这是一篇来自已证抗体库的有关人类 snail 1锌指蛋白 (SNAI1) 的综述,是根据186篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合snail 1锌指蛋白 抗体。
snail 1锌指蛋白 同义词: SLUGH2; SNA; SNAH; SNAIL; SNAIL1; dJ710H13.1

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, 85936)被用于被用于免疫印迹在人类样本上浓度为1:1000. Commun Biol (2022) ncbi
domestic rabbit 单克隆(EPR21043)
  • 免疫印迹; 小鼠; 图 s2g
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, ab216347)被用于被用于免疫印迹在小鼠样本上 (图 s2g). Nat Commun (2021) ncbi
小鼠 单克隆(CL3700)
  • 免疫细胞化学; 人类; 图 5d
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, ab224731)被用于被用于免疫细胞化学在人类样本上 (图 5d). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s3b
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abeam, ab180714)被用于被用于免疫组化在小鼠样本上 (图 s3b). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6c
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, ab180714)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6c). Genes (Basel) (2021) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 6b, 6d
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, ab229701)被用于被用于免疫印迹在人类样本上 (图 6b, 6d). Front Genet (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 6d
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, ab180714)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6d). Sci Adv (2020) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 s1d
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, ab229701)被用于被用于免疫印迹在人类样本上 (图 s1d). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(EPR21043)
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, ab216347)被用于被用于免疫印迹在人类样本上 (图 3b). Exp Ther Med (2019) ncbi
domestic rabbit 单克隆(EPR21043)
  • 免疫印迹; 人类; 图 7b
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, ab216347)被用于被用于免疫印迹在人类样本上 (图 7b). J Cell Physiol (2019) ncbi
domestic rabbit 单克隆(EPR21043)
  • 免疫印迹; 人类; 图 7b
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, ab216347)被用于被用于免疫印迹在人类样本上 (图 7b). Biochim Biophys Acta Gen Subj (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 图 6a
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, ab180714)被用于被用于免疫印迹在犬样本上 (图 6a). Nature (2018) ncbi
小鼠 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5d
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, ab167609)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Exp Cell Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 9d
  • 免疫印迹; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, ab180714)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 9d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, ab180714)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(abcam, ab180714)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 6
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, ab180714)被用于被用于免疫印迹在大鼠样本上 (图 6). Evid Based Complement Alternat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, ab180714)被用于被用于免疫印迹在小鼠样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Am J Transl Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3b
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, ab85936)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3b). J Cell Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:75; 图 2
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, ab180714)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:75 (图 2). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:100; 图 3
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, ab-180714)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 3). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 5d
  • 免疫印迹; 人类; 图 5c
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, ab85936)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5d) 和 被用于免疫印迹在人类样本上 (图 5c). Hepatology (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, Ab78105)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2015) ncbi
大鼠 单克隆(SN9H2)
  • EMSA; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司snail 1锌指蛋白抗体(Abcam, ab31787)被用于被用于EMSA在人类样本上 和 被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 1:1000; 图 6e
圣克鲁斯生物技术snail 1锌指蛋白抗体(Santa Cruz, sc-271977)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6e). Front Oncol (2021) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 1:100; 图 4d
圣克鲁斯生物技术snail 1锌指蛋白抗体(SantaCruz, sc-271977)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 4d). Cancer Res (2021) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 1:1000; 图 5c
圣克鲁斯生物技术snail 1锌指蛋白抗体(Santa Cruz, sc-271977)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(G-7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
圣克鲁斯生物技术snail 1锌指蛋白抗体(Santa Cruz, sc-271977)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5). Int J Mol Sci (2021) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 小鼠; 1:500; 图 3b
圣克鲁斯生物技术snail 1锌指蛋白抗体(Santa Cruz Biotechnology, sc-271977)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3b). Oncogenesis (2020) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 1:1000; 图 7a
圣克鲁斯生物技术snail 1锌指蛋白抗体(Santa Cruz, sc-271977)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Biomed Res Int (2019) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术snail 1锌指蛋白抗体(Santa, sc-271977)被用于被用于免疫印迹在人类样本上 (图 5a). J Pathol (2019) ncbi
  • 免疫组化-石蜡切片; 人类; 1:50; 图 s7a
圣克鲁斯生物技术snail 1锌指蛋白抗体(Santa, H-130)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 s7a). J Clin Invest (2018) ncbi
小鼠 单克隆(E-10)
  • 免疫印迹; 人类; 图 4d
圣克鲁斯生物技术snail 1锌指蛋白抗体(SantaCruz, sc-393172)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2017) ncbi
  • 免疫组化; 人类; 图 4b
  • 免疫印迹; 人类; 图 4a
  • 免疫组化; 小鼠; 图 4c
  • 免疫印迹; 小鼠; 图 6a
圣克鲁斯生物技术snail 1锌指蛋白抗体(Santa Cruz Biotechnology, sc-28199)被用于被用于免疫组化在人类样本上 (图 4b), 被用于免疫印迹在人类样本上 (图 4a), 被用于免疫组化在小鼠样本上 (图 4c) 和 被用于免疫印迹在小鼠样本上 (图 6a). Oncotarget (2016) ncbi
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术snail 1锌指蛋白抗体(Santa Cruz, sc-28199)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
  • 免疫印迹; 人类; 1:1000; 表 4
圣克鲁斯生物技术snail 1锌指蛋白抗体(SantaCruz, sc28199)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 4). Sci Rep (2015) ncbi
小鼠 单克隆(E-10)
  • 免疫组化-石蜡切片; 人类; 图 5
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术snail 1锌指蛋白抗体(Santa Cruz Biotechnology, sc-393172)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 3). Mol Med Rep (2015) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术snail 1锌指蛋白抗体(SantaCruz, sc-271977)被用于被用于免疫印迹在人类样本上 (图 3c). Mol Med Rep (2015) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 3b
赛默飞世尔snail 1锌指蛋白抗体(Thermo Fisher, PA5-23472)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3b). Anticancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 6
  • 免疫印迹; 人类; 1:100; 图 6
赛默飞世尔snail 1锌指蛋白抗体(Pierce, PA5-11923)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 6
赛默飞世尔snail 1锌指蛋白抗体(Thermo Fisher Scientific, PA5-23472)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 6). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔snail 1锌指蛋白抗体(Thermo Fisher Scientific, PA5-23472)被用于. Cancer Lett (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔snail 1锌指蛋白抗体(Thermo Scientific, PAS-11923)被用于. Hepatology (2015) ncbi
Novus Biologicals
domestic rabbit 多克隆(MEM-111)
  • 免疫印迹; 人类; 图 3a
Novus Biologicalssnail 1锌指蛋白抗体(Novus, NBP2-27184SS)被用于被用于免疫印迹在人类样本上 (图 3a). Front Immunol (2021) ncbi
北京傲锐东源
小鼠 单克隆(OTI10D7)
  • 免疫印迹; 人类; 图 s3a
北京傲锐东源snail 1锌指蛋白抗体(Origene, TA500366)被用于被用于免疫印迹在人类样本上 (图 s3a). J Cell Physiol (2019) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Cell Death Dis (2022) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 小鼠; 1:1000; 图 7g
  • 免疫印迹; 人类; 1:1000; 图 4a, 4d
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(CST, 3879S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7g) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a, 4d). Cell Death Discov (2022) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 2g, 8d
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上 (图 2g, 8d). Bioengineered (2022) ncbi
大鼠 单克隆(SN9H2)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(CST, 4719)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Cell Death Dis (2022) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, C15D3)被用于被用于免疫印迹在人类样本上 (图 5a). Biology (Basel) (2021) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 5a, 5c
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a, 5c). Mol Med Rep (2021) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 大鼠; 图 3f
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879)被用于被用于免疫印迹在大鼠样本上 (图 3f). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 6a, 6b
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, S3879)被用于被用于免疫印迹在人类样本上 (图 6a, 6b). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879S)被用于被用于免疫印迹在人类样本上 (图 4c). Oncol Lett (2021) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(CST, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). Front Oncol (2021) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 4c, 4d
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c, 4d). Acta Pharm Sin B (2021) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫组化; 小鼠; 1:500; 图 1b
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell signaling, C15D3)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b). Nat Cell Biol (2021) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879)被用于被用于免疫印迹在人类样本上 (图 6d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(CST, 3879s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3i). Cancer Gene Ther (2022) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Biology (Basel) (2021) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 小鼠; 1:1000; 图 s10a
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10a). NPJ Breast Cancer (2021) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(CST, 3879S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Am J Cancer Res (2021) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Immunother Cancer (2021) ncbi
小鼠 单克隆(L70G2)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(CST, L70G2)被用于被用于免疫印迹在人类样本上 (图 4). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上 (图 3c). J Cell Mol Med (2021) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879)被用于被用于免疫印迹在人类样本上. Theranostics (2021) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 小鼠; 图 5a, s5b
  • 免疫印迹; 人类; 图 6i
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879s)被用于被用于免疫印迹在小鼠样本上 (图 5a, s5b) 和 被用于免疫印迹在人类样本上 (图 6i). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 3a, 3b
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a, 3b). Oncol Rep (2021) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879 s)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Biosci (2020) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1f
  • 免疫沉淀; 人类; 图 5i
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(CST, 3879)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1f), 被用于免疫沉淀在人类样本上 (图 5i) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Cancer Cell Int (2020) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6e
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6e). Oncol Rep (2020) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Cell Prolif (2020) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 5l, 5m
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(CST, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5l, 5m). Cancer Cell Int (2020) ncbi
小鼠 单克隆(L70G2)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3895)被用于被用于免疫印迹在人类样本上 (图 5b). Biomed Res Int (2020) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 2h
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(CST, 3879S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2h). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879)被用于被用于免疫印迹在人类样本上 (图 2f). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(CST, 3879S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Cancer Cell Int (2020) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(CST, 3879)被用于被用于免疫印迹在人类样本上 (图 3c). Sci Adv (2020) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(CST, 3879)被用于被用于免疫印迹在人类样本上 (图 7d). Am J Cancer Res (2020) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 2g: 2h, 2i
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(CST, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2g: 2h, 2i). Am J Cancer Res (2020) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, C15D3)被用于被用于免疫印迹在小鼠样本上 (图 4b). PLoS ONE (2020) ncbi
大鼠 单克隆(SN9H2)
  • 免疫印迹; 人类; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell signaling, 4719S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1g). Proc Natl Acad Sci U S A (2020) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 小鼠; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3h). Cancer Cell (2020) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Oncogenesis (2020) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 3i
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上 (图 3i). Mol Oncol (2020) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫沉淀; 人类; 1:50; 图 5i
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫沉淀在人类样本上浓度为1:50 (图 5i). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 小鼠; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Sci Adv (2019) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(CST, 3879P)被用于被用于免疫印迹在人类样本上 (图 6c). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2020) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Cell Death Dis (2019) ncbi
小鼠 单克隆(L70G2)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(CST, 3895S)被用于被用于免疫印迹在人类样本上 (图 5a). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(CST, 3879)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, C15D3)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Biomed Res Int (2019) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Nature (2019) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Sci Adv (2019) ncbi
小鼠 单克隆(L70G2)
  • 免疫印迹; 人类; 1:1000; 图 3c
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3b, 4e
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3895)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3b, 4e). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 小鼠; 图 4e, 5f
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在小鼠样本上 (图 4e, 5f). J Cell Mol Med (2019) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(cell signaling, 3879)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Nat Cell Biol (2019) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2a
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(CST, C15D3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2a). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Cell Mol Med (2019) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:500; 图 2i
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technologies, 3879S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2i). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 7c, 7e
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, C15D3)被用于被用于免疫印迹在人类样本上 (图 7c, 7e). Mol Oncol (2019) ncbi
小鼠 单克隆(L70G2)
  • 免疫印迹; 人类; 1:1000; 图 4a, 4b, 4c
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3895)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a, 4b, 4c). Oncogene (2019) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s3c
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell signaling, C15D3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 s3c). Science (2018) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上 (图 5c). Cell Death Dis (2018) ncbi
小鼠 单克隆(L70G2)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3895)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上 (图 2e). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上 (图 4a). Mol Cancer Res (2017) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上 (图 4c). Oncogenesis (2017) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Exp Ther Med (2017) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:500; 图 4C
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4C). Oncol Lett (2017) ncbi
小鼠 单克隆(L70G2)
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3895)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Nat Commun (2017) ncbi
小鼠 单克隆(L70G2)
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(CST, 3895)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
大鼠 单克隆(SN9H2)
  • 免疫细胞化学; 人类; 1:1000; 图 1c
  • 免疫印迹; 人类; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(cell signalling, 4719)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1f). Nat Commun (2017) ncbi
小鼠 单克隆(L70G2)
  • 免疫印迹; 人类; 1:2000; 图 7a
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signalling, 3,895 s)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上 (图 s2). Neoplasia (2017) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫组化; 人类; 图 6b
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879)被用于被用于免疫组化在人类样本上 (图 6b) 和 被用于免疫印迹在人类样本上 (图 4c). Neoplasia (2017) ncbi
小鼠 单克隆(L70G2)
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3895)被用于被用于免疫印迹在小鼠样本上 (图 2d). Oncogene (2017) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上 (图 5c). Biomed Pharmacother (2017) ncbi
小鼠 单克隆(L70G2)
  • 免疫沉淀; 人类; 图 1o
  • 免疫印迹; 人类; 1:500; 图 1i
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell signaling, 3895)被用于被用于免疫沉淀在人类样本上 (图 1o) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1i). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, C15D3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Nucleic Acids Res (2017) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell signaling, 3879S)被用于被用于免疫印迹在人类样本上 (图 5a). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 7f
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7f). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879)被用于被用于免疫印迹在人类样本上 (图 6e). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Drug Des Devel Ther (2016) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫组化; 小鼠; 图 8i
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫组化在小鼠样本上 (图 8i). Oncogene (2017) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:2000; 图 5b
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5b). Oncogene (2017) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Tech, 3879)被用于被用于免疫印迹在人类样本上 (图 2). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上 (图 6b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(L70G2)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3895)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Science (2016) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, C15D3)被用于被用于免疫印迹在人类样本上 (图 4b). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(L70G2)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, L70G2)被用于被用于免疫印迹在人类样本上 (图 4). Cell Cycle (2016) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 4h
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4h). Int J Oncol (2016) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Endocr Relat Cancer (2016) ncbi
大鼠 单克隆(SN9H2)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signalling, 4719)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cancer (2015) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 S5A
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Sgnaling, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 S5A). Mol Oncol (2016) ncbi
大鼠 单克隆(SN9H2)
  • 免疫组化-石蜡切片; 人类; 1:40
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, SN9H2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40. J Pathol (2016) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879)被用于被用于免疫印迹在人类样本上 (图 7a). Oncogene (2016) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Dig Dis Sci (2016) ncbi
大鼠 单克隆(SN9H2)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 4719)被用于被用于免疫印迹在人类样本上 (图 1c). Tumour Biol (2016) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signal, C15D3)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
小鼠 单克隆(L70G2)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Tech, L7042)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(L70G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3895S)被用于被用于免疫印迹在人类样本上. Neoplasia (2015) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell signaling, C15D3)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(L70G2)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, L70G2)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(L70G2)
  • 免疫印迹; 牛
  • 免疫印迹; 犬
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3895)被用于被用于免疫印迹在牛样本上 和 被用于免疫印迹在犬样本上. Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(cst, 3879P)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(CST, C15D3)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). BMC Complement Altern Med (2015) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 s7
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上 (图 s7). Oncogene (2016) ncbi
大鼠 单克隆(SN9H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, SN9H2)被用于被用于免疫印迹在人类样本上. BMC Cancer (2015) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technologies, 3879)被用于被用于免疫印迹在人类样本上. Lab Invest (2015) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上 (图 3b). Breast Cancer Res (2015) ncbi
domestic rabbit 单克隆(C15D3)
  • 其他; 人类; 图 4c, 4f
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于其他在人类样本上 (图 4c, 4f). PLoS ONE (2015) ncbi
小鼠 单克隆(L70G2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3895)被用于被用于免疫印迹在小鼠样本上. Oncogene (2016) ncbi
小鼠 单克隆(L70G2)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3895)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Exp Ther Med (2015) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上. Int J Oncol (2015) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Cancer Lett (2015) ncbi
小鼠 单克隆(L70G2)
  • 染色质免疫沉淀 ; 人类; 图 3
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell signaling, 3895)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). Ann Surg Oncol (2015) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879)被用于被用于免疫印迹在人类样本上浓度为1:500. Oncotarget (2014) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上. Cancer Cell (2014) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Nat Cell Biol (2014) ncbi
小鼠 单克隆(L70G2)
  • 染色质免疫沉淀 ; 人类
  • EMSA; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signal Technology, L70G2)被用于被用于染色质免疫沉淀 在人类样本上, 被用于EMSA在人类样本上 和 被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3879)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(L70G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3895)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Gastroenterology (2014) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879p)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, C15D3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Virchows Arch (2014) ncbi
小鼠 单克隆(L70G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3895)被用于被用于免疫印迹在人类样本上. Oncol Rep (2013) ncbi
小鼠 单克隆(L70G2)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3895)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncogene (2014) ncbi
domestic rabbit 单克隆(C15D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879S)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(L70G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling Technology, 3895)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(C15D3)
  • ChIP-Seq; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司snail 1锌指蛋白抗体(Cell Signaling, 3879S)被用于被用于ChIP-Seq在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2012) ncbi
New England Biolabs
  • 免疫印迹; 人类; 1:5000; 图 1c
New England Biolabssnail 1锌指蛋白抗体(NEB, P9310S)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1c). J Cell Sci (2016) ncbi
Bioworld
  • 免疫印迹; 人类; 图 3f
Bioworldsnail 1锌指蛋白抗体(Bioworld Technology, Inc, BS-1853)被用于被用于免疫印迹在人类样本上 (图 3f). J Exp Clin Cancer Res (2016) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
  • 免疫组化; 小鼠; 图 2c
西格玛奥德里奇snail 1锌指蛋白抗体(Sigma, AV33314)被用于被用于免疫印迹在人类样本上 (图 1d) 和 被用于免疫组化在小鼠样本上 (图 2c). J Exp Med (2017) ncbi
文章列表
  1. Zhang X, Luo Y, Cen Y, Qiu X, Li J, Jie M, et al. MACC1 promotes pancreatic cancer metastasis by interacting with the EMT regulator SNAI1. Cell Death Dis. 2022;13:923 pubmed 出版商
  2. Mukherjee B, Tiwari A, Palo A, Pattnaik N, Samantara S, Dixit M. Reduced expression of FRG1 facilitates breast cancer progression via GM-CSF/MEK-ERK axis by abating FRG1 mediated transcriptional repression of GM-CSF. Cell Death Discov. 2022;8:442 pubmed 出版商
  3. Bertrand Chapel A, Caligaris C, Fenouil T, Savary C, Aires S, Martel S, et al. SMAD2/3 mediate oncogenic effects of TGF-β in the absence of SMAD4. Commun Biol. 2022;5:1068 pubmed 出版商
  4. Yi B, Dai K, Yan Z, Yin Z. Circular RNA PLCE1 promotes epithelial mesenchymal transformation, glycolysis in colorectal cancer and M2 polarization of tumor-associated macrophages. Bioengineered. 2022;13:6243-6256 pubmed 出版商
  5. Zhong L, Yang B, Zhang Z, Wang J, Wang X, Guo Y, et al. Targeting autophagy peptidase ATG4B with a novel natural product inhibitor Azalomycin F4a for advanced gastric cancer. Cell Death Dis. 2022;13:161 pubmed 出版商
  6. Wu C, Wang Y, Hu S, Wu W, Yeh C, Bamodu O. MED10 Drives the Oncogenicity and Refractory Phenotype of Bladder Urothelial Carcinoma Through the Upregulation of hsa-miR-590. Front Oncol. 2021;11:744937 pubmed 出版商
  7. Jacquet M, Hervouet E, Baudu T, Herfs M, Parratte C, Feugeas J, et al. GABARAPL1 Inhibits EMT Signaling through SMAD-Tageted Negative Feedback. Biology (Basel). 2021;10: pubmed 出版商
  8. Chen R, Sheng C, Ma R, Zhang L, Yang L, Chen Y. PLAC1 is an independent predictor of poor survival, and promotes cell proliferation and invasion in cervical cancer. Mol Med Rep. 2021;24: pubmed 出版商
  9. Shi Y, Hu Y, Wang Y, Ma X, Tang L, Tao M, et al. Blockade of Autophagy Prevents the Development and Progression of Peritoneal Fibrosis. Front Pharmacol. 2021;12:724141 pubmed 出版商
  10. Wang C, Yang Z, Xu E, Shen X, Wang X, Li Z, et al. Apolipoprotein C-II induces EMT to promote gastric cancer peritoneal metastasis via PI3K/AKT/mTOR pathway. Clin Transl Med. 2021;11:e522 pubmed 出版商
  11. Wen J, Zhang G, Meng Y, Zhang L, Jiang M, Yu Z. RNA m6A methyltransferase METTL3 promotes colorectal cancer cell proliferation and invasion by regulating Snail expression. Oncol Lett. 2021;22:711 pubmed 出版商
  12. Tan X, Tong L, Li L, Xu J, Xie S, Ji L, et al. Loss of Smad4 promotes aggressive lung cancer metastasis by de-repression of PAK3 via miRNA regulation. Nat Commun. 2021;12:4853 pubmed 出版商
  13. Yu D, Yang X, Lin J, Cao Z, Lu C, Yang Z, et al. Super-Enhancer Induced IL-20RA Promotes Proliferation/Metastasis and Immune Evasion in Colorectal Cancer. Front Oncol. 2021;11:724655 pubmed 出版商
  14. Lassiter R, Merchen T, Fang X, Wang Y. Protective Role of Kynurenine 3-Monooxygenase in Allograft Rejection and Tubular Injury in Kidney Transplantation. Front Immunol. 2021;12:671025 pubmed 出版商
  15. Nguyen Tran H, Nguyen T, Chen C, Hsu T. Endothelial Reprogramming Stimulated by Oncostatin M Promotes Inflammation and Tumorigenesis in VHL-Deficient Kidney Tissue. Cancer Res. 2021;81:5060-5073 pubmed 出版商
  16. Zou J, Zhu X, Xiang D, Zhang Y, Li J, Su Z, et al. LIX1-like protein promotes liver cancer progression via miR-21-3p-mediated inhibition of fructose-1,6-bisphosphatase. Acta Pharm Sin B. 2021;11:1578-1591 pubmed 出版商
  17. Scheibner K, Schirge S, Burtscher I, Büttner M, Sterr M, Yang D, et al. Epithelial cell plasticity drives endoderm formation during gastrulation. Nat Cell Biol. 2021;23:692-703 pubmed 出版商
  18. Cheng X, Wang J, Liu C, Jiang T, Yang N, Liu D, et al. Zinc transporter SLC39A13/ZIP13 facilitates the metastasis of human ovarian cancer cells via activating Src/FAK signaling pathway. J Exp Clin Cancer Res. 2021;40:199 pubmed 出版商
  19. Liu Q, Li H, Yang M, Mei Y, Niu T, Zhou Z, et al. Suppression of tumor growth and metastasis in Shkbp1 knockout mice. Cancer Gene Ther. 2022;29:709-721 pubmed 出版商
  20. Xu Z, Cheng C, Kong R, Liu Y, Wang S, Ma Y, et al. S100A8 and S100A9, both transcriptionally regulated by PU.1, promote epithelial-mesenchymal transformation (EMT) and invasive growth of dermal keratinocytes during scar formation post burn. Aging (Albany NY). 2021;13:15523-15537 pubmed 出版商
  21. Urdiciain A, Erausquin E, Zelaya M, Zazpe I, Lanciego J, Melendez B, et al. Silencing of Histone Deacetylase 6 Decreases Cellular Malignancy and Contributes to Primary Cilium Restoration, Epithelial-to-Mesenchymal Transition Reversion, and Autophagy Inhibition in Glioblastoma Cell Lines. Biology (Basel). 2021;10: pubmed 出版商
  22. Wojnarowicz P, Escolano M, Huang Y, Desai B, Chin Y, Shah R, et al. Anti-tumor effects of an ID antagonist with no observed acquired resistance. NPJ Breast Cancer. 2021;7:58 pubmed 出版商
  23. Xu Y, Pan S, Chen H, Qian H, Wang Z, Zhu X. MEX3A suppresses proliferation and EMT via inhibiting Akt signaling pathway in cervical cancer. Am J Cancer Res. 2021;11:1446-1462 pubmed
  24. Carstens J, Yang S, Correa de Sampaio P, Zheng X, Barua S, McAndrews K, et al. Stabilized epithelial phenotype of cancer cells in primary tumors leads to increased colonization of liver metastasis in pancreatic cancer. Cell Rep. 2021;35:108990 pubmed 出版商
  25. Gao S, Gao L, Wang S, Shi X, Yue C, Wei S, et al. ATF3 Suppresses Growth and Metastasis of Clear Cell Renal Cell Carcinoma by Deactivating EGFR/AKT/GSK3β/β-Catenin Signaling Pathway. Front Cell Dev Biol. 2021;9:618987 pubmed 出版商
  26. Can xe8 S, Van Snick J, Uyttenhove C, Pilotte L, van den Eynde B. TGFβ1 neutralization displays therapeutic efficacy through both an immunomodulatory and a non-immune tumor-intrinsic mechanism. J Immunother Cancer. 2021;9: pubmed 出版商
  27. Wan X, Hou J, Liu S, Zhang Y, Li W, Zhang Y, et al. Estrogen Receptor α Mediates Doxorubicin Sensitivity in Breast Cancer Cells by Regulating E-Cadherin. Front Cell Dev Biol. 2021;9:583572 pubmed 出版商
  28. Blasiak J, Koskela A, Pawlowska E, Liukkonen M, Ruuth J, Toropainen E, et al. Epithelial-Mesenchymal Transition and Senescence in the Retinal Pigment Epithelium of NFE2L2/PGC-1α Double Knock-Out Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  29. Ding L, Fang Y, Li Y, Hu Q, Ai M, Deng K, et al. AIMP3 inhibits cell growth and metastasis of lung adenocarcinoma through activating a miR-96-5p-AIMP3-p53 axis. J Cell Mol Med. 2021;25:3019-3030 pubmed 出版商
  30. Burgess S, Gibbs H, Toomes C, Coletta P, Bell S. The Role of Csmd1 during Mammary Gland Development. Genes (Basel). 2021;12: pubmed 出版商
  31. Shen X, Zhao K, Xu L, Cheng G, Zhu J, Gan L, et al. YTHDF2 Inhibits Gastric Cancer Cell Growth by Regulating FOXC2 Signaling Pathway. Front Genet. 2020;11:592042 pubmed 出版商
  32. Wang H, Guo S, Kim S, Shao F, Ho J, Wong K, et al. Cisplatin prevents breast cancer metastasis through blocking early EMT and retards cancer growth together with paclitaxel. Theranostics. 2021;11:2442-2459 pubmed 出版商
  33. Feng Y, Liu S, Zha R, Sun X, Li K, ROBLING A, et al. Mechanical Loading-Driven Tumor Suppression Is Mediated by Lrp5-Dependent and Independent Mechanisms. Cancers (Basel). 2021;13: pubmed 出版商
  34. Zhang K, Wang D, Cai H, Cao M, Zhang Y, Zhuang P, et al. IL‑6 plays a crucial role in epithelial‑mesenchymal transition and pro‑metastasis induced by sorafenib in liver cancer. Oncol Rep. 2021;45:1105-1117 pubmed 出版商
  35. Jiang Y, Han Q, Zhao H, Zhang J. Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. J Exp Clin Cancer Res. 2021;40:13 pubmed 出版商
  36. Jiang X, Xu Y, Ren H, Jiang J, Wudu M, Wang Q, et al. KLHL18 inhibits the proliferation, migration, and invasion of non-small cell lung cancer by inhibiting PI3K/PD-L1 axis activity. Cell Biosci. 2020;10:139 pubmed 出版商
  37. Huang F, Zheng C, Huang L, Lin C, Wang J. USP18 directly regulates Snail1 protein through ubiquitination pathway in colorectal cancer. Cancer Cell Int. 2020;20:346 pubmed 出版商
  38. Wang W, Wang H, Xiang L, Ni T, Jin F, Deng J, et al. DJ‑1 is a new prognostic marker and predicts chemotherapy efficacy in colorectal cancer. Oncol Rep. 2020;44:77-90 pubmed 出版商
  39. Huang W, Yu D, Wang M, Han Y, Lin J, Wei D, et al. ITGBL1 promotes cell migration and invasion through stimulating the TGF-β signalling pathway in hepatocellular carcinoma. Cell Prolif. 2020;53:e12836 pubmed 出版商
  40. Lin Z, Lin X, Zhu L, Huang J, Huang Y. TRIM2 directly deubiquitinates and stabilizes Snail1 protein, mediating proliferation and metastasis of lung adenocarcinoma. Cancer Cell Int. 2020;20:228 pubmed 出版商
  41. Yang Y, Mei Q. Accumulation of AGO2 Facilitates Tumorigenesis of Human Hepatocellular Carcinoma. Biomed Res Int. 2020;2020:1631843 pubmed 出版商
  42. Qi J, Liu S, Liu W, Cai G, Liao G. Identification of UAP1L1 as tumor promotor in gastric cancer through regulation of CDK6. Aging (Albany NY). 2020;12:6904-6927 pubmed 出版商
  43. Chen J, Chen S, Zhuo L, Zhu Y, Zheng H. Regulation of cancer stem cell properties, angiogenesis, and vasculogenic mimicry by miR-450a-5p/SOX2 axis in colorectal cancer. Cell Death Dis. 2020;11:173 pubmed 出版商
  44. Wang X, Shan Y, Tan Q, Tan C, Zhang H, Liu J, et al. MEX3A knockdown inhibits the development of pancreatic ductal adenocarcinoma. Cancer Cell Int. 2020;20:63 pubmed 出版商
  45. Aldonza M, Ku J, Hong J, Kim D, Yu S, Lee M, et al. Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms. Sci Adv. 2020;6:eaav7416 pubmed 出版商
  46. Ailiken G, Kitamura K, Hoshino T, Satoh M, Tanaka N, Minamoto T, et al. Post-transcriptional regulation of BRG1 by FIRΔexon2 in gastric cancer. Oncogenesis. 2020;9:26 pubmed 出版商
  47. Liu K, Yu Q, Li H, Xie C, Wu Y, Ma D, et al. BIRC7 promotes epithelial-mesenchymal transition and metastasis in papillary thyroid carcinoma through restraining autophagy. Am J Cancer Res. 2020;10:78-94 pubmed
  48. Li M, Wu P, Yang Z, Deng S, Ni L, Zhang Y, et al. miR-193a-5p promotes pancreatic cancer cell metastasis through SRSF6-mediated alternative splicing of OGDHL and ECM1. Am J Cancer Res. 2020;10:38-59 pubmed
  49. Rinastiti P, Ikeda K, Rahardini E, Miyagawa K, Tamada N, Kuribayashi Y, et al. Loss of family with sequence similarity 13, member A exacerbates pulmonary hypertension through accelerating endothelial-to-mesenchymal transition. PLoS ONE. 2020;15:e0226049 pubmed 出版商
  50. Xiong G, Chen J, Zhang G, Wang S, Kawasaki K, Zhu J, et al. Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction. Proc Natl Acad Sci U S A. 2020;117:3748-3758 pubmed 出版商
  51. Brill Karniely Y, Dror D, Duanis Assaf T, Goldstein Y, Schwob O, Millo T, et al. Triangular correlation (TrC) between cancer aggressiveness, cell uptake capability, and cell deformability. Sci Adv. 2020;6:eaax2861 pubmed 出版商
  52. Cheung E, DeNicola G, Nixon C, Blyth K, Labuschagne C, Tuveson D, et al. Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell. 2020;37:168-182.e4 pubmed 出版商
  53. Xu C, Zhang M, Bian L, Li Y, Yao Y, Li D. N-glycosylated SGK196 suppresses the metastasis of basal-like breast cancer cells. Oncogenesis. 2020;9:4 pubmed 出版商
  54. Wang H, Chen Z, Wang S, Gao X, Qian M, Qiu W, et al. TGFβ1-induced beta-site APP-cleaving enzyme 2 upregulation promotes tumorigenesis through the NF-κB signalling pathway in human gliomas. Mol Oncol. 2020;14:407-425 pubmed 出版商
  55. Yu S, Zhang Y, Li Q, Zhang Z, Zhao G, Xu J. CLDN6 promotes tumor progression through the YAP1-snail1 axis in gastric cancer. Cell Death Dis. 2019;10:949 pubmed 出版商
  56. Wu Y, Chen K, Xing G, Li L, Ma B, Hu Z, et al. Phospholipid remodeling is critical for stem cell pluripotency by facilitating mesenchymal-to-epithelial transition. Sci Adv. 2019;5:eaax7525 pubmed 出版商
  57. Li W, Zhang X, Wu F, Zhou Y, Bao Z, Li H, et al. Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis. 2019;10:918 pubmed 出版商
  58. Hu Y, Ma Y, Liu J, Cai Y, Zhang M, Fang X. LINC01128 expedites cervical cancer progression by regulating miR-383-5p/SFN axis. BMC Cancer. 2019;19:1157 pubmed 出版商
  59. Chen X, Xiong X, Cui D, Yang F, Wei D, Li H, et al. DEPTOR is an in vivo tumor suppressor that inhibits prostate tumorigenesis via the inactivation of mTORC1/2 signals. Oncogene. 2020;39:1557-1571 pubmed 出版商
  60. Tan P, Xu Y, Du Y, Wu L, Guo B, Huang S, et al. SPOP suppresses pancreatic cancer progression by promoting the degradation of NANOG. Cell Death Dis. 2019;10:794 pubmed 出版商
  61. Li L, Yan S, Zhang H, Zhang M, Huang G, Chen M. Interaction of hnRNP K with MAP 1B-LC1 promotes TGF-β1-mediated epithelial to mesenchymal transition in lung cancer cells. BMC Cancer. 2019;19:894 pubmed 出版商
  62. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  63. Yin Y, Zhang Q, Zhao Q, Ding G, Wei C, Chang L, et al. Tongxinluo Attenuates Myocardiac Fibrosis after Acute Myocardial Infarction in Rats via Inhibition of Endothelial-to-Mesenchymal Transition. Biomed Res Int. 2019;2019:6595437 pubmed 出版商
  64. Chang Z. Downregulation of SOX2 may be targeted by miR-590-5p and inhibits epithelial-to-mesenchymal transition in non-small-cell lung cancer. Exp Ther Med. 2019;18:1189-1195 pubmed 出版商
  65. Wang X, Liu R, Zhu W, Chu H, Yu H, Wei P, et al. UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasis. Nature. 2019;571:127-131 pubmed 出版商
  66. Sonego M, Pellarin I, Costa A, Vinciguerra G, Coan M, Kraut A, et al. USP1 links platinum resistance to cancer cell dissemination by regulating Snail stability. Sci Adv. 2019;5:eaav3235 pubmed 出版商
  67. Slocum E, Craig A, Villanueva A, Germain D. Parity predisposes breasts to the oncogenic action of PAPP-A and activation of the collagen receptor DDR2. Breast Cancer Res. 2019;21:56 pubmed 出版商
  68. Huang X, Xue H, Ma J, Zhang Y, Zhang J, Liu Y, et al. Salidroside ameliorates Adriamycin nephropathy in mice by inhibiting β-catenin activity. J Cell Mol Med. 2019;23:4443-4453 pubmed 出版商
  69. Yang H, Shen J, Wang Y, Liu Y, Shen D, Quan S. Tankyrase Promotes Aerobic Glycolysis and Proliferation of Ovarian Cancer through Activation of Wnt/β-Catenin Signaling. Biomed Res Int. 2019;2019:2686340 pubmed 出版商
  70. Jung H, Fattet L, Tsai J, Kajimoto T, Chang Q, Newton A, et al. Apical-basal polarity inhibits epithelial-mesenchymal transition and tumour metastasis by PAR-complex-mediated SNAI1 degradation. Nat Cell Biol. 2019;21:359-371 pubmed 出版商
  71. Li Y, Hu Q, Li C, Liang K, Xiang Y, Hsiao H, et al. PTEN-induced partial epithelial-mesenchymal transition drives diabetic kidney disease. J Clin Invest. 2019;129:1129-1151 pubmed 出版商
  72. Paul D, Islam S, Manne R, Dinesh U, Malonia S, Maity B, et al. F-box protein FBXO16 functions as a tumor suppressor by attenuating nuclear β-catenin function. J Pathol. 2019;248:266-279 pubmed 出版商
  73. Liu Z, Liu J, Dong X, Hu X, Jiang Y, Li L, et al. Tn antigen promotes human colorectal cancer metastasis via H-Ras mediated epithelial-mesenchymal transition activation. J Cell Mol Med. 2019;23:2083-2092 pubmed 出版商
  74. Aggarwal S, Gabrovsek L, Langeberg L, Golkowski M, Ong S, Smith F, et al. Depletion of dAKAP1-protein kinase A signaling islands from the outer mitochondrial membrane alters breast cancer cell metabolism and motility. J Biol Chem. 2019;294:3152-3168 pubmed 出版商
  75. Zhang Z, Chen J, Huang W, Ning D, Liu Q, Wang C, et al. FAM134B induces tumorigenesis and epithelial-to-mesenchymal transition via Akt signaling in hepatocellular carcinoma. Mol Oncol. 2019;13:792-810 pubmed 出版商
  76. Asnaghi L, White D, Key N, Choi J, Mahale A, Alkatan H, et al. ACVR1C/SMAD2 signaling promotes invasion and growth in retinoblastoma. Oncogene. 2019;38:2056-2075 pubmed 出版商
  77. de Jong O, van der Waals L, Kools F, Verhaar M, van Balkom B. Lysyl oxidase-like 2 is a regulator of angiogenesis through modulation of endothelial-to-mesenchymal transition. J Cell Physiol. 2019;234:10260-10269 pubmed 出版商
  78. Song S, Zhang R, Cao W, Fang G, Yu Y, Wan Y, et al. Foxm1 is a critical driver of TGF-β-induced EndMT in endothelial cells through Smad2/3 and binds to the Snail promoter. J Cell Physiol. 2019;234:9052-9064 pubmed 出版商
  79. Batool S, Argyropoulos K, Azad R, Okeoma P, Zumrut H, Bhandari S, et al. Dimerization of an aptamer generated from Ligand-guided selection (LIGS) yields a high affinity scaffold against B-cells. Biochim Biophys Acta Gen Subj. 2019;1863:232-240 pubmed 出版商
  80. Taparra K, Wang H, Malek R, Lafargue A, Barbhuiya M, Wang X, et al. O-GlcNAcylation is required for mutant KRAS-induced lung tumorigenesis. J Clin Invest. 2018;128:4924-4937 pubmed 出版商
  81. Pommier A, Anaparthy N, Memos N, Kelley Z, Gouronnec A, Yan R, et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science. 2018;360: pubmed 出版商
  82. Huang G, Jiang H, Lin Y, Wu Y, Cai W, Shi B, et al. lncAKHE enhances cell growth and migration in hepatocellular carcinoma via activation of NOTCH2 signaling. Cell Death Dis. 2018;9:487 pubmed 出版商
  83. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  84. Palesch D, Bosinger S, Tharp G, Vanderford T, Paiardini M, Chahroudi A, et al. Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host. Nature. 2018;553:77-81 pubmed 出版商
  85. Liu L, Wu B, Cai H, Li D, Ma Y, Zhu X, et al. Tiam1 promotes thyroid carcinoma metastasis by modulating EMT via Wnt/?-catenin signaling. Exp Cell Res. 2018;362:532-540 pubmed 出版商
  86. Wang J, Ye Q, Cao Y, Guo Y, Huang X, Mi W, et al. Snail determines the therapeutic response to mTOR kinase inhibitors by transcriptional repression of 4E-BP1. Nat Commun. 2017;8:2207 pubmed 出版商
  87. Zhao X, Huang L, Xu W, Chen X, Shen Y, Zeng W, et al. Physapubescin B inhibits tumorgenesis and circumvents taxol resistance of ovarian cancer cells through STAT3 signaling. Oncotarget. 2017;8:70130-70141 pubmed 出版商
  88. Hiramoto H, Muramatsu T, Ichikawa D, Tanimoto K, Yasukawa S, Otsuji E, et al. miR-509-5p and miR-1243 increase the sensitivity to gemcitabine by inhibiting epithelial-mesenchymal transition in pancreatic cancer. Sci Rep. 2017;7:4002 pubmed 出版商
  89. Lu J, Yang Y, Guo G, Liu Y, Zhang Z, Dong S, et al. IKBKE regulates cell proliferation and epithelial-mesenchymal transition of human malignant glioma via the Hippo pathway. Oncotarget. 2017;8:49502-49514 pubmed 出版商
  90. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed 出版商
  91. Li P, Wang Y, Mao X, Jiang Y, Liu J, Li J, et al. CRB3 downregulation confers breast cancer stem cell traits through TAZ/?-catenin. Oncogenesis. 2017;6:e322 pubmed 出版商
  92. Kim D, Ko H, Park G, Hur D, Kim Y, Yang J. Vandetanib and ADAM inhibitors synergistically attenuate the pathological migration of EBV-infected retinal pigment epithelial cells by regulating the VEGF-mediated MAPK pathway. Exp Ther Med. 2017;13:1415-1425 pubmed 出版商
  93. Hu X, Zhang Z, Liang Z, Xie D, Zhang T, Yu D, et al. Downregulation of feline sarcoma-related protein inhibits cell migration, invasion and epithelial-mesenchymal transition via the ERK/AP-1 pathway in bladder urothelial cell carcinoma. Oncol Lett. 2017;13:686-694 pubmed 出版商
  94. Grasso S, Chapelle J, Salemme V, Aramu S, Russo I, Vitale N, et al. The scaffold protein p140Cap limits ERBB2-mediated breast cancer progression interfering with Rac GTPase-controlled circuitries. Nat Commun. 2017;8:14797 pubmed 出版商
  95. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  96. Takahashi T, Asano Y, Sugawara K, Yamashita T, Nakamura K, Saigusa R, et al. Epithelial Fli1 deficiency drives systemic autoimmunity and fibrosis: Possible roles in scleroderma. J Exp Med. 2017;214:1129-1151 pubmed 出版商
  97. Wu Y, Wang Y, Lin Y, Liu Y, Wang Y, Jia J, et al. Dub3 inhibition suppresses breast cancer invasion and metastasis by promoting Snail1 degradation. Nat Commun. 2017;8:14228 pubmed 出版商
  98. Kim N, Cha Y, Lee J, Lee S, Yang J, Yun J, et al. Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress. Nat Commun. 2017;8:14374 pubmed 出版商
  99. Qiu X, Pascal L, Song Q, Zang Y, Ai J, O Malley K, et al. Physical and Functional Interactions between ELL2 and RB in the Suppression of Prostate Cancer Cell Proliferation, Migration, and Invasion. Neoplasia. 2017;19:207-215 pubmed 出版商
  100. Zhai S, Liu C, Zhang L, Zhu J, Guo J, Zhang J, et al. PLCE1 Promotes Esophageal Cancer Cell Progression by Maintaining the Transcriptional Activity of Snail. Neoplasia. 2017;19:154-164 pubmed 出版商
  101. He Y, Northey J, Pelletier A, Kos Z, Meunier L, Haibe Kains B, et al. The Cdc42/Rac1 regulator CdGAP is a novel E-cadherin transcriptional co-repressor with Zeb2 in breast cancer. Oncogene. 2017;36:3490-3503 pubmed 出版商
  102. Xu J, Zhang X, Wang H, Ge S, Gao T, Song L, et al. HCRP1 downregulation promotes hepatocellular carcinoma cell migration and invasion through the induction of EGFR activation and epithelial-mesenchymal transition. Biomed Pharmacother. 2017;88:421-429 pubmed 出版商
  103. Fang S, Yu L, Mei H, Yang J, Gao T, Cheng A, et al. Cisplatin promotes mesenchymal-like characteristics in osteosarcoma through Snail. Oncol Lett. 2016;12:5007-5014 pubmed 出版商
  104. Liu T, Yu J, Deng M, Yin Y, Zhang H, Luo K, et al. CDK4/6-dependent activation of DUB3 regulates cancer metastasis through SNAIL1. Nat Commun. 2017;8:13923 pubmed 出版商
  105. Zangari J, Ilie M, Rouaud F, Signetti L, Ohanna M, Didier R, et al. Rapid decay of engulfed extracellular miRNA by XRN1 exonuclease promotes transient epithelial-mesenchymal transition. Nucleic Acids Res. 2017;45:4131-4141 pubmed 出版商
  106. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed 出版商
  107. Gammons M, Rutherford T, Steinhart Z, Angers S, Bienz M. Essential role of the Dishevelled DEP domain in a Wnt-dependent human-cell-based complementation assay. J Cell Sci. 2016;129:3892-3902 pubmed
  108. Liu B, Dong H, Lin X, Yang X, Yue X, Yang J, et al. RND3 promotes Snail 1 protein degradation and inhibits glioblastoma cell migration and invasion. Oncotarget. 2016;7:82411-82423 pubmed 出版商
  109. Zeng Y, Yao X, Chen L, Yan Z, Liu J, Zhang Y, et al. Sphingosine-1-phosphate induced epithelial-mesenchymal transition of hepatocellular carcinoma via an MMP-7/ syndecan-1/TGF-β autocrine loop. Oncotarget. 2016;7:63324-63337 pubmed 出版商
  110. Li C, Li Q, Cai Y, He Y, Lan X, Wang W, et al. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis. Cancer Gene Ther. 2016;23:295-302 pubmed 出版商
  111. Chiang K, Hsu S, Lin S, Yeh C, Pang J, Wang S, et al. PTEN Insufficiency Increases Breast Cancer Cell Metastasis In Vitro and In Vivo in a Xenograft Zebrafish Model. Anticancer Res. 2016;36:3997-4005 pubmed
  112. Jiang S, Gao Y, Hou W, Liu R, Qi X, Xu X, et al. Sinomenine inhibits A549 human lung cancer cell invasion by mediating the STAT3 signaling pathway. Oncol Lett. 2016;12:1380-1386 pubmed
  113. Im J, Yoon S, Kim B, Ban H, Won K, Chung K, et al. DNA damage induced apoptosis suppressor (DDIAS) is upregulated via ERK5/MEF2B signaling and promotes ?-catenin-mediated invasion. Biochim Biophys Acta. 2016;1859:1449-1458 pubmed 出版商
  114. Wei M, He W, Lu X, Ni L, Yang Y, Chen L, et al. JiaWeiDangGui Decoction Ameliorates Proteinuria and Kidney Injury in Adriamycin-Induced Rat by Blockade of TGF-?/Smad Signaling. Evid Based Complement Alternat Med. 2016;2016:5031890 pubmed 出版商
  115. Yang S, Tsai C, Pan Y, Yeh C, Pang J, Takano M, et al. MART-10, a newly synthesized vitamin D analog, represses metastatic potential of head and neck squamous carcinoma cells. Drug Des Devel Ther. 2016;10:1995-2002 pubmed 出版商
  116. Wu D, Chen C, Wu Z, Liu B, Gao L, Yang Q, et al. ATF2 predicts poor prognosis and promotes malignant phenotypes in renal cell carcinoma. J Exp Clin Cancer Res. 2016;35:108 pubmed 出版商
  117. Zhang Q, Liu S, Parajuli K, Zhang W, Zhang K, Mo Z, et al. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene. 2017;36:687-699 pubmed 出版商
  118. Eterno V, Zambelli A, Villani L, Tuscano A, Manera S, Spitaleri A, et al. AurkA controls self-renewal of breast cancer-initiating cells promoting wnt3a stabilization through suppression of miR-128. Sci Rep. 2016;6:28436 pubmed 出版商
  119. Chen H, Lorton B, Gupta V, Shechter D. A TGFβ-PRMT5-MEP50 axis regulates cancer cell invasion through histone H3 and H4 arginine methylation coupled transcriptional activation and repression. Oncogene. 2017;36:373-386 pubmed 出版商
  120. Kuang J, Li L, Guo L, Su Y, Wang Y, Xu Y, et al. RNF8 promotes epithelial-mesenchymal transition of breast cancer cells. J Exp Clin Cancer Res. 2016;35:88 pubmed 出版商
  121. Chesnokova V, Zonis S, Zhou C, Recouvreux M, Ben Shlomo A, Araki T, et al. Growth hormone is permissive for neoplastic colon growth. Proc Natl Acad Sci U S A. 2016;113:E3250-9 pubmed 出版商
  122. Lee Y, Kim S, Song S, Hong H, Lee Y, Oh B, et al. Crosstalk between CCL7 and CCR3 promotes metastasis of colon cancer cells via ERK-JNK signaling pathways. Oncotarget. 2016;7:36842-36853 pubmed 出版商
  123. Giovannini C, Minguzzi M, Genovese F, Baglioni M, Gualandi A, Ravaioli M, et al. Molecular and proteomic insight into Notch1 characterization in hepatocellular carcinoma. Oncotarget. 2016;7:39609-39626 pubmed 出版商
  124. Ding H, Xu Y, Gao D, Wang L. Glioma-associated oncogene homolog 1 promotes epithelial-mesenchymal transition in human renal tubular epithelial cell. Am J Transl Res. 2016;8:662-9 pubmed
  125. Zidar N, Bostjancic E, Jerala M, Kojc N, Drobne D, Stabuc B, et al. Down-regulation of microRNAs of the miR-200 family and up-regulation of Snail and Slug in inflammatory bowel diseases - hallmark of epithelial-mesenchymal transition. J Cell Mol Med. 2016;20:1813-20 pubmed 出版商
  126. Chiang K, Yeh T, Chen S, Pang J, Yeh C, Hsu J, et al. The Vitamin D Analog, MART-10, Attenuates Triple Negative Breast Cancer Cells Metastatic Potential. Int J Mol Sci. 2016;17: pubmed 出版商
  127. Zaldumbide L, Erramuzpe A, Guarch R, Pulido R, Cortés J, López J. Snail heterogeneity in clear cell renal cell carcinoma. BMC Cancer. 2016;16:194 pubmed 出版商
  128. Thakur A, Nigri J, Lac S, Leca J, Bressy C, Berthezene P, et al. TAp73 loss favors Smad-independent TGF-β signaling that drives EMT in pancreatic ductal adenocarcinoma. Cell Death Differ. 2016;23:1358-70 pubmed 出版商
  129. Pattabiraman D, Bierie B, Kober K, Thiru P, Krall J, Zill C, et al. Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science. 2016;351:aad3680 pubmed 出版商
  130. Matsuda Y, Miura K, Yamane J, Shima H, Fujibuchi W, Ishida K, et al. SERPINI1 regulates epithelial-mesenchymal transition in an orthotopic implantation model of colorectal cancer. Cancer Sci. 2016;107:619-28 pubmed 出版商
  131. Kim D, Helfman D. Loss of MLCK leads to disruption of cell-cell adhesion and invasive behavior of breast epithelial cells via increased expression of EGFR and ERK/JNK signaling. Oncogene. 2016;35:4495-508 pubmed 出版商
  132. Kourtidis A, Anastasiadis P. PLEKHA7 defines an apical junctional complex with cytoskeletal associations and miRNA-mediated growth implications. Cell Cycle. 2016;15:498-505 pubmed 出版商
  133. Xiao S, Chang R, Yang M, Lei X, Liu X, Gao W, et al. Actin-like 6A predicts poor prognosis of hepatocellular carcinoma and promotes metastasis and epithelial-mesenchymal transition. Hepatology. 2016;63:1256-71 pubmed 出版商
  134. Yan L, Liu Y, Xiang J, Wu Q, Xu L, Luo X, et al. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer. Int J Oncol. 2016;48:471-84 pubmed 出版商
  135. Osorio L, Farfán N, Castellón E, Contreras H. SNAIL transcription factor increases the motility and invasive capacity of prostate cancer cells. Mol Med Rep. 2016;13:778-86 pubmed 出版商
  136. Rafehi S, Ramos Valdes Y, Bertrand M, McGee J, Préfontaine M, Sugimoto A, et al. TGFβ signaling regulates epithelial-mesenchymal plasticity in ovarian cancer ascites-derived spheroids. Endocr Relat Cancer. 2016;23:147-59 pubmed 出版商
  137. Bartscht T, Rosien B, Rades D, Kaufmann R, Biersack H, Lehnert H, et al. Dasatinib blocks transcriptional and promigratory responses to transforming growth factor-beta in pancreatic adenocarcinoma cells through inhibition of Smad signalling: implications for in vivo mode of action. Mol Cancer. 2015;14:199 pubmed 出版商
  138. Pai P, Rachagani S, Lakshmanan I, Macha M, Sheinin Y, Smith L, et al. The canonical Wnt pathway regulates the metastasis-promoting mucin MUC4 in pancreatic ductal adenocarcinoma. Mol Oncol. 2016;10:224-39 pubmed 出版商
  139. McCart Reed A, Kutasovic J, Vargas A, Jayanthan J, Al Murrani A, Reid L, et al. An epithelial to mesenchymal transition programme does not usually drive the phenotype of invasive lobular carcinomas. J Pathol. 2016;238:489-94 pubmed 出版商
  140. Nath A, Li I, Roberts L, Chan C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 2015;5:14752 pubmed 出版商
  141. Yokdang N, Hatakeyama J, Wald J, Simion C, Tellez J, Chang D, et al. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene. 2016;35:2932-47 pubmed 出版商
  142. Kuang X, Zhu J, Peng Z, Wang J, Chen Z. Transducin (Beta)-Like 1 X-Linked Receptor 1 Correlates with Clinical Prognosis and Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma. Dig Dis Sci. 2016;61:489-500 pubmed 出版商
  143. Zhang X, Jung I, Hwang Y. EGF enhances low-invasive cancer cell invasion by promoting IMP-3 expression. Tumour Biol. 2016;37:2555-63 pubmed 出版商
  144. Zhao Y, Londono P, Cao Y, Sharpe E, Proenza C, O Rourke R, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun. 2015;6:8243 pubmed 出版商
  145. Zhang Y, Wei X, Liang Y, Chen W, Zhang F, Bai J, et al. Over-Expressed Twist Associates with Markers of Epithelial Mesenchymal Transition and Predicts Poor Prognosis in Breast Cancers via ERK and Akt Activation. PLoS ONE. 2015;10:e0135851 pubmed 出版商
  146. Mehrabian M, Brethour D, Wang H, Xi Z, Rogaeva E, Schmitt Ulms G. The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis. PLoS ONE. 2015;10:e0133741 pubmed 出版商
  147. Chiang K, Kuo S, Chen C, Ng S, Lin S, Yeh C, et al. MART-10, the vitamin D analog, is a potent drug to inhibit anaplastic thyroid cancer cell metastatic potential. Cancer Lett. 2015;369:76-85 pubmed 出版商
  148. Picot N, Guerrette R, Beauregard A, Jean S, Michaud P, Harquail J, et al. Mammaglobin 1 promotes breast cancer malignancy and confers sensitivity to anticancer drugs. Mol Carcinog. 2016;55:1150-62 pubmed 出版商
  149. Haraguchi M, Sato M, Ozawa M. CRISPR/Cas9n-Mediated Deletion of the Snail 1Gene (SNAI1) Reveals Its Role in Regulating Cell Morphology, Cell-Cell Interactions, and Gene Expression in Ovarian Cancer (RMG-1) Cells. PLoS ONE. 2015;10:e0132260 pubmed 出版商
  150. Azzi S, Gallerne C, Romei C, Le Coz V, Gangemi R, Khawam K, et al. Human Renal Normal, Tumoral, and Cancer Stem Cells Express Membrane-Bound Interleukin-15 Isoforms Displaying Different Functions. Neoplasia. 2015;17:509-17 pubmed 出版商
  151. Ju S, Huang C, Huang W, Su Y. Identification of thiostrepton as a novel therapeutic agent that targets human colon cancer stem cells. Cell Death Dis. 2015;6:e1801 pubmed 出版商
  152. Krishnan S, Szabo E, Burghardt I, Frei K, Tabatabai G, Weller M. Modulation of cerebral endothelial cell function by TGF-β in glioblastoma: VEGF-dependent angiogenesis versus endothelial mesenchymal transition. Oncotarget. 2015;6:22480-95 pubmed
  153. Kawamura N, Nimura K, Nagano H, Yamaguchi S, Nonomura N, Kaneda Y. CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget. 2015;6:22361-74 pubmed
  154. Cicchini C, de Nonno V, Battistelli C, Cozzolino A, De Santis Puzzonia M, Ciafrè S, et al. Epigenetic control of EMT/MET dynamics: HNF4α impacts DNMT3s through miRs-29. Biochim Biophys Acta. 2015;1849:919-29 pubmed 出版商
  155. Izawa G, Kobayashi W, Haraguchi M, Sudo A, Ozawa M. The ectopic expression of Snail in MDBK cells does not induce epithelial-mesenchymal transition. Int J Mol Med. 2015;36:166-72 pubmed 出版商
  156. Duvall Noelle N, Karwandyar A, Richmond A, Raman D. LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex. Oncogene. 2016;35:1122-33 pubmed 出版商
  157. Zhang Y, Fan N, Yang J. Expression and clinical significance of hypoxia-inducible factor 1?, Snail and E-cadherin in human ovarian cancer cell lines. Mol Med Rep. 2015;12:3393-3399 pubmed 出版商
  158. Lin X, Xu W, Shao M, Fan Q, Wen G, Li C, et al. Shenling Baizhu San supresses colitis associated colorectal cancer through inhibition of epithelial-mesenchymal transition and myeloid-derived suppressor infiltration. BMC Complement Altern Med. 2015;15:126 pubmed 出版商
  159. Min K, Liggett J, Silva G, Wu W, Wang R, Shen R, et al. NAG-1/GDF15 accumulates in the nucleus and modulates transcriptional regulation of the Smad pathway. Oncogene. 2016;35:377-88 pubmed 出版商
  160. Zhao H, Agazie Y. Inhibition of SHP2 in basal-like and triple-negative breast cells induces basal-to-luminal transition, hormone dependency, and sensitivity to anti-hormone treatment. BMC Cancer. 2015;15:109 pubmed 出版商
  161. Maity G, De A, Das A, Banerjee S, Sarkar S, Banerjee S. Aspirin blocks growth of breast tumor cells and tumor-initiating cells and induces reprogramming factors of mesenchymal to epithelial transition. Lab Invest. 2015;95:702-17 pubmed 出版商
  162. Li Y, Drabsch Y, Pujuguet P, Ren J, van Laar T, Zhang L, et al. Genetic depletion and pharmacological targeting of αv integrin in breast cancer cells impairs metastasis in zebrafish and mouse xenograft models. Breast Cancer Res. 2015;17:28 pubmed 出版商
  163. Yamada A, Aki T, Unuma K, Funakoshi T, Uemura K. Paraquat induces epithelial-mesenchymal transition-like cellular response resulting in fibrogenesis and the prevention of apoptosis in human pulmonary epithelial cells. PLoS ONE. 2015;10:e0120192 pubmed 出版商
  164. Perdigão Henriques R, Petrocca F, Altschuler G, Thomas M, Le M, Tan S, et al. miR-200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes. Oncogene. 2016;35:158-72 pubmed 出版商
  165. Liu Y, Han X, Gao B. Knockdown of S100A11 expression suppresses ovarian cancer cell growth and invasion. Exp Ther Med. 2015;9:1460-1464 pubmed
  166. Costabile V, Duraturo F, Delrio P, Rega D, Pace U, Liccardo R, et al. Lithium chloride induces mesenchymal‑to‑epithelial reverting transition in primary colon cancer cell cultures. Int J Oncol. 2015;46:1913-23 pubmed 出版商
  167. Fang J, Zhou H, Zhang C, Shang L, Zhang L, Xu J, et al. A novel vascular pattern promotes metastasis of hepatocellular carcinoma in an epithelial-mesenchymal transition-independent manner. Hepatology. 2015;62:452-65 pubmed 出版商
  168. Wang H, Bao W, Jiang F, Che Q, Chen Z, Wang F, et al. Mutant p53 (p53-R248Q) functions as an oncogene in promoting endometrial cancer by up-regulating REGγ. Cancer Lett. 2015;360:269-79 pubmed 出版商
  169. Hsiao S, Chen M, Chen C, Chien M, Hua K, Hsiao M, et al. The H3K9 Methyltransferase G9a Represses E-cadherin and is Associated with Myometrial Invasion in Endometrial Cancer. Ann Surg Oncol. 2015;22 Suppl 3:S1556-65 pubmed 出版商
  170. Sun Z, Zhang C, Zou X, Jiang G, Xu Z, Li W, et al. Special AT-rich sequence-binding protein-1 participates in the maintenance of breast cancer stem cells through regulation of the Notch signaling pathway and expression of Snail1 and Twist1. Mol Med Rep. 2015;11:3235-542 pubmed 出版商
  171. Wei H, Nickoloff J, Chen W, Liu H, Lo W, Chang Y, et al. FOXF1 mediates mesenchymal stem cell fusion-induced reprogramming of lung cancer cells. Oncotarget. 2014;5:9514-29 pubmed
  172. Lu G, Zhang Q, Huang Y, Song J, Tomaino R, Ehrenberger T, et al. Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor. Cancer Cell. 2014;26:222-34 pubmed 出版商
  173. Zhang P, Wei Y, Wang L, Debeb B, Yuan Y, Zhang J, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 2014;16:864-75 pubmed 出版商
  174. Lee M, Kim S, Kim B, Won C, Nam S, Kang S, et al. Snail1 induced in breast cancer cells in 3D collagen I gel environment suppresses cortactin and impairs effective invadopodia formation. Biochim Biophys Acta. 2014;1843:2037-54 pubmed 出版商
  175. Subramani R, Lopez Valdez R, Arumugam A, Nandy S, Boopalan T, Lakshmanaswamy R. Targeting insulin-like growth factor 1 receptor inhibits pancreatic cancer growth and metastasis. PLoS ONE. 2014;9:e97016 pubmed 出版商
  176. Xia Y, Chang T, Wang Y, Liu Y, Li W, Li M, et al. YAP promotes ovarian cancer cell tumorigenesis and is indicative of a poor prognosis for ovarian cancer patients. PLoS ONE. 2014;9:e91770 pubmed 出版商
  177. Li A, Morton J, Ma Y, Karim S, Zhou Y, Faller W, et al. Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology. 2014;146:1386-96.e1-17 pubmed 出版商
  178. Weng W, Yin J, Zhang Y, Qiu J, Wang X. Metastasis-associated protein 1 promotes tumor invasion by downregulation of E-cadherin. Int J Oncol. 2014;44:812-8 pubmed 出版商
  179. D Anselmi F, Masiello M, Cucina A, Proietti S, Dinicola S, Pasqualato A, et al. Microenvironment promotes tumor cell reprogramming in human breast cancer cell lines. PLoS ONE. 2013;8:e83770 pubmed 出版商
  180. Wu K, Chen K, Wang C, Jiao X, Wang L, Zhou J, et al. Cell fate factor DACH1 represses YB-1-mediated oncogenic transcription and translation. Cancer Res. 2014;74:829-39 pubmed 出版商
  181. Luo W, Yao K. Cancer stem cell characteristics, ALDH1 expression in the invasive front of nasopharyngeal carcinoma. Virchows Arch. 2014;464:35-43 pubmed 出版商
  182. Chen Y, Huang W, Chang S, Chang K, Kao S, Lo J, et al. Enhanced filopodium formation and stem-like phenotypes in a novel metastatic head and neck cancer cell model. Oncol Rep. 2013;30:2829-37 pubmed 出版商
  183. Devine D, Rostas J, Metge B, Das S, Mulekar M, Tucker J, et al. Loss of N-Myc interactor promotes epithelial-mesenchymal transition by activation of TGF-?/SMAD signaling. Oncogene. 2014;33:2620-8 pubmed 出版商
  184. Harazono Y, Muramatsu T, Endo H, Uzawa N, Kawano T, Harada K, et al. miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PLoS ONE. 2013;8:e62757 pubmed 出版商
  185. Chu I, Lai W, Aprelikova O, El Touny L, Kouros Mehr H, Green J. Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß. PLoS ONE. 2013;8:e61125 pubmed 出版商
  186. Wu C, Tang S, Wang P, Lee H, Ko J. Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation. J Biol Chem. 2012;287:25292-302 pubmed 出版商