这是一篇来自已证抗体库的有关人类 SMAD5的综述,是根据83篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合SMAD5 抗体。
SMAD5 同义词: DWFC; JV5-1; MADH5

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP728(2)AY)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 SMAD5抗体(Abcam, ab76296)被用于被用于免疫细胞化学在人类样本上. Cell Stem Cell (2022) ncbi
domestic rabbit 单克隆(EP619Y)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 SMAD5抗体(Abcam, ab40771)被用于被用于免疫细胞化学在人类样本上. Cell Stem Cell (2022) ncbi
domestic rabbit 单克隆(EP619Y)
  • 免疫印迹; 人类; 图 4c
艾博抗(上海)贸易有限公司 SMAD5抗体(Abcam, ab40771)被用于被用于免疫印迹在人类样本上 (图 4c). Sci Adv (2019) ncbi
domestic rabbit 单克隆(MMC-1-104-3)
  • 免疫印迹; 人类; 图 4c
艾博抗(上海)贸易有限公司 SMAD5抗体(Abcam, ab92698)被用于被用于免疫印迹在人类样本上 (图 4c). Sci Adv (2019) ncbi
domestic rabbit 单克隆(MMC-1-104-3)
  • 免疫印迹; 小鼠; 1:1000; 图 2d
艾博抗(上海)贸易有限公司 SMAD5抗体(Abcam, ab92698)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d). Blood (2017) ncbi
domestic rabbit 单克隆(EP619Y)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 SMAD5抗体(Abcam, ab40771)被用于被用于免疫印迹在人类样本上 (图 4). Cancer Cell Int (2016) ncbi
domestic rabbit 单克隆(MMC-1-104-3)
  • 免疫印迹; 小鼠; 1:1000; 图 5
艾博抗(上海)贸易有限公司 SMAD5抗体(Abcam, ab92698)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(EP728(2)AY)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 SMAD5抗体(Abcam, ab76296)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). J Cell Sci (2015) ncbi
domestic rabbit 单克隆(EP728(2)AY)
  • 免疫印迹; 人类; 1:500; 图 5
艾博抗(上海)贸易有限公司 SMAD5抗体(Abcam, ab76296)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). J Transl Med (2015) ncbi
domestic rabbit 单克隆(MMC-1-104-3)
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 SMAD5抗体(Abcam, ab92698)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. FASEB J (2014) ncbi
赛默飞世尔
domestic rabbit 重组(31H14L11)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5e
  • 免疫印迹; 小鼠; 1:500; 图 5g
赛默飞世尔 SMAD5抗体(Thermo, 700047)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5e) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 5g). Nat Commun (2021) ncbi
domestic rabbit 单克隆(E.239.4)
  • 免疫印迹; 斑马鱼; 1:500; 图 2i
赛默飞世尔 SMAD5抗体(Invitrogen, MA5-15124)被用于被用于免疫印迹在斑马鱼样本上浓度为1:500 (图 2i). Cell Rep (2018) ncbi
domestic rabbit 重组(31H14L11)
  • 免疫组化; 小鼠; 图 1n
赛默飞世尔 SMAD5抗体(Invitrogen, 700047)被用于被用于免疫组化在小鼠样本上 (图 1n). J Mol Histol (2017) ncbi
domestic rabbit 重组(31H14L11)
  • 免疫细胞化学; 小鼠; 图 6
赛默飞世尔 SMAD5抗体(Invitrogen, 700047)被用于被用于免疫细胞化学在小鼠样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 重组(31H14L11)
  • 免疫印迹; 小鼠; 1:200
赛默飞世尔 SMAD5抗体(Invitrogen, 700047)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Dev Biol (2015) ncbi
小鼠 单克隆(ZS004)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔 SMAD5抗体(Invitrogen, 39-5700)被用于被用于免疫印迹在小鼠样本上 (图 5). Blood (2011) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2c
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell signaling, 9517)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2c). Sci Rep (2022) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 SMAD5抗体(CST, 9516)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Front Cardiovasc Med (2022) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 SMAD5抗体(CST, 9516)被用于被用于免疫印迹在人类样本上 (图 8a). Int J Med Sci (2022) ncbi
domestic rabbit 单克隆(D4G2)
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 SMAD5抗体(CST, 12534)被用于被用于免疫印迹在人类样本上 (图 8a). Int J Med Sci (2022) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫细胞化学; 人类; 1:100; 图 6a
赛信通(上海)生物试剂有限公司 SMAD5抗体(CST, 9516)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6a). elife (2022) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling Technology, 9516S)被用于被用于免疫印迹在小鼠样本上 (图 6a). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫细胞化学; 小鼠; 1:800; 图 s6b
  • 免疫印迹; 小鼠; 1:1000; 图 2b, s6c
赛信通(上海)生物试剂有限公司 SMAD5抗体(CST, 9516)被用于被用于免疫细胞化学在小鼠样本上浓度为1:800 (图 s6b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b, s6c). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 大鼠; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司 SMAD5抗体(CST, 9516)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1g). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 小鼠; 1:1000; 图 s6i
赛信通(上海)生物试剂有限公司 SMAD5抗体(CST, 9516)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6i). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling Technology, 9516)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D4G2)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling Technology, 12534)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling Technology, 9516)被用于被用于免疫印迹在人类样本上 (图 5e). Diabetes (2020) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫组化; 小鼠; 1:500; 图 2a
  • 免疫印迹; 小鼠; 1:500; 图 s3
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 s3). elife (2020) ncbi
domestic rabbit 单克隆(D4G2)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling Technology, 12534)被用于被用于免疫印迹在人类样本上 (图 3c). Int J Mol Sci (2020) ncbi
domestic rabbit 单克隆(D4G2)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling Technology, 12534)被用于被用于免疫印迹在人类样本上 (图 3c). Antioxidants (Basel) (2020) ncbi
domestic rabbit 单克隆(D4G2)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling Technology, 12534)被用于被用于免疫印迹在人类样本上 (图 3c). Antibiotics (Basel) (2020) ncbi
domestic rabbit 单克隆(D4G2)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling Technology, 12534)被用于被用于免疫印迹在人类样本上 (图 3c). Acta Neurochir (Wien) (2020) ncbi
domestic rabbit 单克隆(D4G2)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling Technology, 12534)被用于被用于免疫印迹在人类样本上 (图 3c). Adipocyte (2020) ncbi
domestic rabbit 单克隆(D4G2)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 12534)被用于被用于免疫印迹在人类样本上 (图 s2). Clin Transl Med (2020) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫印迹在人类样本上 (图 s2). Clin Transl Med (2020) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 小鼠; 1:1000; 图 1s1a
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 41D10)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1s1a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). elife (2020) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫印迹在小鼠样本上 (图 6c). J Cardiovasc Dev Dis (2020) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signalling, 9516)被用于被用于免疫印迹在人类样本上浓度为1:1000. Arterioscler Thromb Vasc Biol (2020) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫组化; 斑马鱼; 1:100; 图 2s2f
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫组化在斑马鱼样本上浓度为1:100 (图 2s2f). elife (2020) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling Technologies, 41D10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). PLoS Biol (2019) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫组化; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling Technology, 9516)被用于被用于免疫组化在小鼠样本上 (图 3e). Proc Natl Acad Sci U S A (2019) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫组化; 小鼠; 1:100; 图 5d
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 人类; 1:250; 图 2b
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 2b). BMC Res Notes (2019) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫细胞化学; 小鼠; 1:200; 图 5b
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫印迹在小鼠样本上 (图 6c). Cell Rep (2019) ncbi
domestic rabbit 单克隆(D4G2)
  • 免疫印迹; 小鼠; 1:500; 图 s2
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling Technology, 12534)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2). Nat Commun (2018) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫组化; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling Technology, 9516)被用于被用于免疫组化在小鼠样本上 (图 3c). Atherosclerosis (2018) ncbi
domestic rabbit 单克隆(D4G2)
  • 免疫印迹; 人类; 1:2000; 图 2c
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 12534)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2c). Dev Cell (2017) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 SMAD5抗体(CST, 9516)被用于被用于免疫印迹在人类样本上 (图 1e). J Immunol (2017) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫组化; fruit fly ; 1:200; 图 s3b
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫组化在fruit fly 样本上浓度为1:200 (图 s3b). Genetics (2017) ncbi
domestic rabbit 单克隆(D4G2)
  • 免疫印迹; 小鼠; 图 EV4a
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 12534)被用于被用于免疫印迹在小鼠样本上 (图 EV4a). EMBO Mol Med (2017) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 大鼠; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 41D10)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8a). Invest Ophthalmol Vis Sci (2017) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 人类; 1:1000; 图 1h
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling Technology, 9516)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1h). Nat Commun (2017) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 小鼠; 图 s5a
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516p)被用于被用于免疫印迹在小鼠样本上 (图 s5a). PLoS Genet (2017) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫细胞化学; 人类; 图 6e
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell signaling, 9516)被用于被用于免疫细胞化学在人类样本上 (图 6e) 和 被用于免疫印迹在人类样本上 (图 6d). Oncotarget (2017) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫细胞化学; 人类; 1:500; 图 2c
  • 免疫印迹; 人类; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 人类; 图 11A
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫印迹在人类样本上 (图 11A). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D4G2)
  • 免疫印迹; 人类; 1:5000; 图 S1m
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell signaling, 12534)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 S1m). Nat Commun (2016) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫细胞化学; 人类; 1:1000; 图 1h
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell signaling, 9516)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1h). Nat Commun (2016) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell signaling, 9516)被用于被用于免疫印迹在人类样本上 (图 2c). J Mol Histol (2017) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 95165)被用于被用于免疫印迹在小鼠样本上 (图 8). Exp Cell Res (2016) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6h
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signalling, 9516S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6h). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9517S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫组化; 小鼠; 1:50; 图 6c
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516P)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 6c). J Orthop Res (2016) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516S)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Oncol (2016) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cellsignaling, 9516)被用于被用于免疫印迹在人类样本上 (图 1). Bone (2016) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫印迹在小鼠样本上 (图 4b). EMBO Mol Med (2016) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Skelet Muscle (2015) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1
  • 免疫印迹; 小鼠; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 大鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling Tech, 9516)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 人类; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Am J Physiol Gastrointest Liver Physiol (2015) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫印迹在人类样本上. Stem Cell Reports (2015) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516S)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫组化-石蜡切片; 大鼠; 1:100
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516S)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. Exp Neurol (2015) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signalling, 9516)被用于被用于免疫印迹在小鼠样本上. Stem Cells (2015) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫细胞化学; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling Technology, 9516P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50. Mol Cell Endocrinol (2015) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫组化; 大鼠; 1:1500; 图 4
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫组化在大鼠样本上浓度为1:1500 (图 4). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s5
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s5). Development (2014) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫细胞化学; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling Technology, 9516)被用于被用于免疫细胞化学在小鼠样本上 (图 s1). Stem Cell Reports (2014) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫印迹在小鼠样本上 (图 6). BMC Biol (2013) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling Technologies, 9516p)被用于被用于免疫印迹在人类样本上浓度为1:2000. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫印迹在小鼠样本上. Nature (2013) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
domestic rabbit 单克隆(41D10)
  • 免疫组化-自由浮动切片; 小鼠; 1:50
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 SMAD5抗体(Cell Signaling, 9516)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:50 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Mol Cell Biol (2013) ncbi
文章列表
  1. Wei T, Richter G, Zhang H, Sun R, Smith C, STRUB G. Extracranial arteriovenous malformations demonstrate dysregulated TGF-β/BMP signaling and increased circulating TGF-β1. Sci Rep. 2022;12:16612 pubmed 出版商
  2. Pham T, Panda A, Kagawa H, To S, Ertekin C, Georgolopoulos G, et al. Modeling human extraembryonic mesoderm cells using naive pluripotent stem cells. Cell Stem Cell. 2022;29:1346-1365.e10 pubmed 出版商
  3. Chakrabarti M, Bhattacharya A, Gebere M, Johnson J, Ayub Z, Chatzistamou I, et al. Increased TGFβ1 and SMAD3 Contribute to Age-Related Aortic Valve Calcification. Front Cardiovasc Med. 2022;9:770065 pubmed 出版商
  4. Mu R, Chen B, Bi B, Yu H, Liu J, Li J, et al. LIM Mineralization Protein-1 Enhances the Committed Differentiation of Dental Pulp Stem Cells through the ERK1/2 and p38 MAPK Pathways and BMP Signaling. Int J Med Sci. 2022;19:1307-1319 pubmed 出版商
  5. Reinitz F, Chen E, Nicolis Di Robilant B, Chuluun B, Antony J, Jones R, et al. Inhibiting USP16 rescues stem cell aging and memory in an Alzheimer's model. elife. 2022;11: pubmed 出版商
  6. Kim J, Kim M, Hong S, Kim E, Lee H, Jung H, et al. Albiflorin Promotes Osteoblast Differentiation and Healing of Rat Femoral Fractures Through Enhancing BMP-2/Smad and Wnt/β-Catenin Signaling. Front Pharmacol. 2021;12:690113 pubmed 出版商
  7. Shao C, Lou P, Liu R, Bi X, Li G, Yang X, et al. Hormone-Responsive BMP Signaling Expands Myoepithelial Cell Lineages and Prevents Alveolar Precocity in Mammary Gland. Front Cell Dev Biol. 2021;9:691050 pubmed 出版商
  8. Zhang D, Huang J, Sun X, Chen H, Huang S, Yang J, et al. Targeting local lymphatics to ameliorate heterotopic ossification via FGFR3-BMPR1a pathway. Nat Commun. 2021;12:4391 pubmed 出版商
  9. Meinsohn M, Saatcioglu H, Wei L, Li Y, Horn H, Chauvin M, et al. Single-cell sequencing reveals suppressive transcriptional programs regulated by MIS/AMH in neonatal ovaries. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  10. Nasu M, Esumi S, Hatakeyama J, Tamamaki N, Shimamura K. Two-Phase Lineage Specification of Telencephalon Progenitors Generated From Mouse Embryonic Stem Cells. Front Cell Dev Biol. 2021;9:632381 pubmed 出版商
  11. Nishad R, Mukhi D, Singh A, Motrapu M, Chintala K, Tammineni P, et al. Growth hormone induces mitotic catastrophe of glomerular podocytes and contributes to proteinuria. Cell Death Dis. 2021;12:342 pubmed 出版商
  12. Liu C, Teo M, Pek S, Wu X, Leong M, Tay H, et al. A Multifunctional Role of Leucine-Rich α-2-Glycoprotein 1 in Cutaneous Wound Healing Under Normal and Diabetic Conditions. Diabetes. 2020;69:2467-2480 pubmed 出版商
  13. Galeone A, Adams J, Matsuda S, Presa M, Pandey A, Han S, et al. Regulation of BMP4/Dpp retrotranslocation and signaling by deglycosylation. elife. 2020;9: pubmed 出版商
  14. Park N, Kang H. BMP-Induced MicroRNA-101 Expression Regulates Vascular Smooth Muscle Cell Migration. Int J Mol Sci. 2020;21: pubmed 出版商
  15. Benade J, Sher L, De Klerk S, Deshpande G, Bester D, Marnewick J, et al. The Impact of Sugar-Sweetened Beverage Consumption on the Liver: A Proteomics-based Analysis. Antioxidants (Basel). 2020;9: pubmed 出版商
  16. Salih E, Julkunen Tiitto R, Luukkanen O, Sipi M, Fahmi M, Fyhrquist P. Potential Anti-Tuberculosis Activity of the Extracts and Their Active Components of Anogeissus Leiocarpa (DC.) Guill. and Perr. with Special Emphasis on Polyphenols. Antibiotics (Basel). 2020;9: pubmed 出版商
  17. Lippitz B, Bartek J, Mathiesen T, Förander P. Ten-year follow-up after Gamma Knife radiosurgery of meningioma and review of the literature. Acta Neurochir (Wien). 2020;162:2183-2196 pubmed 出版商
  18. Liu L, Wu J, Gao Y, Lv Y, Xue J, Qin L, et al. The effect of Acot2 overexpression or downregulation on the preadipocyte differentiation in Chinese Red Steppe cattle. Adipocyte. 2020;9:279-289 pubmed 出版商
  19. Shoemaker L, McCormick A, Allen B, Chang S. Evidence for endothelial-to-mesenchymal transition in human brain arteriovenous malformations. Clin Transl Med. 2020;10:e99 pubmed 出版商
  20. Aykul S, Corpina R, Goebel E, Cunanan C, Dimitriou A, Kim H, et al. Activin A forms a non-signaling complex with ACVR1 and type II Activin/BMP receptors via its finger 2 tip loop. elife. 2020;9: pubmed 出版商
  21. Chakrabarti M, Al Sammarraie N, Gebere M, Bhattacharya A, Chopra S, Johnson J, et al. Transforming Growth Factor Beta3 is Required for Cardiovascular Development. J Cardiovasc Dev Dis. 2020;7: pubmed 出版商
  22. Di Gregoli K, Somerville M, Bianco R, Thomas A, Frankow A, Newby A, et al. Galectin-3 Identifies a Subset of Macrophages With a Potential Beneficial Role in Atherosclerosis. Arterioscler Thromb Vasc Biol. 2020;40:1491-1509 pubmed 出版商
  23. Schauer A, Pinheiro D, Hauschild R, Heisenberg C. Zebrafish embryonic explants undergo genetically encoded self-assembly. elife. 2020;9: pubmed 出版商
  24. Hiepen C, Jatzlau J, Hildebrandt S, Kampfrath B, Goktas M, Murgai A, et al. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics. PLoS Biol. 2019;17:e3000557 pubmed 出版商
  25. Herberg S, McDermott A, Dang P, Alt D, Tang R, Dawahare J, et al. Combinatorial morphogenetic and mechanical cues to mimic bone development for defect repair. Sci Adv. 2019;5:eaax2476 pubmed 出版商
  26. Wang W, Chun H, Baek J, Sadik J, Shirazyan A, Razavi P, et al. The TGFβ type I receptor TGFβRI functions as an inhibitor of BMP signaling in cartilage. Proc Natl Acad Sci U S A. 2019;116:15570-15579 pubmed 出版商
  27. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  28. Gorrell R, Totten M, Schoerning L, Newby J, Geyman L, Lawless W, et al. Identification of a bone morphogenetic protein type 2 receptor neutralizing antibody. BMC Res Notes. 2019;12:331 pubmed 出版商
  29. Montalbán Loro R, Lozano Ureña A, Ito M, Krueger C, Reik W, Ferguson Smith A, et al. TET3 prevents terminal differentiation of adult NSCs by a non-catalytic action at Snrpn. Nat Commun. 2019;10:1726 pubmed 出版商
  30. Hendrikx S, Coso S, Prat Luri B, Wetterwald L, Sabine A, Franco C, et al. Endothelial Calcineurin Signaling Restrains Metastatic Outgrowth by Regulating Bmp2. Cell Rep. 2019;26:1227-1241.e6 pubmed 出版商
  31. Lam J, van den Bosch M, Wegrzyn J, Parker J, Ibrahim R, Slowski K, et al. miR-143/145 differentially regulate hematopoietic stem and progenitor activity through suppression of canonical TGFβ signaling. Nat Commun. 2018;9:2418 pubmed 出版商
  32. Mönnich M, Borgeskov L, Breslin L, Jakobsen L, Rogowski M, Doğanlı C, et al. CEP128 Localizes to the Subdistal Appendages of the Mother Centriole and Regulates TGF-β/BMP Signaling at the Primary Cilium. Cell Rep. 2018;22:2584-2592 pubmed 出版商
  33. Dube P, Chikkamenahalli L, Birnbaumer L, Vazquez G. Reduced calcification and osteogenic features in advanced atherosclerotic plaques of mice with macrophage-specific loss of TRPC3. Atherosclerosis. 2018;270:199-204 pubmed 出版商
  34. Bajikar S, Wang C, Borten M, Pereira E, Atkins K, Janes K. Tumor-Suppressor Inactivation of GDF11 Occurs by Precursor Sequestration in Triple-Negative Breast Cancer. Dev Cell. 2017;43:418-435.e13 pubmed 出版商
  35. Ventura E, Weller M, Burghardt I. Cutting Edge: ERK1 Mediates the Autocrine Positive Feedback Loop of TGF-? and Furin in Glioma-Initiating Cells. J Immunol. 2017;198:4569-4574 pubmed 出版商
  36. Wang C, Core A, Canali S, Zumbrennen Bullough K, Ozer S, Umans L, et al. Smad1/5 is required for erythropoietin-mediated suppression of hepcidin in mice. Blood. 2017;130:73-83 pubmed 出版商
  37. Tang Y, Geng Q, Chen D, Zhao S, Liu X, Wang Z. Germline Proliferation Is Regulated by Somatic Endocytic Genes via JNK and BMP Signaling in Drosophila. Genetics. 2017;206:189-197 pubmed 出版商
  38. Hammers D, Merscham Banda M, Hsiao J, ENGST S, Hartman J, Sweeney H. Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med. 2017;9:531-544 pubmed 出版商
  39. Shu D, Wojciechowski M, Lovicu F. Bone Morphogenetic Protein-7 Suppresses TGF?2-Induced Epithelial-Mesenchymal Transition in the Lens: Implications for Cataract Prevention. Invest Ophthalmol Vis Sci. 2017;58:781-796 pubmed 出版商
  40. Hurst L, Dunmore B, Long L, Crosby A, Al Lamki R, Deighton J, et al. TNFα drives pulmonary arterial hypertension by suppressing the BMP type-II receptor and altering NOTCH signalling. Nat Commun. 2017;8:14079 pubmed 出版商
  41. Jiang C, Diao F, Sang Y, Xu N, Zhu R, Wang X, et al. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary. PLoS Genet. 2017;13:e1006535 pubmed 出版商
  42. Sun J, Liu X, Gao H, Zhang L, Ji Q, Wang Z, et al. Overexpression of colorectal cancer oncogene CHRDL2 predicts a poor prognosis. Oncotarget. 2017;8:11489-11506 pubmed 出版商
  43. Yu Z, Mouillesseaux K, Kushner E, Bautch V. Tumor-Derived Factors and Reduced p53 Promote Endothelial Cell Centrosome Over-Duplication. PLoS ONE. 2016;11:e0168334 pubmed 出版商
  44. Yuan H, Sehgal P. MxA Is a Novel Regulator of Endosome-Associated Transcriptional Signaling by Bone Morphogenetic Proteins 4 and 9 (BMP4 and BMP9). PLoS ONE. 2016;11:e0166382 pubmed 出版商
  45. Mouillesseaux K, Wiley D, Saunders L, Wylie L, Kushner E, Chong D, et al. Notch regulates BMP responsiveness and lateral branching in vessel networks via SMAD6. Nat Commun. 2016;7:13247 pubmed 出版商
  46. Iyer S, Chhabra Y, Harvey T, Wang R, Chiu H, Smith A, et al. CRIM1 is necessary for coronary vascular endothelial cell development and homeostasis. J Mol Histol. 2017;48:53-61 pubmed 出版商
  47. Zhao G, Zhu P, Renvoisé B, Maldonado Baez L, Park S, Blackstone C. Mammalian knock out cells reveal prominent roles for atlastin GTPases in ER network morphology. Exp Cell Res. 2016;349:32-44 pubmed 出版商
  48. Liu W, Zhou L, Zhou C, Zhang S, Jing J, Xie L, et al. GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation. Nat Commun. 2016;7:12794 pubmed 出版商
  49. Liu P, Wang C, Ma C, Wu Q, Zhang W, Lao G. MicroRNA-23a regulates epithelial-to-mesenchymal transition in endometrial endometrioid adenocarcinoma by targeting SMAD3. Cancer Cell Int. 2016;16:67 pubmed 出版商
  50. Gerling M, Büller N, Kirn L, Joost S, Frings O, Englert B, et al. Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth. Nat Commun. 2016;7:12321 pubmed 出版商
  51. Watanabe Y, Papoutsoglou P, Maturi V, Tsubakihara Y, Hottiger M, Heldin C, et al. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation. J Biol Chem. 2016;291:12706-23 pubmed 出版商
  52. Morgan E, Pittman J, DeGiacomo A, Cusher D, de Bakker C, Mroszczyk K, et al. BMPR1A antagonist differentially affects cartilage and bone formation during fracture healing. J Orthop Res. 2016;34:2096-2105 pubmed 出版商
  53. Kurimoto R, Iwasawa S, Ebata T, Ishiwata T, Sekine I, Tada Y, et al. Drug resistance originating from a TGF-β/FGF-2-driven epithelial-to-mesenchymal transition and its reversion in human lung adenocarcinoma cell lines harboring an EGFR mutation. Int J Oncol. 2016;48:1825-36 pubmed 出版商
  54. Iyer S, Chou F, Wang R, Chiu H, Raju V, Little M, et al. Crim1 has cell-autonomous and paracrine roles during embryonic heart development. Sci Rep. 2016;6:19832 pubmed 出版商
  55. Sawada S, Chosa N, Takizawa N, Yokota J, Igarashi Y, Tomoda K, et al. Establishment of mesenchymal stem cell lines derived from the bone marrow of green fluorescent protein-transgenic mice exhibiting a diversity in intracellular transforming growth factor-β and bone morphogenetic protein signaling. Mol Med Rep. 2016;13:2023-31 pubmed 出版商
  56. Micha D, Voermans E, Eekhoff M, van Essen H, Zandieh Doulabi B, Netelenbos C, et al. Inhibition of TGFβ signaling decreases osteogenic differentiation of fibrodysplasia ossificans progressiva fibroblasts in a novel in vitro model of the disease. Bone. 2016;84:169-180 pubmed 出版商
  57. Cuttano R, Rudini N, Bravi L, Corada M, Giampietro C, Papa E, et al. KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol Med. 2016;8:6-24 pubmed 出版商
  58. Massouridès E, Polentes J, Mangeot P, Mournetas V, Nectoux J, Deburgrave N, et al. Dp412e: a novel human embryonic dystrophin isoform induced by BMP4 in early differentiated cells. Skelet Muscle. 2015;5:40 pubmed 出版商
  59. Pickup M, Hover L, Guo Y, Gorska A, Chytil A, Novitskiy S, et al. Deletion of the BMP receptor BMPR1a impairs mammary tumor formation and metastasis. Oncotarget. 2015;6:22890-904 pubmed
  60. Wainwright E, Wilhelm D, Combes A, Little M, Koopman P. ROBO2 restricts the nephrogenic field and regulates Wolffian duct-nephrogenic cord separation. Dev Biol. 2015;404:88-102 pubmed 出版商
  61. Sun J, Li J, Li C, Yu Y. Role of bone morphogenetic protein-2 in osteogenic differentiation of mesenchymal stem cells. Mol Med Rep. 2015;12:4230-4237 pubmed 出版商
  62. Krishnan S, Szabo E, Burghardt I, Frei K, Tabatabai G, Weller M. Modulation of cerebral endothelial cell function by TGF-β in glioblastoma: VEGF-dependent angiogenesis versus endothelial mesenchymal transition. Oncotarget. 2015;6:22480-95 pubmed
  63. Gross S, Rotwein P. Akt signaling dynamics in individual cells. J Cell Sci. 2015;128:2509-19 pubmed 出版商
  64. Alkhateeb A, Buckett P, Gardeck A, Kim J, Byrne S, Fraenkel P, et al. The small molecule ferristatin II induces hepatic hepcidin expression in vivo and in vitro. Am J Physiol Gastrointest Liver Physiol. 2015;308:G1019-26 pubmed 出版商
  65. Perna F, Vu L, Themeli M, Kriks S, Hoya Arias R, Khanin R, et al. The polycomb group protein L3MBTL1 represses a SMAD5-mediated hematopoietic transcriptional program in human pluripotent stem cells. Stem Cell Reports. 2015;4:658-69 pubmed 出版商
  66. Ghiabi P, Jiang J, Pasquier J, Maleki M, Abu Kaoud N, Halabi N, et al. Breast cancer cells promote a notch-dependent mesenchymal phenotype in endothelial cells participating to a pro-tumoral niche. J Transl Med. 2015;13:27 pubmed 出版商
  67. Tian E, Stevens S, Guan Y, Springer D, Anderson S, Starost M, et al. Galnt1 is required for normal heart valve development and cardiac function. PLoS ONE. 2015;10:e0115861 pubmed 出版商
  68. Malhotra R, Burke M, Martyn T, Shakartzi H, Thayer T, O Rourke C, et al. Inhibition of bone morphogenetic protein signal transduction prevents the medial vascular calcification associated with matrix Gla protein deficiency. PLoS ONE. 2015;10:e0117098 pubmed 出版商
  69. Hollis E, Ishiko N, Tolentino K, Doherty E, Rodríguez M, Calcutt N, et al. A novel and robust conditioning lesion induced by ethidium bromide. Exp Neurol. 2015;265:30-9 pubmed 出版商
  70. Galvagni F, Lentucci C, Neri F, Dettori D, De Clemente C, Orlandini M, et al. Snai1 promotes ESC exit from the pluripotency by direct repression of self-renewal genes. Stem Cells. 2015;33:742-50 pubmed 出版商
  71. Kim J, Shim M. Prostaglandin F2α receptor (FP) signaling regulates Bmp signaling and promotes chondrocyte differentiation. Biochim Biophys Acta. 2015;1853:500-12 pubmed 出版商
  72. Chung D, Gao F, Jegga A, Das S. Estrogen mediated epithelial proliferation in the uterus is directed by stromal Fgf10 and Bmp8a. Mol Cell Endocrinol. 2015;400:48-60 pubmed 出版商
  73. Scholze A, Foo L, Mulinyawe S, Barres B. BMP signaling in astrocytes downregulates EGFR to modulate survival and maturation. PLoS ONE. 2014;9:e110668 pubmed 出版商
  74. Cui C, Yin M, Sima J, Childress V, Michel M, Piao Y, et al. Involvement of Wnt, Eda and Shh at defined stages of sweat gland development. Development. 2014;141:3752-60 pubmed 出版商
  75. Gu S, Wu W, Liu C, Yang L, Sun C, Ye W, et al. BMPRIA mediated signaling is essential for temporomandibular joint development in mice. PLoS ONE. 2014;9:e101000 pubmed 出版商
  76. Onishi K, Tonge P, Nagy A, Zandstra P. Local BMP-SMAD1 signaling increases LIF receptor-dependent STAT3 responsiveness and primed-to-naive mouse pluripotent stem cell conversion frequency. Stem Cell Reports. 2014;3:156-68 pubmed 出版商
  77. Gao X, Usas A, Proto J, Lu A, Cummins J, Proctor A, et al. Role of donor and host cells in muscle-derived stem cell-mediated bone repair: differentiation vs. paracrine effects. FASEB J. 2014;28:3792-809 pubmed 出版商
  78. Dai X, Jiang W, Zhang Q, Xu L, Geng P, Zhuang S, et al. Requirement for integrin-linked kinase in neural crest migration and differentiation and outflow tract morphogenesis. BMC Biol. 2013;11:107 pubmed 出版商
  79. Ren G, Beech C, Smas C. The immunoglobulin superfamily protein differentiation of embryonic stem cells 1 (dies1) has a regulatory role in preadipocyte to adipocyte conversion. PLoS ONE. 2013;8:e65531 pubmed 出版商
  80. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013;498:492-6 pubmed 出版商
  81. Sakaki Yumoto M, Liu J, Ramalho Santos M, Yoshida N, Derynck R. Smad2 is essential for maintenance of the human and mouse primed pluripotent stem cell state. J Biol Chem. 2013;288:18546-60 pubmed 出版商
  82. Tong K, Kwan K. Common partner Smad-independent canonical bone morphogenetic protein signaling in the specification process of the anterior rhombic lip during cerebellum development. Mol Cell Biol. 2013;33:1925-37 pubmed 出版商
  83. Cook B, Liu S, Evans T. Smad1 signaling restricts hematopoietic potential after promoting hemangioblast commitment. Blood. 2011;117:6489-97 pubmed 出版商