. Wu C, Tang S, Wang P, Lee H, Ko J. Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation. J Biol Chem. 2012;287:25292-302 pubmed 出版商