这是一篇来自已证抗体库的有关人类 SOX2的综述,是根据324篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合SOX2 抗体。
SOX2 同义词: ANOP3; MCOPS3

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2h
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2h). Cell Rep (2022) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7a, s12e
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab196637)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7a, s12e). Nat Commun (2022) ncbi
domestic rabbit 单克隆(SP76)
  • 免疫细胞化学; 人类; 1:100; 图 1d
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab93689)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1d). iScience (2022) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab92494)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 4b). Cell Rep (2022) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫印迹; 人类; 1:1000; 图 1d
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab92494)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Front Oncol (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Neurotox Res (2022) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 8c
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab92494)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 8c). BMC Cancer (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2o
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2o). Front Neurosci (2022) ncbi
小鼠 单克隆(20G5)
  • 免疫组化; 斑马鱼; 图 4c
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab171380)被用于被用于免疫组化在斑马鱼样本上 (图 4c). Am J Hum Genet (2022) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 2a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab92494)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 2a). STAR Protoc (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; axolotl; 1:100; 图 2a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化在axolotl样本上浓度为1:100 (图 2a). Development (2022) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab-97959)被用于被用于免疫细胞化学在小鼠样本上 (图 3a). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 4a). Mol Brain (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化在人类样本上 (图 1a). Acta Neuropathol (2021) ncbi
小鼠 单克隆(37873)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s5c
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab79351)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s5c). Bone Res (2021) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫印迹; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab92494)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Cancer Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 2a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2a). Neural Regen Res (2022) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫细胞化学; 人类; 1:200; 图 s1-1e
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab92494)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1-1e). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 s2a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s2a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 SOX2抗体(ABCAM, ab97959)被用于被用于免疫组化在小鼠样本上 (图 5c). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2d
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:500; 图 8f
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 8f). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 3b
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2b
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab92494)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2b). Stem Cells (2021) ncbi
小鼠 单克隆(20G5)
  • 免疫细胞化学; 人类; 图 2d
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab171380)被用于被用于免疫细胞化学在人类样本上 (图 2d). Stem Cell Res Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6d, 6h
  • 免疫印迹; 人类; 1:1000; 图 4d, 4e
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6d, 6h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4d, 4e). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab92494)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1a). elife (2021) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3f
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab92494)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3f). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4a). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 4c
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4c). Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4g
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). Oncogenesis (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 1b
  • 免疫印迹; 人类; 1:1000; 图 1c
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab137385)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Int J Oncol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s6a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化在小鼠样本上 (图 s6a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s6a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化在小鼠样本上 (图 s6a). elife (2020) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 7a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab92494)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 7a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:200; 图 1g
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, Ab97959)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 1g). elife (2020) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫组化; 小鼠; 1:200; 图 6s2b
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, EPR3131)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6s2b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 s3d
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 s3d). Nature (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1s1g
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, Ab97959)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1s1g). elife (2020) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫组化; 斑马鱼; 1:50; 图 1c
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab92494)被用于被用于免疫组化在斑马鱼样本上浓度为1:50 (图 1c). Science (2020) ncbi
小鼠 单克隆(20G5)
  • 免疫组化; turquoise killifish; 图 1a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab171380)被用于被用于免疫组化在turquoise killifish样本上 (图 1a). Curr Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s1a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s1a). Nat Commun (2020) ncbi
小鼠 单克隆(20G5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab171380)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3a). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1b
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1b). Cell Rep (2020) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s3
  • 免疫细胞化学; 人类; 1:10; 图 s5
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab92494)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s3) 和 被用于免疫细胞化学在人类样本上浓度为1:10 (图 s5). Cancers (Basel) (2020) ncbi
小鼠 单克隆(37873)
  • 免疫细胞化学; 小鼠; 1:500; 图 5c
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab79351)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5c). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3a). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Nat Commun (2019) ncbi
小鼠 单克隆(37873)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab79351)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2a). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 3a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3a). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 1b
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1b). Stem Cell Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大西洋鳉; 1:100; 图 4
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化-石蜡切片在大西洋鳉样本上浓度为1:100 (图 4). Toxicology (2019) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab92494)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1d
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1d). Cell Death Differ (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 SOX2抗体(abcam, ab97959)被用于被用于ChIP-Seq在小鼠样本上 (图 3b). Nucleic Acids Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫印迹在人类样本上 (图 2a). Theranostics (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; black ferret; 1:200; 图 12a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化在black ferret样本上浓度为1:200 (图 12a). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:1500; 图 5d
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化在人类样本上浓度为1:1500 (图 5d) 和 被用于免疫印迹在人类样本上 (图 5b). Oncogene (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫印迹在人类样本上 (图 3c). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 4b
  • 免疫组化; 人类; 1:400; 图 3f
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab92494)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 4b) 和 被用于免疫组化在人类样本上浓度为1:400 (图 3f). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫细胞化学在小鼠样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(37873)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3a
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab79351)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3a). PLoS Genet (2017) ncbi
小鼠 单克隆(20G5)
  • 免疫细胞化学; 人类; 图 1e
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab171380)被用于被用于免疫细胞化学在人类样本上 (图 1e) 和 被用于免疫印迹在人类样本上 (图 1d). Stem Cell Reports (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 斑马鱼; 1:500; 表 2
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, Ab97959)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:500 (表 2). Dev Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1k
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1k). Nature (2017) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫细胞化学; 小鼠; 1:150; 图 4b
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab92494)被用于被用于免疫细胞化学在小鼠样本上浓度为1:150 (图 4b). Am J Transl Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 1c
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1c). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; domestic goat; 1:500; 图 1
  • 免疫印迹; domestic goat; 1:1000; 图 5C
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫细胞化学在domestic goat样本上浓度为1:500 (图 1) 和 被用于免疫印迹在domestic goat样本上浓度为1:1000 (图 5C). BMC Biotechnol (2017) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1b
  • 免疫印迹; 小鼠; 1:1000; 图 4h
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, 92494)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4h). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 表 2
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, Ab97959)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (表 2). Front Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1). J Neuroinflammation (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4). Cell Death Dis (2016) ncbi
小鼠 单克隆(20G5)
  • 免疫细胞化学; 人类; 图 4
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab171380)被用于被用于免疫细胞化学在人类样本上 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5A
艾博抗(上海)贸易有限公司 SOX2抗体(abcam, ab97959)被用于被用于免疫印迹在人类样本上 (图 5A). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s5
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab92494)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s5). Aging (Albany NY) (2016) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab92494)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 斑马鱼; 1:500; 图 2
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:500 (图 2). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 1
  • 免疫印迹; 大鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 2). Cell Tissue Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1
艾博抗(上海)贸易有限公司 SOX2抗体(abcam, ab97959)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:600; 图 1d, 1g
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, AB97959)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:600 (图 1d, 1g). Neural Regen Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 6
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 6). Front Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:500; 图 s6
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, AB97959)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 s6). BMC Biol (2016) ncbi
domestic rabbit 单克隆(EPR3130)
  • 免疫印迹; 小鼠; 图 2
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab133337)被用于被用于免疫印迹在小鼠样本上 (图 2). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 1
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, AB97959)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫组化; 小鼠; 1:200; 图 3b
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab92494)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3b). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 1
  • 免疫组化; 小鼠; 1:100; 图 s11
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 s11). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 鸡; 1:500; 图 1
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:500 (图 1). Development (2016) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫组化-石蜡切片; 人类; 图 6d
  • 免疫印迹; 人类; 图 6b
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab92494)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6d) 和 被用于免疫印迹在人类样本上 (图 6b). Hepatology (2016) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab97959)被用于. Stem Cell Reports (2015) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫细胞化学; 人类; 1:200; 图 6
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab92494)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6). In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(37873)
  • 免疫组化-冰冻切片; 小鼠; 1:4000
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab79351)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:4000. Nat Commun (2014) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司 SOX2抗体(Epitomics, 2683-1)被用于被用于免疫印迹在人类样本上浓度为1:500. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(EPR3131)
  • 免疫组化-冰冻切片; 小鼠; 1:50
艾博抗(上海)贸易有限公司 SOX2抗体(Epitomics, 2683-1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. J Mol Neurosci (2014) ncbi
小鼠 单克隆(37873)
  • 免疫组化-冰冻切片; 人类; 1:300
艾博抗(上海)贸易有限公司 SOX2抗体(Abcam, ab79351)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:300. J Comp Neurol (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(E-4)
  • 免疫细胞化学; 人类; 1:250; 图 6b, s12f
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, SC-365823)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 6b, s12f). Cell Death Differ (2022) ncbi
  • 免疫组化; 小鼠; 1:500
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, 17320)被用于被用于免疫组化在小鼠样本上浓度为1:500. Nat Commun (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 人类; 1:100; 图 2c
圣克鲁斯生物技术 SOX2抗体(Santa Cruz Biotech, sc-365823)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2c). Cell Rep (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫组化; 小鼠; 1:100; 图 1g
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, SC-365823)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1g). Stem Cell Res (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 2b
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, sc-365823)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 2b). bioRxiv (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 5a
  • 免疫细胞化学; 小鼠; 1:100; 图 6b
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, sc-365823)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 5a) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6b). Front Cell Dev Biol (2020) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 s7a
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, sc-365823)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 s7a). PLoS Biol (2020) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 小鼠; 1:100; 图 3s1a
  • 免疫印迹; 小鼠; 1:1000; 图 5s1c
圣克鲁斯生物技术 SOX2抗体(Santa, sc-365823)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3s1a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5s1c). elife (2019) ncbi
  • 免疫细胞化学; 人类; 图 1d
圣克鲁斯生物技术 SOX2抗体(Santa Cruz Biotechnology, 17320)被用于被用于免疫细胞化学在人类样本上 (图 1d). PLoS Biol (2019) ncbi
  • 免疫组化; 小鼠; 1:200; 图 1f
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, sc-17320)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1f). Sci Adv (2019) ncbi
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 4d
圣克鲁斯生物技术 SOX2抗体(Santa Cruz Biotechnology Inc, sc-17320)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 4d). J Comp Neurol (2019) ncbi
小鼠 单克隆(A-5)
  • 免疫组化; 猕猴; 图 1d
  • 免疫组化; 人类; 1:200; 图 1d
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, sc-365964)被用于被用于免疫组化在猕猴样本上 (图 1d) 和 被用于免疫组化在人类样本上浓度为1:200 (图 1d). Cell (2019) ncbi
  • 免疫细胞化学; 人类; 1:500; 图 1b
圣克鲁斯生物技术 SOX2抗体(Santa, sc-17320)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1b). Science (2018) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2c
圣克鲁斯生物技术 SOX2抗体(Santa Cruz Biotechnology, sc-17320)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2c). Development (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 小鼠; 1:200; 图 2a
圣克鲁斯生物技术 SOX2抗体(Santa Cruz Biotechnology Inc, sc-365823)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2a). Nat Commun (2018) ncbi
  • 免疫细胞化学; 人类; 图 s1d
圣克鲁斯生物技术 SOX2抗体(Santa Cruz Biotechnology Inc, sc-17320)被用于被用于免疫细胞化学在人类样本上 (图 s1d). Nat Med (2018) ncbi
  • 免疫细胞化学; 人类; 1:200; 图 1b
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, sc-17320)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1b). PLoS ONE (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫组化; 人类; 1:50; 图 6a
圣克鲁斯生物技术 SOX2抗体(Santa Cruz Biotechnology Inc, sc-365823)被用于被用于免疫组化在人类样本上浓度为1:50 (图 6a). J Comp Neurol (2019) ncbi
  • 免疫细胞化学; 小鼠; 1:200; 图 6d
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, Y-17)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 6d). Dev Cell (2017) ncbi
  • 免疫细胞化学; 人类; 图 1d
圣克鲁斯生物技术 SOX2抗体(Santa Cruz Biotechnology, sc-17320)被用于被用于免疫细胞化学在人类样本上 (图 1d). Stem Cell Res Ther (2017) ncbi
  • 免疫组化; 豚鼠; 1:100; 图 2b
圣克鲁斯生物技术 SOX2抗体(Santa Cruz Biotechnology, sc-17320)被用于被用于免疫组化在豚鼠样本上浓度为1:100 (图 2b). Dev Growth Differ (2017) ncbi
  • 免疫细胞化学; 人类; 图 s7a
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, sc-17320)被用于被用于免疫细胞化学在人类样本上 (图 s7a). Science (2017) ncbi
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, sc-17320)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2017) ncbi
  • 免疫印迹; 小鼠; 1:200; 图 1c
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, sc17320)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 1c). Nat Commun (2017) ncbi
  • 免疫组化; 小鼠; 1:100; 图 7b
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, sc-17320)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 7b). J Comp Neurol (2017) ncbi
  • 免疫组化; 小鼠; 1:200; 图 1I
圣克鲁斯生物技术 SOX2抗体(Santa cruz, sc-17320)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1I). elife (2017) ncbi
  • 流式细胞仪; domestic rabbit; 1:100; 图 2
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, sc-17320)被用于被用于流式细胞仪在domestic rabbit样本上浓度为1:100 (图 2). Stem Cell Res Ther (2017) ncbi
  • 免疫组化; 小鼠; 1:100; 图 2c
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, sc-17320)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2c). Dev Cell (2017) ncbi
  • 免疫细胞化学; 人类; 图 1g
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, Sc-17320)被用于被用于免疫细胞化学在人类样本上 (图 1g). Cell Stem Cell (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 7c
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, sc-365823)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7c). Cell J (2017) ncbi
  • 免疫细胞化学; 人类; 图 4m
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, sc-17320)被用于被用于免疫细胞化学在人类样本上 (图 4m). J Cell Physiol (2017) ncbi
  • ChIP-Seq; 小鼠; 图 5a
  • 免疫印迹; 小鼠; 图 s5g
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, Y-17)被用于被用于ChIP-Seq在小鼠样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 s5g). Genes Dev (2016) ncbi
  • 免疫组化; 人类; 1:250; 图 1h
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, SC17320)被用于被用于免疫组化在人类样本上浓度为1:250 (图 1h). Proc Natl Acad Sci U S A (2016) ncbi
  • 免疫组化; 小鼠
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, sc-17320)被用于被用于免疫组化在小鼠样本上. Stem Cell Reports (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, SC-365823)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Eur J Histochem (2016) ncbi
  • 免疫组化-自由浮动切片; 小鼠; 图 s5b
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, sc-17320)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 s5b). Mol Psychiatry (2017) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, s-17320)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4). Front Cell Neurosci (2016) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 s2a
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, sc17320)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 s2a). Nat Neurosci (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 人类; 图 1
圣克鲁斯生物技术 SOX2抗体(Santa, sc-365823)被用于被用于免疫细胞化学在人类样本上 (图 1). Folia Biol (Praha) (2016) ncbi
  • 免疫细胞化学; 人类; 1:50; 表 2
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, SC-17320)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (表 2). Methods Mol Biol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 人类; 1:200; 图 s1
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, sc-365823)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1). Nat Med (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 10
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, SC-365823)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 10). Eur J Histochem (2016) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 3
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, sc17320)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 3). J Neurosci (2016) ncbi
  • 免疫组化-冰冻切片; 小鼠; 图 1g
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, sc17320)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1g). J Neurosci (2015) ncbi
  • 免疫组化-冰冻切片; 人类; 图 1b
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, SC17320)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1b). Nat Methods (2016) ncbi
  • 免疫细胞化学; African green monkey; 1:100; 图 1
圣克鲁斯生物技术 SOX2抗体(Santa Cruz Biotechnology, sc17320)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:100 (图 1). BMC Res Notes (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 大鼠; 1:100
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, SC-365823)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100. Cell J (2015) ncbi
  • 免疫细胞化学; 小鼠; 图 3d
圣克鲁斯生物技术 SOX2抗体(Santa Cruz, sc-17320)被用于被用于免疫细胞化学在小鼠样本上 (图 3d). Curr Mol Pharmacol (2016) ncbi
  • 免疫细胞化学; 小鼠; 1:200; 图 1b
圣克鲁斯生物技术 SOX2抗体(Santa-Cruz, sc-17320)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1b). PLoS ONE (2015) ncbi
小鼠 单克隆(A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:50
圣克鲁斯生物技术 SOX2抗体(Santa Cruz Biotechnology, sc-365964)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50. Biomed Res Int (2014) ncbi
赛默飞世尔
大鼠 单克隆(Btjce)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 2g
赛默飞世尔 SOX2抗体(Thermo Fisher, 14-9811-82)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 2g). Aging Cancer (2021) ncbi
小鼠 单克隆(20G5)
  • 免疫组化-石蜡切片; 人类; 1:600; 图 2c
赛默飞世尔 SOX2抗体(Thermo, MA1-014)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600 (图 2c). Aging Cancer (2021) ncbi
大鼠 单克隆(Btjce)
  • 免疫细胞化学; 人类
赛默飞世尔 SOX2抗体(Invitrogen, 14-9811-80)被用于被用于免疫细胞化学在人类样本上. Cell Stem Cell (2022) ncbi
大鼠 单克隆(Btjce)
  • 流式细胞仪; 人类
赛默飞世尔 SOX2抗体(Thermo Fisher Scientific, 53-9811-82)被用于被用于流式细胞仪在人类样本上. Cell Mol Life Sci (2022) ncbi
domestic rabbit 单克隆(SP76)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s3b, s4
  • 免疫组化; 人类; 1:100; 图 6b
赛默飞世尔 SOX2抗体(Thermo Fisher, MA5-16399)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s3b, s4) 和 被用于免疫组化在人类样本上浓度为1:100 (图 6b). iScience (2022) ncbi
大鼠 单克隆(Btjce)
  • 免疫组化; 人类; 1:1000; 图 1a
赛默飞世尔 SOX2抗体(Invitrogen, 14-9811-80)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1a). Pharmaceuticals (Basel) (2021) ncbi
小鼠 单克隆(20G5)
  • 免疫细胞化学; 人类; 1:200; 图 1b
赛默飞世尔 SOX2抗体(Thermo, 20G5)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1b). Environ Health Perspect (2021) ncbi
大鼠 单克隆(Btjce)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2a
赛默飞世尔 SOX2抗体(eBioscience, 14-9811-80)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2a). Stem Cell Reports (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s4
赛默飞世尔 SOX2抗体(Thermo Fisher, PA1-16968)被用于被用于免疫细胞化学在人类样本上 (图 s4). Cell Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:125; 图 4s1b
赛默飞世尔 SOX2抗体(ThermoFisher, 48-1400)被用于被用于免疫细胞化学在人类样本上浓度为1:125 (图 4s1b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 e2a, e2d
  • 免疫印迹; 小鼠; 1:250; 图 e1c
赛默飞世尔 SOX2抗体(Invitrogen, 48-1400)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 e2a, e2d) 和 被用于免疫印迹在小鼠样本上浓度为1:250 (图 e1c). Mol Syst Biol (2019) ncbi
大鼠 单克隆(Btjce)
  • 免疫细胞化学; 小鼠; 1:400; 图 4s1c
赛默飞世尔 SOX2抗体(Invitrogen, 14-9811-82)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 4s1c). elife (2019) ncbi
大鼠 单克隆(Btjce)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 e10a
赛默飞世尔 SOX2抗体(eBioscience, 14-9811-80)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 e10a). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 2f
赛默飞世尔 SOX2抗体(Thermo Fisher, PA1-094)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2f). elife (2019) ncbi
大鼠 单克隆(Btjce)
  • 免疫组化-石蜡切片; 人类; 图 4a
赛默飞世尔 SOX2抗体(Thermo Fisher Scientific, 14-9811-82)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4a). Neurosurgery (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 1g
赛默飞世尔 SOX2抗体(Thermo Scientific, PA1-16968)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1g). Stem Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 1e
  • 免疫印迹; 人类; 1:1000; 图 4d
赛默飞世尔 SOX2抗体(Thermo Fischer Scientific, PA1-094)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Front Surg (2017) ncbi
大鼠 单克隆(Btjce)
  • 免疫细胞化学; 小鼠; 1:800; 图 1a
赛默飞世尔 SOX2抗体(eBiosciences, 14-9811)被用于被用于免疫细胞化学在小鼠样本上浓度为1:800 (图 1a). elife (2017) ncbi
大鼠 单克隆(Btjce)
  • 免疫组化; 小鼠; 1:400; 表 1
赛默飞世尔 SOX2抗体(eBioscience, 539811-82)被用于被用于免疫组化在小鼠样本上浓度为1:400 (表 1). J Comp Neurol (2017) ncbi
大鼠 单克隆(Btjce)
  • 免疫细胞化学基因敲除验证; 小鼠; 1:500; 图 s6h
  • 免疫印迹基因敲除验证; 小鼠; 1:500; 图 s6i
赛默飞世尔 SOX2抗体(eBioscience, 14-9811-80)被用于被用于免疫细胞化学基因敲除验证在小鼠样本上浓度为1:500 (图 s6h) 和 被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:500 (图 s6i). Nat Methods (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3
赛默飞世尔 SOX2抗体(Thermo, PA1-094)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3). Plast Reconstr Surg Glob Open (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 1h
赛默飞世尔 SOX2抗体(生活技术, 481400)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1h). Genes Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2d
赛默飞世尔 SOX2抗体(Thermo Fisher, PA1-094)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2d). Front Surg (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a
赛默飞世尔 SOX2抗体(Thermo Fisher, PA094)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a). Front Surg (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1d
  • 免疫印迹; 人类; 1:5000
赛默飞世尔 SOX2抗体(Thermo Fisher Scientific, PA-094)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1d) 和 被用于免疫印迹在人类样本上浓度为1:5000. Front Surg (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:250; 图 4
  • 免疫印迹; 人类; 1:1000; 图 4
赛默飞世尔 SOX2抗体(Thermo Fisher Scientific, PA1-094)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a
赛默飞世尔 SOX2抗体(Thermo Fisher, PA1-094)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a). J Clin Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 5
赛默飞世尔 SOX2抗体(生活技术, 481400)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 3
赛默飞世尔 SOX2抗体(ABR, PA1-16968)被用于被用于免疫组化在人类样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(20G5)
  • 免疫组化; 人类; 1:50; 图 4
赛默飞世尔 SOX2抗体(Pierce, MA1-014)被用于被用于免疫组化在人类样本上浓度为1:50 (图 4). Histochem Cell Biol (2016) ncbi
小鼠 单克隆(20G5)
  • 免疫印迹; 人类; 1:1000; 图 s2
赛默飞世尔 SOX2抗体(Thermo Fisher Scientific, MA1-014)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Nucleic Acids Res (2016) ncbi
大鼠 单克隆(Btjce)
  • 免疫组化; 小鼠; 1:100; 图 6
赛默飞世尔 SOX2抗体(eBioscience, 14-9811-80)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6). Development (2016) ncbi
大鼠 单克隆(Btjce)
  • 免疫细胞化学; 小鼠; 1:50; 表 2
赛默飞世尔 SOX2抗体(eBioscience, 53-9811)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (表 2). J Cell Physiol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 SOX2抗体(Invitrogen, 48-1400)被用于. Sci Rep (2015) ncbi
小鼠 单克隆(20G5)
  • 免疫印迹; 人类; 图 3a
赛默飞世尔 SOX2抗体(Pierce, MA1-014)被用于被用于免疫印迹在人类样本上 (图 3a). Cell Cycle (2015) ncbi
安迪生物R&D
小鼠 单克隆(245610)
  • 免疫组化-冰冻切片; 小鼠; 图 e1g
安迪生物R&D SOX2抗体(R&D, MAB2018)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 e1g). EMBO J (2021) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 6g
安迪生物R&D SOX2抗体(R&D, AF2018)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 6g). Front Cell Dev Biol (2021) ncbi
domestic goat 多克隆
  • 免疫组化; African green monkey; 1:200; 图 2c
安迪生物R&D SOX2抗体(R&D Systems, AF2018)被用于被用于免疫组化在African green monkey样本上浓度为1:200 (图 2c). Genes (Basel) (2021) ncbi
小鼠 单克隆(245610)
  • 免疫组化; 小鼠; 1:50; 图 3d
安迪生物R&D SOX2抗体(R&D Systems, MAB2018)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3d). Stem Cell Res Ther (2021) ncbi
小鼠 单克隆(245610)
  • 免疫印迹; 人类; 1:200
安迪生物R&D SOX2抗体(R&D systems, MAB2018)被用于被用于免疫印迹在人类样本上浓度为1:200. Cell Res (2021) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s6f
安迪生物R&D SOX2抗体(R&D, AF2018)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s6f). Nat Commun (2021) ncbi
小鼠 单克隆(245610)
  • 免疫组化; 小鼠; 1:200; 图 3b
安迪生物R&D SOX2抗体(R&D Systems, 245,610)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3b). Sci Rep (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1b
安迪生物R&D SOX2抗体(R&D Systems, AF2018)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1b). Proc Natl Acad Sci U S A (2021) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 s3c
安迪生物R&D SOX2抗体(R&D systems, AF2018)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 s3c). NPJ Regen Med (2021) ncbi
小鼠 单克隆(245610)
  • 免疫细胞化学; 人类; 1:50; 图 s2b, s4a
安迪生物R&D SOX2抗体(R&D Systems, MAB2018)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s2b, s4a). Cell Stem Cell (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4
安迪生物R&D SOX2抗体(R&D Systems, AF2018)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4). Sci Rep (2021) ncbi
小鼠 单克隆(245610)
  • 免疫细胞化学; 人类; 1:500; 图 1b
安迪生物R&D SOX2抗体(R&D Systems, MAB2018)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1b). J Neural Transm (Vienna) (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2b
安迪生物R&D SOX2抗体(R&D Systems, AF2018)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2b). Development (2021) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2k
安迪生物R&D SOX2抗体(R&D Systems, AF2018)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2k). Stem Cells (2021) ncbi
小鼠 单克隆(245610)
  • 免疫细胞化学; 人类; 图 1a
安迪生物R&D SOX2抗体(R&D, MAB2018)被用于被用于免疫细胞化学在人类样本上 (图 1a). J Clin Invest (2020) ncbi
BioLegend
小鼠 单克隆(14A6A34)
  • 流式细胞仪; 人类; 图 s4e
BioLegend SOX2抗体(BioLegend, 656114)被用于被用于流式细胞仪在人类样本上 (图 s4e). iScience (2022) ncbi
domestic rabbit 多克隆(Poly6308)
  • 免疫细胞化学; 人类; 图 3a
BioLegend SOX2抗体(Biolegend, 630802)被用于被用于免疫细胞化学在人类样本上 (图 3a). Cell Stem Cell (2017) ncbi
domestic rabbit 多克隆(Poly6308)
  • 其他; 人类; 图 st1
BioLegend SOX2抗体(BIOLegend, Poly6308)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(14A6A34)
  • 免疫组化; 小鼠; 1:100; 图 1
BioLegend SOX2抗体(BioLegend, 656109)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Development (2016) ncbi
Active Motif
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 4 s1c
Active Motif SOX2抗体(Active Motif, 39823)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4 s1c). elife (2022) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6e
Active Motif SOX2抗体(Active Motif, 39843)被用于被用于染色质免疫沉淀 在人类样本上 (图 6e). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000
Active Motif SOX2抗体(Active Motif, 39823)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. Sci Rep (2016) ncbi
Novus Biologicals
domestic rabbit 多克隆(1251A)
  • 免疫组化; 小鼠; 图 3l
Novus Biologicals SOX2抗体(Novus Biologicals, NB110-37235)被用于被用于免疫组化在小鼠样本上 (图 3l). Cell Mol Gastroenterol Hepatol (2022) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D6D9)
  • 免疫细胞化学; 人类; 1:400; 图 s2c, 4g
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s2c, 4g). Cell Stem Cell (2022) ncbi
domestic rabbit 单克隆(C70B1)
  • 免疫组化-石蜡切片; 小鼠; 1:75; 图 6a
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, C70B1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:75 (图 6a). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 7a, s12e
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 5179)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 7a, s12e). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 图 s2b
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于免疫印迹在人类样本上 (图 s2b). Nat Commun (2022) ncbi
小鼠 单克隆(L1D6A2)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 2a
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 4900)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 2a). STAR Protoc (2022) ncbi
小鼠 单克隆(L1D6A2)
  • 免疫印迹; 人类; 1:100; 图 3d
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, L1D6A2)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3d). Am J Cancer Res (2022) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹基因敲除验证; 人类; 图 3a
  • 免疫组化-石蜡切片; 人类; 图 1a, s1b
  • 免疫印迹; 人类; 图 s1a
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, D6D9)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 3a), 被用于免疫组化-石蜡切片在人类样本上 (图 1a, s1b) 和 被用于免疫印迹在人类样本上 (图 s1a). Oncogene (2022) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫细胞化学; 人类; 1:100; 图 s1c
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s1c). Stem Cell Res Ther (2021) ncbi
domestic rabbit 单克隆(D9B8N)
  • 免疫印迹; 人类; 图 8e
赛信通(上海)生物试剂有限公司 SOX2抗体(CST, 23064)被用于被用于免疫印迹在人类样本上 (图 8e). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫细胞化学; 人类; 1:50; 图 3a
  • 免疫印迹; 人类; 1:500; 图 3b
赛信通(上海)生物试剂有限公司 SOX2抗体(CST, D6D9)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 3b). Genes (Basel) (2021) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). JCI Insight (2021) ncbi
domestic rabbit 单克隆(C70B1)
  • 免疫细胞化学; 猕猴; 1:200; 图 2a
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signalling, C70B1)被用于被用于免疫细胞化学在猕猴样本上浓度为1:200 (图 2a). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 1:1000; 图 7g
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling Technology, 3579)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7g). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 SOX2抗体(CST, 2748)被用于被用于免疫印迹在人类样本上 (图 1d). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(C70B1)
  • 免疫细胞化学; 人类; 1:500; 图 s13b
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3728S)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s13b). Nat Cell Biol (2021) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫细胞化学; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1b). STAR Protoc (2021) ncbi
domestic rabbit 单克隆(C70B1)
  • 免疫组化; 小鼠; 1:75; 图 3r
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, C70B1)被用于被用于免疫组化在小鼠样本上浓度为1:75 (图 3r). Aging Cell (2021) ncbi
小鼠 单克隆(L1D6A2)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 SOX2抗体(CST, 4900)被用于被用于免疫印迹在人类样本上 (图 4b). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫细胞化学; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1b). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 3d
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 SOX2抗体(CST, 2748)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3d) 和 被用于免疫印迹在小鼠样本上 (图 1a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D9B8N)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 SOX2抗体(CST, D9B8N)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 6c). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 SOX2抗体(CST, 3579)被用于被用于免疫印迹在人类样本上 (图 2b). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a, 5e
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell signaling, 2748)被用于被用于免疫印迹在人类样本上 (图 2a, 5e). Cancer Cell Int (2021) ncbi
domestic rabbit 单克隆(D1C7J)
  • 免疫印迹; 人类; 1:1000; 图 5c, 5d
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling Technologies, 14962S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c, 5d). Respir Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 3a
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling Technology, 2748)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3a). Science (2021) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 1:1000; 图 e7e
赛信通(上海)生物试剂有限公司 SOX2抗体(CST, 3579)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 e7e). Nature (2021) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫细胞化学; 人类; 图 3b
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579S)被用于被用于免疫细胞化学在人类样本上 (图 3b). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D9B8N)
  • 免疫印迹; 小鼠; 1:1000; 图 10b, 10i
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 23064)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 10b, 10i). Cell Biosci (2021) ncbi
domestic rabbit 单克隆(D9B8N)
  • 免疫印迹; 小鼠; 图 s4c
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 23064S)被用于被用于免疫印迹在小鼠样本上 (图 s4c). Mol Metab (2021) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D1C7J)
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 14962S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Neoplasia (2021) ncbi
domestic rabbit 单克隆(C70B1)
  • 免疫细胞化学; 小鼠; 图 1c
  • 免疫组化; 小鼠; 图 2c
  • 免疫印迹; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3728)被用于被用于免疫细胞化学在小鼠样本上 (图 1c), 被用于免疫组化在小鼠样本上 (图 2c) 和 被用于免疫印迹在小鼠样本上 (图 7e). Adv Sci (Weinh) (2020) ncbi
小鼠 单克隆(L1D6A2)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 SOX2抗体(CST, L1D6A2)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Transl Psychiatry (2020) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 1:5000; 图 1c
赛信通(上海)生物试剂有限公司 SOX2抗体(CST, 5024S)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1c). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell signaling, 2748)被用于被用于免疫印迹在人类样本上. Theranostics (2020) ncbi
domestic rabbit 单克隆(D1C7J)
  • 免疫组化; 小鼠; 1:300; 图 4a
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling Technology, 14962)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 4a). JCI Insight (2020) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 SOX2抗体(CST, 3579)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). JCI Insight (2020) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫细胞化学; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling Technology, 3579)被用于被用于免疫细胞化学在小鼠样本上 (图 7a). Cell Stem Cell (2020) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling Technology, 3579)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 SOX2抗体(cell signaling, 3579)被用于被用于免疫印迹在人类样本上 (图 1d). Oncogenesis (2020) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 大鼠; 1:25; 图 5a
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 2748)被用于被用于染色质免疫沉淀 在大鼠样本上浓度为1:25 (图 5a). Sci Rep (2020) ncbi
小鼠 单克隆(L1D6A2)
  • 免疫细胞化学; 大鼠; 1:100; 图 1d
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 4900S)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1d). Sci Rep (2020) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫细胞化学; 人类; 1:400; 图 s3a
赛信通(上海)生物试剂有限公司 SOX2抗体(CST, 3579S)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s3a). Sci Rep (2020) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 SOX2抗体(CST, 3579)被用于被用于免疫印迹在小鼠样本上 (图 5c). Biomed Pharmacother (2020) ncbi
小鼠 单克隆(L1D6A2)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2a
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 4900)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2a). elife (2019) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫组化; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于免疫组化在小鼠样本上 (图 4c). Cell (2019) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于免疫印迹在人类样本上 (图 3a). Cancer Cell (2019) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Redox Biol (2019) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 1:1000; 图 s1g
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1g). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4f
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 2748S)被用于被用于免疫印迹在小鼠样本上 (图 4f). Mol Cell (2019) ncbi
domestic rabbit 单克隆(D6D9)
  • 流式细胞仪; 小鼠; 图 6g
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 5067)被用于被用于流式细胞仪在小鼠样本上 (图 6g). Mol Cell (2019) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling Technology, 3579)被用于被用于免疫印迹在人类样本上 (图 5a). Cancer Res (2019) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫细胞化学; 人类; 1:100; 图 4a
  • 免疫组化; 人类; 1:200; 图 8b
  • 免疫印迹; 人类; 1:1000; 图 4h
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4a), 被用于免疫组化在人类样本上浓度为1:200 (图 8b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4h). Nat Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 4k
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 2748S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4k). Cell (2018) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫组化; 人类; 1:250; 图 1c
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, D6D9)被用于被用于免疫组化在人类样本上浓度为1:250 (图 1c). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 2748)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫组化; 人类; 1:160; 图 5c
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579S)被用于被用于免疫组化在人类样本上浓度为1:160 (图 5c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫细胞化学; 人类; 图 5g
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579S)被用于被用于免疫细胞化学在人类样本上 (图 5g). Cell (2018) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫细胞化学; 人类; 图 3b
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling Technology, 3579)被用于被用于免疫细胞化学在人类样本上 (图 3b). Cancer Res (2017) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2a
  • 免疫细胞化学; 人类; 1:200; 图 3h
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2a) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 3h). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6h
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling Technology, 2748)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6h). Development (2017) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫组化-石蜡切片; 人类; 图 6b
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6b), 被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 2a). Mol Cancer Res (2017) ncbi
domestic rabbit 单克隆(D1C7J)
  • 免疫组化-石蜡切片; 人类; 图 3f
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 14962)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3f). Mol Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3bb
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 2748)被用于被用于免疫细胞化学在人类样本上 (图 3bb) 和 被用于免疫印迹在人类样本上 (图 2a). Mol Oncol (2017) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫细胞化学; 人类; 图 3b
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell signaling, 3579)被用于被用于免疫细胞化学在人类样本上 (图 3b). Biol Open (2017) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 s1b
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell signaling, 3579)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 s1b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于免疫印迹在人类样本上 (图 2c). Oncogene (2017) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫细胞化学; 人类; 1:400; 图 s10b
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579P)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s10b). Nat Med (2016) ncbi
小鼠 单克隆(L73B4)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 4195S)被用于被用于免疫印迹在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(C70B1)
  • 免疫组化; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell signalling, 3728)被用于被用于免疫组化在小鼠样本上 (图 4a). Neural Dev (2016) ncbi
小鼠 单克隆(L1D6A2)
  • 免疫细胞化学; 人类; 图 4a
赛信通(上海)生物试剂有限公司 SOX2抗体(CST, 4900S)被用于被用于免疫细胞化学在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Neoplasia (2016) ncbi
小鼠 单克隆(L1D6A2)
  • 免疫组化; 小鼠; 1:100; 图 2a
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 4900)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2a). Ann Clin Transl Neurol (2016) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579P)被用于被用于免疫印迹在人类样本上 (图 5e). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell signaling, 3579)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C70B1)
  • 免疫细胞化学; 人类; 1:250; 图 1
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell signalling, 3728s)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 1). elife (2016) ncbi
domestic rabbit 单克隆(D9B8N)
  • 免疫组化; 人类; 1:500; 图 s9c
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signalling, 23064)被用于被用于免疫组化在人类样本上浓度为1:500 (图 s9c). Nature (2016) ncbi
domestic rabbit 单克隆(C70B1)
  • 免疫组化; 小鼠; 图 3s1
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell signaling, 3728)被用于被用于免疫组化在小鼠样本上 (图 3s1). elife (2016) ncbi
小鼠 单克隆(L1D6A2)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 4900)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 2). Stem Cells Dev (2016) ncbi
domestic rabbit 单克隆(C70B1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 8
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell signaling, 3728)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 8). PLoS ONE (2016) ncbi
小鼠 单克隆(L1D6A2)
  • 免疫细胞化学; 小鼠; 1:50; 图 s4
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, L1D6A2)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 s4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫细胞化学; 人类; 1:400; 图 2
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, D6D9)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 2). Nat Med (2016) ncbi
小鼠 单克隆(L1D6A2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Singling, 4900)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 2748)被用于被用于免疫印迹在人类样本上 (图 4c). BMC Biol (2016) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫组化-冰冻切片; 人类; 图 1d
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling Technology, 3579)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 2748)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). Nature (2016) ncbi
小鼠 单克隆(L1D6A2)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 4900)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C70B1)
  • 免疫组化-冰冻切片; 小鼠; 图 1g
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3728)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1g). J Neurosci (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell signaling, 2748)被用于被用于免疫印迹在人类样本上 (图 2). Glycobiology (2016) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫细胞化学; 人类; 1:500; 图 1e
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell signaling, D6D9)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1e). Stem Cell Reports (2015) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 图 5d
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于免疫印迹在人类样本上 (图 5d) 和 被用于免疫印迹在小鼠样本上 (图 1a). Neoplasia (2015) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫组化; 犬; 1:50; 图 2
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling Technology, D6D9)被用于被用于免疫组化在犬样本上浓度为1:50 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫细胞化学; 人类; 1:400; 图 3
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell signaling, 3579)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫细胞化学; 人类; 图 s4d
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, D6D9)被用于被用于免疫细胞化学在人类样本上 (图 s4d). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫细胞化学; 人类; 1:200; 图 2Ac
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling Technology, 5067)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2Ac). Eur J Hum Genet (2016) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 1:500; 图 1
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C70B1)
  • 免疫细胞化学; common marmoset; 1:200; 图 2
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3728)被用于被用于免疫细胞化学在common marmoset样本上浓度为1:200 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(L1D6A2)
  • 免疫细胞化学; 人类; 1:100
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling Technology, 4900)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Int J Oncol (2015) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫细胞化学; 人类; 图 1
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于免疫细胞化学在人类样本上 (图 1). Thyroid (2015) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, D6D9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Hum Pathol (2015) ncbi
小鼠 单克隆(L1D6A2)
  • 免疫组化; 大鼠; 1:100
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signalling Technology, L1D6A2)被用于被用于免疫组化在大鼠样本上浓度为1:100. J Chem Neuroanat (2014) ncbi
小鼠 单克隆(L1D6A2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 SOX2抗体(cell signaling, 4900)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2015) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling technologies, 5024)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(L1D6A2)
  • 免疫细胞化学; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 4900S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Cell Reprogram (2014) ncbi
domestic rabbit 单克隆(C70B1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, C70B1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1). Nat Commun (2014) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫细胞化学; 人类; 1:250
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signalling, 3579)被用于被用于免疫细胞化学在人类样本上浓度为1:250. Acta Naturae (2014) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, D6D9)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Int J Exp Pathol (2014) ncbi
小鼠 单克隆(L1D6A2)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signalling, 4900)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D6D9)
  • 流式细胞仪; 人类
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling, 3579)被用于被用于流式细胞仪在人类样本上. Cell Death Dis (2013) ncbi
domestic rabbit 单克隆(D6D9)
  • 免疫组化-石蜡切片; 人类; 1:50
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling Technologies, 3579)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Oncotarget (2013) ncbi
小鼠 单克隆(L73B4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 SOX2抗体(Cell Signaling Technology, L73B4)被用于被用于免疫印迹在人类样本上. Cancer Res (2013) ncbi
Cell Marque
domestic rabbit 单克隆(SP76)
  • 免疫组化-石蜡切片; 人类; 1:25
Cell Marque SOX2抗体(Cell Marque, SP76)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25. Int J Mol Sci (2022) ncbi
domestic rabbit 单克隆(SP76)
  • 免疫组化; 人类; 1:100; 图 s1a
Cell Marque SOX2抗体(Cell Marque, SP76)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s1a). BMC Cancer (2020) ncbi
碧迪BD
小鼠 单克隆(O30-678)
  • 免疫组化; 鸡; 1:500; 图 5a"
碧迪BD SOX2抗体(BD Biosciences, 561469)被用于被用于免疫组化在鸡样本上浓度为1:500 (图 5a"). elife (2021) ncbi
小鼠 单克隆(O30-678)
  • 其他; 人类; 1:100
碧迪BD SOX2抗体(BD Biosciences, O30-678)被用于被用于其他在人类样本上浓度为1:100. elife (2020) ncbi
小鼠 单克隆(245610)
  • 流式细胞仪; 人类; 图 7c
碧迪BD SOX2抗体(BD Biosciences, 560291)被用于被用于流式细胞仪在人类样本上 (图 7c). Stem Cells Transl Med (2019) ncbi
小鼠 单克隆(O30-678)
  • 流式细胞仪; 小鼠; 1:50; 图 s4e
碧迪BD SOX2抗体(BD, 561610)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s4e). Cell (2018) ncbi
小鼠 单克隆(245610)
  • 流式细胞仪; 人类; 图 7b
碧迪BD SOX2抗体(BD Biosciences, 245610)被用于被用于流式细胞仪在人类样本上 (图 7b). Oncotarget (2018) ncbi
小鼠 单克隆(O30-678)
  • 免疫细胞化学; 人类; 图 2e
碧迪BD SOX2抗体(BD Biosciences, 561469)被用于被用于免疫细胞化学在人类样本上 (图 2e). Cell Stem Cell (2017) ncbi
小鼠 单克隆(245610)
  • 流式细胞仪; 小鼠; 图 1a
  • 免疫细胞化学; 小鼠; 图 3b
碧迪BD SOX2抗体(BD Pharmingen, 560294)被用于被用于流式细胞仪在小鼠样本上 (图 1a) 和 被用于免疫细胞化学在小鼠样本上 (图 3b). Oncotarget (2017) ncbi
小鼠 单克隆(245610)
  • 流式细胞仪; 人类; 图 2c
碧迪BD SOX2抗体(BD Pharmingen, 560301)被用于被用于流式细胞仪在人类样本上 (图 2c). Biomed Pharmacother (2017) ncbi
小鼠 单克隆(O30-678)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 7
碧迪BD SOX2抗体(BD Pharmingen, 561469)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 7). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(O30-678)
  • 免疫组化; 小鼠; 1:100; 图 2
碧迪BD SOX2抗体(BD Biosciences, 561469)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(245610)
  • 流式细胞仪; 人类; 1:50; 图 s1
碧迪BD SOX2抗体(BD Biosciences, 245610)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s1). Nat Med (2016) ncbi
小鼠 单克隆(O30-678)
  • 免疫印迹; 人类; 图 2a
碧迪BD SOX2抗体(BD Biosciences, 561469)被用于被用于免疫印迹在人类样本上 (图 2a). Oncol Lett (2016) ncbi
小鼠 单克隆(O30-678)
  • 免疫细胞化学; 人类; 1:100; 图 s2a
碧迪BD SOX2抗体(BD Biosciences, 561469)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s2a). Nat Commun (2016) ncbi
小鼠 单克隆(245610)
  • 免疫组化-冰冻切片; 人类; 图 1b
碧迪BD SOX2抗体(BD Biosciences, 245610)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1b). Nat Methods (2016) ncbi
小鼠 单克隆(O30-678)
  • 流式细胞仪; 人类; 图 4a
碧迪BD SOX2抗体(BD Biosciences, O30-678)被用于被用于流式细胞仪在人类样本上 (图 4a). Nat Methods (2016) ncbi
小鼠 单克隆(245610)
  • 流式细胞仪; 人类
碧迪BD SOX2抗体(Becton Dickinson, 560291)被用于被用于流式细胞仪在人类样本上. J Cell Biochem (2015) ncbi
西格玛奥德里奇
小鼠 单克隆(SOX2-6)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 SOX2抗体(Sigma-Aldrich, S1451)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(SOX2-6)
  • 免疫印迹; 人类; 1:1000; 图 5
西格玛奥德里奇 SOX2抗体(Sigma, S1451)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Int J Mol Med (2016) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(PCRP-SOX2-1B3)
  • 免疫细胞化学; 人类; 1:200; 图 1e
Developmental Studies Hybridoma Bank SOX2抗体(DSHB, PCRP-SOX2-1B3)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1e). Stem Cell Res (2019) ncbi
文章列表
  1. Audesse A, Karashchuk G, Gardell Z, Lakis N, Maybury Lewis S, Brown A, et al. FOXO3 regulates a common genomic program in aging and glioblastoma stem cells. Aging Cancer. 2021;2:137-159 pubmed 出版商
  2. Han Y, Tan L, Zhou T, Yang L, Carrau L, Lacko L, et al. A human iPSC-array-based GWAS identifies a virus susceptibility locus in the NDUFA4 gene and functional variants. Cell Stem Cell. 2022;29:1475-1490.e6 pubmed 出版商
  3. Pi xf1 eiro Hermida S, Mart xed nez P, Bosso G, Flores J, Saraswati S, Connor J, et al. Consequences of telomere dysfunction in fibroblasts, club and basal cells for lung fibrosis development. Nat Commun. 2022;13:5656 pubmed 出版商
  4. Rangan P, Lobo F, Parrella E, Rochette N, Morselli M, Stephen T, et al. Fasting-mimicking diet cycles reduce neuroinflammation to attenuate cognitive decline in Alzheimer's models. Cell Rep. 2022;40:111417 pubmed 出版商
  5. Pham T, Panda A, Kagawa H, To S, Ertekin C, Georgolopoulos G, et al. Modeling human extraembryonic mesoderm cells using naive pluripotent stem cells. Cell Stem Cell. 2022;29:1346-1365.e10 pubmed 出版商
  6. Mapps A, Boehm E, Beier C, Keenan W, Langel J, Liu M, et al. Satellite glia modulate sympathetic neuron survival, activity, and autonomic function. elife. 2022;11: pubmed 出版商
  7. Coy S, Wang S, Stopka S, Lin J, Yapp C, Ritch C, et al. Single cell spatial analysis reveals the topology of immunomodulatory purinergic signaling in glioblastoma. Nat Commun. 2022;13:4814 pubmed 出版商
  8. Deng H, Gao Y, Trappetti V, Hertig D, Karatkevich D, Losmanová T, et al. Targeting lactate dehydrogenase B-dependent mitochondrial metabolism affects tumor initiating cells and inhibits tumorigenesis of non-small cell lung cancer by inducing mtDNA damage. Cell Mol Life Sci. 2022;79:445 pubmed 出版商
  9. Duan S, Sawyer T, Sontz R, Wieland B, Diaz A, Merchant J. GFAP-directed Inactivation of Men1 Exploits Glial Cell Plasticity in Favor of Neuroendocrine Reprogramming. Cell Mol Gastroenterol Hepatol. 2022;14:1025-1051 pubmed 出版商
  10. Koide T, Koyanagi Aoi M, Uehara K, Kakeji Y, Aoi T. CDX2-induced intestinal metaplasia in human gastric organoids derived from induced pluripotent stem cells. iScience. 2022;25:104314 pubmed 出版商
  11. Schembs L, Willems A, Hasenpusch Theil K, Cooper J, Whiting K, Burr K, et al. The ciliary gene INPP5E confers dorsal telencephalic identity to human cortical organoids by negatively regulating Sonic hedgehog signaling. Cell Rep. 2022;39:110811 pubmed 出版商
  12. Liu X, Wang Z, Yang Q, Hu X, Fu Q, Zhang X, et al. RNA Demethylase ALKBH5 Prevents Lung Cancer Progression by Regulating EMT and Stemness via Regulating p53. Front Oncol. 2022;12:858694 pubmed 出版商
  13. Zuo C, Ma J, Pan Y, Zheng D, Chen C, Ruan N, et al. Isoflurane and Sevoflurane Induce Cognitive Impairment in Neonatal Rats by Inhibiting Neural Stem Cell Development Through Microglial Activation, Neuroinflammation, and Suppression of VEGFR2 Signaling Pathway. Neurotox Res. 2022;40:775-790 pubmed 出版商
  14. Kleinberger I, Sanders E, Staes K, Van Troys M, Hirano S, Hochepied T, et al. Innovative mouse models for the tumor suppressor activity of Protocadherin-10 isoforms. BMC Cancer. 2022;22:451 pubmed 出版商
  15. Moore A, Chinnaiya K, Kim D, Brown S, Stewart I, Robins S, et al. Loss of Function of the Neural Cell Adhesion Molecule NrCAM Regulates Differentiation, Proliferation and Neurogenesis in Early Postnatal Hypothalamic Tanycytes. Front Neurosci. 2022;16:832961 pubmed 出版商
  16. Coolen M, Altin N, Rajamani K, Pereira E, Siquier Pernet K, Puig Lombardi E, et al. Recessive PRDM13 mutations cause fatal perinatal brainstem dysfunction with cerebellar hypoplasia and disrupt Purkinje cell differentiation. Am J Hum Genet. 2022;109:909-927 pubmed 出版商
  17. Jiang N, Xie B, Xiao W, Fan M, Xu S, Duan Y, et al. Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion. Nat Commun. 2022;13:1511 pubmed 出版商
  18. Kaushal K, Kim E, Tyagi A, Karapurkar J, Haq S, Jung H, et al. Genome-wide screening for deubiquitinase subfamily identifies ubiquitin-specific protease 49 as a novel regulator of odontogenesis. Cell Death Differ. 2022;: pubmed 出版商
  19. Anastasaki C, Wilson A, Chen A, Wegscheid M, Gutmann D. Generation of human induced pluripotent stem cell-derived cerebral organoids for cellular and molecular characterization. STAR Protoc. 2022;3:101173 pubmed 出版商
  20. Nunes M, Pacheco F, Coelho R, Leit xe3 o D, Ricardo S, David L. Mesothelin Expression Is Not Associated with the Presence of Cancer Stem Cell Markers SOX2 and ALDH1 in Ovarian Cancer. Int J Mol Sci. 2022;23: pubmed 出版商
  21. Walker S, Sabin K, Gearhart M, Yamamoto K, Echeverri K. Regulation of stem cell identity by miR-200a during spinal cord regeneration. Development. 2022;149: pubmed 出版商
  22. Castillo P, Aisagbonhi O, Saenz C, ElShamy W. Novel insights linking BRCA1-IRIS role in mammary gland development to formation of aggressive PABCs: the case for longer breastfeeding. Am J Cancer Res. 2022;12:396-426 pubmed
  23. de Wet L, Williams A, Gillard M, Kregel S, Lamperis S, Gutgesell L, et al. SOX2 mediates metabolic reprogramming of prostate cancer cells. Oncogene. 2022;41:1190-1202 pubmed 出版商
  24. Yamasaki S, Tu H, Matsuyama T, Horiuchi M, Hashiguchi T, Sho J, et al. A Genetic modification that reduces ON-bipolar cells in hESC-derived retinas enhances functional integration after transplantation. iScience. 2022;25:103657 pubmed 出版商
  25. Elhussieny A, Nogami K, Sakai Takemura F, Maruyama Y, Takemura N, Soliman W, et al. Mesenchymal stem cells derived from human induced pluripotent stem cells improve the engraftment of myogenic cells by secreting urokinase-type plasminogen activator receptor (uPAR). Stem Cell Res Ther. 2021;12:532 pubmed 出版商
  26. Zhu H, Su Z, Ning J, Zhou L, Tan L, Sayed S, et al. Transmembrane protein 97 exhibits oncogenic properties via enhancing LRP6-mediated Wnt signaling in breast cancer. Cell Death Dis. 2021;12:912 pubmed 出版商
  27. Sapir G, Steinberg D, Aqeilan R, Katz Brull R. Real-Time Non-Invasive and Direct Determination of Lactate Dehydrogenase Activity in Cerebral Organoids-A New Method to Characterize the Metabolism of Brain Organoids?. Pharmaceuticals (Basel). 2021;14: pubmed 出版商
  28. Generali M, Satheesha S, Bode P, Wanner D, Schafer B, Casanova E. High Frequency of Tumor Propagating Cells in Fusion-Positive Rhabdomyosarcoma. Genes (Basel). 2021;12: pubmed 出版商
  29. Wang W, Zhao X, Shao Y, Duan X, Wang Y, Li J, et al. Mutation-induced DNMT1 cleavage drives neurodegenerative disease. Sci Adv. 2021;7:eabe8511 pubmed 出版商
  30. Lo Cascio C, McNamara J, Melendez E, Lewis E, Dufault M, Sanai N, et al. Nonredundant, isoform-specific roles of HDAC1 in glioma stem cells. JCI Insight. 2021;6: pubmed 出版商
  31. Mayweather B, Buchanan S, Rubin L. GDF11 expressed in the adult brain negatively regulates hippocampal neurogenesis. Mol Brain. 2021;14:134 pubmed 出版商
  32. Zhao J, Lu W, Ren Y, Fu Y, Martens Y, Shue F, et al. Apolipoprotein E regulates lipid metabolism and α-synuclein pathology in human iPSC-derived cerebral organoids. Acta Neuropathol. 2021;142:807-825 pubmed 出版商
  33. da Silva F, Zhang K, Pinson A, Fatti E, Wilsch Bräuninger M, Herbst J, et al. Mitotic WNT signalling orchestrates neurogenesis in the developing neocortex. EMBO J. 2021;40:e108041 pubmed 出版商
  34. Gan Y, He J, Zhu J, Xu Z, Wang Z, Yan J, et al. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res. 2021;9:37 pubmed 出版商
  35. Sun H, Wang T, Atkinson P, Billings S, Dong W, Cheng A. Gpr125 Marks Distinct Cochlear Cell Types and Is Dispensable for Cochlear Development and Hearing. Front Cell Dev Biol. 2021;9:690955 pubmed 出版商
  36. Wang K, Liu S, Dou Z, Zhang S, Yang X. Loss of Krüppel-like factor 9 facilitates stemness in ovarian cancer ascites-derived multicellular spheroids via Notch1/slug signaling. Cancer Sci. 2021;112:4220-4233 pubmed 出版商
  37. Hosoya M, Fujioka M, Murayama A, Ogawa K, Okano H, Ozawa H. Dynamic Spatiotemporal Expression Changes in Connexins of the Developing Primate's Cochlea. Genes (Basel). 2021;12: pubmed 出版商
  38. Rodriguez Polo I, Mißbach S, Petkov S, Mattern F, Maierhofer A, Grządzielewska I, et al. A piggyBac-based platform for genome editing and clonal rhesus macaque iPSC line derivation. Sci Rep. 2021;11:15439 pubmed 出版商
  39. Modafferi S, Zhong X, Kleensang A, Murata Y, Fagiani F, Pamies D, et al. Gene-Environment Interactions in Developmental Neurotoxicity: a Case Study of Synergy between Chlorpyrifos and CHD8 Knockout in Human BrainSpheres. Environ Health Perspect. 2021;129:77001 pubmed 出版商
  40. Yin H, Wang J, Li H, Yu Y, Wang X, Lu L, et al. Extracellular matrix protein-1 secretory isoform promotes ovarian cancer through increasing alternative mRNA splicing and stemness. Nat Commun. 2021;12:4230 pubmed 出版商
  41. Gan G, Shi Z, Liu D, Zhang S, Zhu H, Wang Y, et al. 3-hydroxyanthranic acid increases the sensitivity of hepatocellular carcinoma to sorafenib by decreasing tumor cell stemness. Cell Death Discov. 2021;7:173 pubmed 出版商
  42. Takeda H, Dondzillo A, Randall J, Gubbels S. Selective ablation of cochlear hair cells promotes engraftment of human embryonic stem cell-derived progenitors in the mouse organ of Corti. Stem Cell Res Ther. 2021;12:352 pubmed 出版商
  43. Xiong F, Wang R, Lee J, Li S, Chen S, Liao Z, et al. RNA m6A modification orchestrates a LINE-1-host interaction that facilitates retrotransposition and contributes to long gene vulnerability. Cell Res. 2021;31:861-885 pubmed 出版商
  44. Wang R, Yang D, Liu Y, Ding J, Guo Y, Ding W, et al. Cell cycle exit and neuronal differentiation 1-engineered embryonic neural stem cells enhance neuronal differentiation and neurobehavioral recovery after experimental traumatic brain injury. Neural Regen Res. 2022;17:130-136 pubmed 出版商
  45. Liang F, Wang B, Geng J, You G, Fa J, Zhang M, et al. SORBS2 is a genetic factor contributing to cardiac malformation of 4q deletion syndrome patients. elife. 2021;10: pubmed 出版商
  46. Truong D, Phlairaharn T, Eßwein B, Gruber C, Tümen D, Baligács E, et al. Non-invasive and high-throughput interrogation of exon-specific isoform expression. Nat Cell Biol. 2021;23:652-663 pubmed 出版商
  47. Low B, Lim C, Ding S, Tan Y, Ng N, Krishnan V, et al. Decreased GLUT2 and glucose uptake contribute to insulin secretion defects in MODY3/HNF1A hiPSC-derived mutant β cells. Nat Commun. 2021;12:3133 pubmed 出版商
  48. Calvo Garrido J, Winn D, Maffezzini C, Wedell A, Freyer C, Falk A, et al. Protocol for the derivation, culturing, and differentiation of human iPS-cell-derived neuroepithelial stem cells to study neural differentiation in vitro. STAR Protoc. 2021;2:100528 pubmed 出版商
  49. Kindt K, Akturk A, Jarysta A, Day M, Beirl A, Flonard M, et al. EMX2-GPR156-Gαi reverses hair cell orientation in mechanosensory epithelia. Nat Commun. 2021;12:2861 pubmed 出版商
  50. Piñeiro Hermida S, Martinez P, Blasco M. Short and dysfunctional telomeres protect from allergen-induced airway inflammation. Aging Cell. 2021;20:e13352 pubmed 出版商
  51. Sun X, He Z, Guo L, Wang C, Lin C, Ye L, et al. ALG3 contributes to stemness and radioresistance through regulating glycosylation of TGF-β receptor II in breast cancer. J Exp Clin Cancer Res. 2021;40:149 pubmed 出版商
  52. Sighel D, Notarangelo M, Aibara S, Re A, Ricci G, Guida M, et al. Inhibition of mitochondrial translation suppresses glioblastoma stem cell growth. Cell Rep. 2021;35:109024 pubmed 出版商
  53. Yamamura Y, Furuichi K, Murakawa Y, Hirabayashi S, Yoshihara M, Sako K, et al. Identification of candidate PAX2-regulated genes implicated in human kidney development. Sci Rep. 2021;11:9123 pubmed 出版商
  54. Mu W, Li S, Xu J, Guo X, Wu H, Chen Z, et al. Hypothalamic Rax+ tanycytes contribute to tissue repair and tumorigenesis upon oncogene activation in mice. Nat Commun. 2021;12:2288 pubmed 出版商
  55. Tan A, PRASAD R, Jho E. TFEB regulates pluripotency transcriptional network in mouse embryonic stem cells independent of autophagy-lysosomal biogenesis. Cell Death Dis. 2021;12:343 pubmed 出版商
  56. Hocevar S, Liu L, Duncan R. Matrigel is required for efficient differentiation of isolated, stem cell-derived otic vesicles into inner ear organoids. Stem Cell Res. 2021;53:102295 pubmed 出版商
  57. Wang P, Zhao L, Gong S, Xiong S, Wang J, Zou D, et al. HIF1α/HIF2α-Sox2/Klf4 promotes the malignant progression of glioblastoma via the EGFR-PI3K/AKT signalling pathway with positive feedback under hypoxia. Cell Death Dis. 2021;12:312 pubmed 出版商
  58. Hanna R, Flamier A, Barabino A, Bernier G. G-quadruplexes originating from evolutionary conserved L1 elements interfere with neuronal gene expression in Alzheimer's disease. Nat Commun. 2021;12:1828 pubmed 出版商
  59. Wang J, Zhao H, Zheng L, Zhou Y, Wu L, Xu Y, et al. FGF19/SOCE/NFATc2 signaling circuit facilitates the self-renewal of liver cancer stem cells. Theranostics. 2021;11:5045-5060 pubmed 出版商
  60. Knudsen A, Boldt H, Jakobsen E, Kristensen B. The multi-target small-molecule inhibitor SB747651A shows in vitro and in vivo anticancer efficacy in glioblastomas. Sci Rep. 2021;11:6066 pubmed 出版商
  61. Montalb xe1 n Loro R, Lassi G, Lozano Ure xf1 a A, Perez Villalba A, Jim xe9 nez Villalba E, Charalambous M, et al. Dlk1 dosage regulates hippocampal neurogenesis and cognition. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  62. Zak M, Daudet N. A gradient of Wnt activity positions the neurosensory domains of the inner ear. elife. 2021;10: pubmed 出版商
  63. Manganas L, Durá I, Osenberg S, Semerci F, Tosun M, Mishra R, et al. BASP1 labels neural stem cells in the neurogenic niches of mammalian brain. Sci Rep. 2021;11:5546 pubmed 出版商
  64. Shao N, Cheng J, Huang H, Gong X, Lu Y, Idris M, et al. GASC1 promotes hepatocellular carcinoma progression by inhibiting the degradation of ROCK2. Cell Death Dis. 2021;12:253 pubmed 出版商
  65. Bilodeau C, Shojaie S, Goltsis O, Wang J, Luo D, Ackerley C, et al. TP63 basal cells are indispensable during endoderm differentiation into proximal airway cells on acellular lung scaffolds. NPJ Regen Med. 2021;6:12 pubmed 出版商
  66. Fan X, Zhao Z, Song J, Zhang D, Wu F, Tu J, et al. LncRNA-SNHG6 promotes the progression of hepatocellular carcinoma by targeting miR-6509-5p and HIF1A. Cancer Cell Int. 2021;21:150 pubmed 出版商
  67. Bressan R, Southgate B, Ferguson K, Blin C, Grant V, Alfazema N, et al. Regional identity of human neural stem cells determines oncogenic responses to histone H3.3 mutants. Cell Stem Cell. 2021;28:877-893.e9 pubmed 出版商
  68. Hao S, Zhu X, Liu Z, Wu X, Li S, Jiang P, et al. Chronic intermittent hypoxia promoted lung cancer stem cell-like properties via enhancing Bach1 expression. Respir Res. 2021;22:58 pubmed 出版商
  69. Mattar P, Jolicoeur C, Dang T, Shah S, Clark B, Cayouette M. A Casz1-NuRD complex regulates temporal identity transitions in neural progenitors. Sci Rep. 2021;11:3858 pubmed 出版商
  70. Trujillo C, Rice E, Schaefer N, Chaim I, Wheeler E, Madrigal A, et al. Reintroduction of the archaic variant of NOVA1 in cortical organoids alters neurodevelopment. Science. 2021;371: pubmed 出版商
  71. Jansch C, Ziegler G, Forero A, Gredy S, W xe4 ldchen S, Vitale M, et al. Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly. J Neural Transm (Vienna). 2021;128:225-241 pubmed 出版商
  72. Fontenas L, Kucenas S. Spinal cord precursors utilize neural crest cell mechanisms to generate hybrid peripheral myelinating glia. elife. 2021;10: pubmed 出版商
  73. Exelby K, Herrera Delgado E, Perez L, Perez Carrasco R, Sagner A, Metzis V, et al. Precision of tissue patterning is controlled by dynamical properties of gene regulatory networks. Development. 2021;148: pubmed 出版商
  74. Liu X, Schneble L xf6 hnert N, Kristofova M, Qing X, Labisch J, Hofmann S, et al. The N-terminal BRCT domain determines MCPH1 function in brain development and fertility. Cell Death Dis. 2021;12:143 pubmed 出版商
  75. Yuan G, Flores N, Hausmann S, Lofgren S, Kharchenko V, Angulo Ibáñez M, et al. Elevated NSD3 histone methylation activity drives squamous cell lung cancer. Nature. 2021;590:504-508 pubmed 出版商
  76. Sweat M, Sweat Y, Yu W, Su D, Leonard R, Eliason S, et al. The miR-200 family is required for ectodermal organ development through the regulation of the epithelial stem cell niche. Stem Cells. 2021;39:761-775 pubmed 出版商
  77. Aban C, Lombardi A, Neiman G, Biani M, La Greca A, Waisman A, et al. Downregulation of E-cadherin in pluripotent stem cells triggers partial EMT. Sci Rep. 2021;11:2048 pubmed 出版商
  78. Andrews M, Mukhtar T, Eze U, Simoneau C, Perez Y, Mostajo Radji M, et al. Tropism of SARS-CoV-2 for Developing Human Cortical Astrocytes. bioRxiv. 2021;: pubmed 出版商
  79. Xu L, Zhang M, Shi L, Yang X, Chen L, Cao N, et al. Neural stemness contributes to cell tumorigenicity. Cell Biosci. 2021;11:21 pubmed 出版商
  80. Surendran H, Nandakumar S, Reddy K V, Stoddard J, Mohan K V, Upadhyay P, et al. Transplantation of retinal pigment epithelium and photoreceptors generated concomitantly via small molecule-mediated differentiation rescues visual function in rodent models of retinal degeneration. Stem Cell Res Ther. 2021;12:70 pubmed 出版商
  81. Okawa E, Gupta M, Kahraman S, Goli P, Sakaguchi M, Hu J, et al. Essential roles of insulin and IGF-1 receptors during embryonic lineage development. Mol Metab. 2021;47:101164 pubmed 出版商
  82. Lu M, Qin X, Zhou Y, Li G, Liu Z, Geng X, et al. Long non-coding RNA LINC00665 promotes gemcitabine resistance of Cholangiocarcinoma cells via regulating EMT and stemness properties through miR-424-5p/BCL9L axis. Cell Death Dis. 2021;12:72 pubmed 出版商
  83. Long Z, Deng L, Li C, He Q, He Y, Hu X, et al. Loss of EHF facilitates the development of treatment-induced neuroendocrine prostate cancer. Cell Death Dis. 2021;12:46 pubmed 出版商
  84. Russell J, Lim X, Santambrogio A, Yianni V, Kemkem Y, Wang B, et al. Pituitary stem cells produce paracrine WNT signals to control the expansion of their descendant progenitor cells. elife. 2021;10: pubmed 出版商
  85. Caetano A, Yianni V, Volponi A, Booth V, D Agostino E, Sharpe P. Defining human mesenchymal and epithelial heterogeneity in response to oral inflammatory disease. elife. 2021;10: pubmed 出版商
  86. Li Z, Song Y, He T, Wen R, Li Y, Chen T, et al. M2 microglial small extracellular vesicles reduce glial scar formation via the miR-124/STAT3 pathway after ischemic stroke in mice. Theranostics. 2021;11:1232-1248 pubmed 出版商
  87. He L, Bhat K, Duhacheck Muggy S, Ioannidis A, Zhang L, Nguyen N, et al. Tumor necrosis factor receptor signaling modulates carcinogenesis in a mouse model of breast cancer. Neoplasia. 2021;23:197-209 pubmed 出版商
  88. Zhang D, Liu C, Li H, Jiao J. Deficiency of STING Signaling in Embryonic Cerebral Cortex Leads to Neurogenic Abnormalities and Autistic-Like Behaviors. Adv Sci (Weinh). 2020;7:2002117 pubmed 出版商
  89. Esk C, Lindenhofer D, Haendeler S, Wester R, Pflug F, Schroeder B, et al. A human tissue screen identifies a regulator of ER secretion as a brain-size determinant. Science. 2020;370:935-941 pubmed 出版商
  90. Mo J, Anastasaki C, Chen Z, Shipman T, Papke J, Yin K, et al. Humanized neurofibroma model from induced pluripotent stem cells delineates tumor pathogenesis and developmental origins. J Clin Invest. 2020;: pubmed 出版商
  91. Morales Garcia J, Calleja Conde J, Lopez Moreno J, Alonso Gil S, Sanz Sancristobal M, Riba J, et al. N,N-dimethyltryptamine compound found in the hallucinogenic tea ayahuasca, regulates adult neurogenesis in vitro and in vivo. Transl Psychiatry. 2020;10:331 pubmed 出版商
  92. Kim K, Wu Y, Yoon J, Adachi K, Wu G, Velychko S, et al. Reprogramming competence of OCT factors is determined by transactivation domains. Sci Adv. 2020;6: pubmed 出版商
  93. Chen G, Liu B, Yin S, Li S, Guo Y, Wang M, et al. Hypoxia induces an endometrial cancer stem-like cell phenotype via HIF-dependent demethylation of SOX2 mRNA. Oncogenesis. 2020;9:81 pubmed 出版商
  94. Jiang Z, Zhang C, Liu X, Ma X, Bian X, Xiao X, et al. Dexamethasone inhibits stemness maintenance and enhances chemosensitivity of hepatocellular carcinoma stem cells by inducing deSUMOylation of HIF‑1α and Oct4. Int J Oncol. 2020;57:780-790 pubmed 出版商
  95. Liegeois S, Ferrandon D. An atlas for hemocytes in an insect. elife. 2020;9: pubmed 出版商
  96. Menendez L, Trecek T, Gopalakrishnan S, Tao L, Markowitz A, Yu H, et al. Generation of inner ear hair cells by direct lineage conversion of primary somatic cells. elife. 2020;9: pubmed 出版商
  97. Dias A, Lozovska A, Wymeersch F, Novoa A, Binagui Casas A, Sobral D, et al. A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation. elife. 2020;9: pubmed 出版商
  98. Leelatian N, Sinnaeve J, Mistry A, Barone S, Brockman A, Diggins K, et al. Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells. elife. 2020;9: pubmed 出版商
  99. Liao T, Lin C, Jiang J, Yang S, Teng H, Yang M. Harnessing stemness and PD-L1 expression by AT-rich interaction domain-containing protein 3B in colorectal cancer. Theranostics. 2020;10:6095-6112 pubmed 出版商
  100. Li W, Zhang N, Jin C, Long M, Rajabi H, Yasumizu Y, et al. MUC1-C drives stemness in progression of colitis to colorectal cancer. JCI Insight. 2020;5: pubmed 出版商
  101. Ye Z, Su Z, Xie S, Liu Y, Wang Y, Xu X, et al. Yap-lin28a axis targets let7-Wnt pathway to restore progenitors for initiating regeneration. elife. 2020;9: pubmed 出版商
  102. Matos I, Asare A, Levorse J, Ouspenskaia T, de la Cruz Racelis J, Schuhmacher L, et al. Progenitors oppositely polarize WNT activators and inhibitors to orchestrate tissue development. elife. 2020;9: pubmed 出版商
  103. Mayerl S, Heuer H, Ffrench Constant C. Hippocampal Neurogenesis Requires Cell-Autonomous Thyroid Hormone Signaling. Stem Cell Reports. 2020;14:845-860 pubmed 出版商
  104. Gunne Braden A, Sullivan A, Gharibi B, Sheriff R, Maity A, Wang Y, et al. GATA3 Mediates a Fast, Irreversible Commitment to BMP4-Driven Differentiation in Human Embryonic Stem Cells. Cell Stem Cell. 2020;26:693-706.e9 pubmed 出版商
  105. Rauch J, Luna G, Guzman E, Audouard M, Challis C, Sibih Y, et al. LRP1 is a master regulator of tau uptake and spread. Nature. 2020;580:381-385 pubmed 出版商
  106. Mashkaryan V, Siddiqui T, Popova S, Cosacak M, Bhattarai P, Brandt K, et al. Type 1 Interleukin-4 Signaling Obliterates Mouse Astroglia in vivo but Not in vitro. Front Cell Dev Biol. 2020;8:114 pubmed 出版商
  107. Chong Y, Thakur N, Paik K, Lee E, Kang C. Prognostic significance of stem cell/ epithelial-mesenchymal transition markers in periampullary/pancreatic cancers: FGFR1 is a promising prognostic marker. BMC Cancer. 2020;20:216 pubmed 出版商
  108. Chen J, Chen S, Zhuo L, Zhu Y, Zheng H. Regulation of cancer stem cell properties, angiogenesis, and vasculogenic mimicry by miR-450a-5p/SOX2 axis in colorectal cancer. Cell Death Dis. 2020;11:173 pubmed 出版商
  109. Vigouroux R, Cesar Q, Chedotal A, Nguyen Ba Charvet K. Revisiting the role of Dcc in visual system development with a novel eye clearing method. elife. 2020;9: pubmed 出版商
  110. Hu C, Wang W, Brind Amour J, Singh P, Reeves G, Lorincz M, et al. Vertebrate diapause preserves organisms long term through Polycomb complex members. Science. 2020;367:870-874 pubmed 出版商
  111. Chandrasekaran B, Dahiya N, Tyagi A, Kolluru V, Saran U, Baby B, et al. Chronic exposure to cadmium induces a malignant transformation of benign prostate epithelial cells. Oncogenesis. 2020;9:23 pubmed 出版商
  112. Torres Mejía E, Trumbach D, Kleeberger C, Dornseifer U, Orschmann T, Bäcker T, et al. Sox2 controls Schwann cell self-organization through fibronectin fibrillogenesis. Sci Rep. 2020;10:1984 pubmed 出版商
  113. Coolen M, Labusch M, Mannioui A, Bally Cuif L. Mosaic Heterochrony in Neural Progenitors Sustains Accelerated Brain Growth and Neurogenesis in the Juvenile Killifish N. furzeri. Curr Biol. 2020;30:736-745.e4 pubmed 出版商
  114. Ballabio C, Anderle M, Gianesello M, Lago C, Miele E, Cardano M, et al. Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat Commun. 2020;11:583 pubmed 出版商
  115. Guyot A, Leuxe C, Disdier C, Oumata N, Costa N, Roux G, et al. A Small Compound Targeting Prohibitin with Potential Interest for Cognitive Deficit Rescue in Aging mice and Tau Pathology Treatment. Sci Rep. 2020;10:1143 pubmed 出版商
  116. Nickolls A, Lee M, Espinoza D, Szczot M, Lam R, Wang Q, et al. Transcriptional Programming of Human Mechanosensory Neuron Subtypes from Pluripotent Stem Cells. Cell Rep. 2020;30:932-946.e7 pubmed 出版商
  117. Rahman M, Wruck W, Spitzhorn L, Nguyen L, Bohndorf M, Martins S, et al. The FGF, TGFβ and WNT axis Modulate Self-renewal of Human SIX2+ Urine Derived Renal Progenitor Cells. Sci Rep. 2020;10:739 pubmed 出版商
  118. Wang S, Zhang Q, Tiwari S, Lichinchi G, Yau E, Hui H, et al. Integrin αvβ5 Internalizes Zika Virus during Neural Stem Cells Infection and Provides a Promising Target for Antiviral Therapy. Cell Rep. 2020;30:969-983.e4 pubmed 出版商
  119. Skoda J, Neradil J, Staniczkova Zambo I, Nunukova A, Macsek P, Borankova K, et al. Serial Xenotransplantation in NSG Mice Promotes a Hybrid Epithelial/Mesenchymal Gene Expression Signature and Stemness in Rhabdomyosarcoma Cells. Cancers (Basel). 2020;12: pubmed 出版商
  120. Sarić N, Selby M, Ramaswamy V, Kool M, Stockinger B, Hogstrand C, et al. The AHR pathway represses TGFβ-SMAD3 signalling and has a potent tumour suppressive role in SHH medulloblastoma. Sci Rep. 2020;10:148 pubmed 出版商
  121. Bhattarai P, Cosacak M, Mashkaryan V, Demir S, Popova S, Govindarajan N, et al. Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer's model of adult zebrafish brain. PLoS Biol. 2020;18:e3000585 pubmed 出版商
  122. Francis R, Guo H, Streutker C, Ahmed M, Yung T, Dirks P, et al. Gastrointestinal transcription factors drive lineage-specific developmental programs in organ specification and cancer. Sci Adv. 2019;5:eaax8898 pubmed 出版商
  123. Casanova M, Moscatelli M, Chauvière L, Huret C, Samson J, Liyakat Ali T, et al. A primate-specific retroviral enhancer wires the XACT lncRNA into the core pluripotency network in humans. Nat Commun. 2019;10:5652 pubmed 出版商
  124. Schoof M, Launspach M, Holdhof D, Nguyen L, Engel V, Filser S, et al. The transcriptional coactivator and histone acetyltransferase CBP regulates neural precursor cell development and migration. Acta Neuropathol Commun. 2019;7:199 pubmed 出版商
  125. Zhan Y, Li R, Feng C, Li X, Huang S, Wang L, et al. Chlorogenic acid inhibits esophageal squamous cell carcinoma growth in vitro and in vivo by downregulating the expression of BMI1 and SOX2. Biomed Pharmacother. 2020;121:109602 pubmed 出版商
  126. Battaglia R, Beltran A, Delic S, Dumitru R, Robinson J, Kabiraj P, et al. Site-specific phosphorylation and caspase cleavage of GFAP are new markers of Alexander disease severity. elife. 2019;8: pubmed 出版商
  127. Yung T, Poon F, Liang M, Coquenlorge S, McGaugh E, Hui C, et al. Sufu- and Spop-mediated downregulation of Hedgehog signaling promotes beta cell differentiation through organ-specific niche signals. Nat Commun. 2019;10:4647 pubmed 出版商
  128. Kon E, Calvo Jiménez E, Cossard A, Na Y, Cooper J, Jossin Y. N-cadherin-regulated FGFR ubiquitination and degradation control mammalian neocortical projection neuron migration. elife. 2019;8: pubmed 出版商
  129. Strebinger D, Deluz C, Friman E, Govindan S, Alber A, Suter D. Endogenous fluctuations of OCT4 and SOX2 bias pluripotent cell fate decisions. Mol Syst Biol. 2019;15:e9002 pubmed 出版商
  130. Blomfield I, Rocamonde B, Masdeu M, Mulugeta E, Vaga S, van den Berg D, et al. Id4 promotes the elimination of the pro-activation factor Ascl1 to maintain quiescence of adult hippocampal stem cells. elife. 2019;8: pubmed 出版商
  131. Kim G, Rincon Fernandez Pacheco D, Saxon D, Yang A, Sabet S, Dutra Clarke M, et al. Rapid Generation of Somatic Mouse Mosaics with Locus-Specific, Stably Integrated Transgenic Elements. Cell. 2019;179:251-267.e24 pubmed 出版商
  132. Malerba N, Benzoni P, Squeo G, Milanesi R, Giannetti F, Sadleir L, et al. Generation of the induced human pluripotent stem cell lines CSSi009-A from a patient with a GNB5 pathogenic variant, and CSSi010-A from a CRISPR/Cas9 engineered GNB5 knock-out human cell line. Stem Cell Res. 2019;40:101547 pubmed 出版商
  133. Ombrato L, Nolan E, Kurelac I, Mavousian A, Bridgeman V, Heinze I, et al. Metastatic-niche labelling reveals parenchymal cells with stem features. Nature. 2019;572:603-608 pubmed 出版商
  134. Sin Chan P, Mumal I, Suwal T, Ho B, Fan X, Singh I, et al. A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor. Cancer Cell. 2019;36:51-67.e7 pubmed 出版商
  135. Lin Q, Li S, Jiang N, Shao X, Zhang M, Jin H, et al. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol. 2019;26:101254 pubmed 出版商
  136. Alexander J, Guan J, Li B, Maliskova L, Song M, Shen Y, et al. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. elife. 2019;8: pubmed 出版商
  137. Roy A, Murphy R, Deng M, MacDonald J, Bammler T, Aldinger K, et al. PI3K-Yap activity drives cortical gyrification and hydrocephalus in mice. elife. 2019;8: pubmed 出版商
  138. Sonego M, Pellarin I, Costa A, Vinciguerra G, Coan M, Kraut A, et al. USP1 links platinum resistance to cancer cell dissemination by regulating Snail stability. Sci Adv. 2019;5:eaav3235 pubmed 出版商
  139. Modic M, Grosch M, Rot G, Schirge S, Lepko T, Yamazaki T, et al. Cross-Regulation between TDP-43 and Paraspeckles Promotes Pluripotency-Differentiation Transition. Mol Cell. 2019;74:951-965.e13 pubmed 出版商
  140. Szymkowicz D, Sims K, Schwendinger K, Tatnall C, Powell R, Bruce T, et al. Exposure to arsenic during embryogenesis impairs olfactory sensory neuron differentiation and function into adulthood. Toxicology. 2019;420:73-84 pubmed 出版商
  141. Noguchi H, Castillo J, Nakashima K, Pleasure S. Suppressor of fused controls perinatal expansion and quiescence of future dentate adult neural stem cells. elife. 2019;8: pubmed 出版商
  142. Fu L, Hu Y, Song M, Liu Z, Zhang W, Yu F, et al. Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biol. 2019;17:e3000201 pubmed 出版商
  143. Wang Z, Feng X, Molinolo A, Martin D, Vitale Cross L, Nohata N, et al. 4E-BP1 Is a Tumor Suppressor Protein Reactivated by mTOR Inhibition in Head and Neck Cancer. Cancer Res. 2019;: pubmed 出版商
  144. Liu J, Liu Y, Shao J, Li Y, Qin L, Shen H, et al. Zeb1 is important for proper cleavage plane orientation of dividing progenitors and neuronal migration in the mouse neocortex. Cell Death Differ. 2019;: pubmed 出版商
  145. Zhang S, Deng T, Tang W, He B, Furusawa T, Ambs S, et al. Epigenetic regulation of REX1 expression and chromatin binding specificity by HMGNs. Nucleic Acids Res. 2019;47:4449-4461 pubmed 出版商
  146. Dong J, Pan Y, Wu X, He L, Liu X, Feng D, et al. A neuronal molecular switch through cell-cell contact that regulates quiescent neural stem cells. Sci Adv. 2019;5:eaav4416 pubmed 出版商
  147. Cao J, Zhao M, Liu J, Zhang X, Pei Y, Wang J, et al. RACK1 Promotes Self-Renewal and Chemoresistance of Cancer Stem Cells in Human Hepatocellular Carcinoma through Stabilizing Nanog. Theranostics. 2019;9:811-828 pubmed 出版商
  148. Koike T, Tanaka S, Hirahara Y, Oe S, Kurokawa K, Maeda M, et al. Morphological characteristics of p75 neurotrophin receptor-positive cells define a new type of glial cell in the rat dorsal root ganglia. J Comp Neurol. 2019;527:2047-2060 pubmed 出版商
  149. Pollen A, Bhaduri A, Andrews M, Nowakowski T, Meyerson O, Mostajo Radji M, et al. Establishing Cerebral Organoids as Models of Human-Specific Brain Evolution. Cell. 2019;176:743-756.e17 pubmed 出版商
  150. Hutchinson E, Chatterjee M, Reyes L, Djankpa F, Valiant W, Dardzinski B, et al. The effect of Zika virus infection in the ferret. J Comp Neurol. 2019;527:1706-1719 pubmed 出版商
  151. Lü Y, Dong E, Yang W, Lai L, Lin X, Ma L, et al. Generation of an integration-free induced pluripotent stem cell line, FJMUi001-A, from a hereditary spastic paraplegia patient carrying compound heterozygous p.P498L and p.R618W mutations in CAPN1 (SPG76). Stem Cell Res. 2019;34:101354 pubmed 出版商
  152. Wang J, Xu S, Duan J, Yi L, Guo Y, Shi Y, et al. Invasion of white matter tracts by glioma stem cells is regulated by a NOTCH1-SOX2 positive-feedback loop. Nat Neurosci. 2019;22:91-105 pubmed 出版商
  153. Rajarajan P, Borrman T, Liao W, Schrode N, Flaherty E, Casiño C, et al. Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science. 2018;362: pubmed 出版商
  154. Kaindl J, Meiser I, Majer J, Sommer A, Krach F, Katsen Globa A, et al. Zooming in on Cryopreservation of hiPSCs and Neural Derivatives: A Dual-Center Study Using Adherent Vitrification. Stem Cells Transl Med. 2019;8:247-259 pubmed 出版商
  155. Jia Y, Gu D, Wan J, Yu B, Zhang X, Chiorean E, et al. The role of GLI-SOX2 signaling axis for gemcitabine resistance in pancreatic cancer. Oncogene. 2019;38:1764-1777 pubmed 出版商
  156. Metzis V, Steinhauser S, Pakanavicius E, Gouti M, Stamataki D, Ivanovitch K, et al. Nervous System Regionalization Entails Axial Allocation before Neural Differentiation. Cell. 2018;175:1105-1118.e17 pubmed 出版商
  157. Zhang H, Pan H, Zhou C, Wei Y, Ying W, Li S, et al. Simultaneous zygotic inactivation of multiple genes in mouse through CRISPR/Cas9-mediated base editing. Development. 2018;145: pubmed 出版商
  158. Wang L, Wang J, Jin T, Zhou Y, Chen Q. FoxG1 facilitates proliferation and inhibits differentiation by downregulating FoxO/Smad signaling in glioblastoma. Biochem Biophys Res Commun. 2018;504:46-53 pubmed 出版商
  159. Xiao D, Liu X, Zhang M, Zou M, Deng Q, Sun D, et al. Direct reprogramming of fibroblasts into neural stem cells by single non-neural progenitor transcription factor Ptf1a. Nat Commun. 2018;9:2865 pubmed 出版商
  160. Pratt D, Dominah G, Lobel G, Obungu A, Lynes J, Sanchez V, et al. Programmed Death Ligand 1 Is a Negative Prognostic Marker in Recurrent Isocitrate Dehydrogenase-Wildtype Glioblastoma. Neurosurgery. 2018;: pubmed 出版商
  161. Weltner J, Balboa D, Katayama S, Bespalov M, Krjutskov K, Jouhilahti E, et al. Human pluripotent reprogramming with CRISPR activators. Nat Commun. 2018;9:2643 pubmed 出版商
  162. Espinoza Sánchez N, Enciso J, Pelayo R, Fuentes Panana E. An NF?B-dependent mechanism of tumor cell plasticity and lateral transmission of aggressive features. Oncotarget. 2018;9:26679-26700 pubmed 出版商
  163. Wang C, Najm R, Xu Q, Jeong D, Walker D, Balestra M, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med. 2018;24:647-657 pubmed 出版商
  164. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  165. Marrone L, Bus C, Schöndorf D, Fitzgerald J, Kübler M, Schmid B, et al. Generation of iPSCs carrying a common LRRK2 risk allele for in vitro modeling of idiopathic Parkinson's disease. PLoS ONE. 2018;13:e0192497 pubmed 出版商
  166. Kogut I, McCarthy S, Pavlova M, Astling D, Chen X, Jakimenko A, et al. High-efficiency RNA-based reprogramming of human primary fibroblasts. Nat Commun. 2018;9:745 pubmed 出版商
  167. Zhang C, Yu W, Hoshino A, Huang J, Rieke F, Reh T, et al. Development of ON and OFF cholinergic amacrine cells in the human fetal retina. J Comp Neurol. 2019;527:174-186 pubmed 出版商
  168. Corsinotti A, Wong F, Tatar T, Szczerbinska I, Halbritter F, Colby D, et al. Distinct SoxB1 networks are required for naïve and primed pluripotency. elife. 2017;6: pubmed 出版商
  169. Wu X, Dao Thi V, Huang Y, Billerbeck E, Saha D, Hoffmann H, et al. Intrinsic Immunity Shapes Viral Resistance of Stem Cells. Cell. 2018;172:423-438.e25 pubmed 出版商
  170. Chen X, Wang R, Liu X, Wu Y, Zhou T, Yang Y, et al. A Chemical-Genetic Approach Reveals the Distinct Roles of GSK3? and GSK3? in Regulating Embryonic Stem Cell Fate. Dev Cell. 2017;43:563-576.e4 pubmed 出版商
  171. Ong D, Hu B, Ho Y, Sauvé C, Bristow C, Wang Q, et al. PAF promotes stemness and radioresistance of glioma stem cells. Proc Natl Acad Sci U S A. 2017;114:E9086-E9095 pubmed 出版商
  172. Hazim R, Karumbayaram S, Jiang M, Dimashkie A, Lopes V, Li D, et al. Differentiation of RPE cells from integration-free iPS cells and their cell biological characterization. Stem Cell Res Ther. 2017;8:217 pubmed 出版商
  173. Alonso Barroso E, Brasil S, Briso Montiano Á, Navarrete R, Perez Cerda C, Ugarte M, et al. Generation and characterization of a human iPSC line from a patient with propionic acidemia due to defects in the PCCA gene. Stem Cell Res. 2017;23:173-177 pubmed 出版商
  174. Tchieu J, Zimmer B, Fattahi F, Amin S, Zeltner N, Chen S, et al. A Modular Platform for Differentiation of Human PSCs into All Major Ectodermal Lineages. Cell Stem Cell. 2017;21:399-410.e7 pubmed 出版商
  175. He H, Huang M, Sun S, Wu Y, Lin X. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development. PLoS Genet. 2017;13:e1006992 pubmed 出版商
  176. Jin L, Vu T, Yuan G, Datta P. STRAP Promotes Stemness of Human Colorectal Cancer via Epigenetic Regulation of the NOTCH Pathway. Cancer Res. 2017;77:5464-5478 pubmed 出版商
  177. Hu J, Guan W, Liu P, Dai J, Tang K, Xiao H, et al. Endoglin Is Essential for the Maintenance of Self-Renewal and Chemoresistance in Renal Cancer Stem Cells. Stem Cell Reports. 2017;9:464-477 pubmed 出版商
  178. Hatakeyama J, Sato H, Shimamura K. Developing guinea pig brain as a model for cortical folding. Dev Growth Differ. 2017;59:286-301 pubmed 出版商
  179. Shi Y, Ping Y, Zhou W, He Z, Chen C, Bian B, et al. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun. 2017;8:15080 pubmed 出版商
  180. Chatzeli L, Gaete M, Tucker A. Fgf10 and Sox9 are essential for the establishment of distal progenitor cells during mouse salivary gland development. Development. 2017;144:2294-2305 pubmed 出版商
  181. Solek C, Feng S, Perin S, Weinschutz Mendes H, Ekker M. Lineage tracing of dlx1a/2a and dlx5a/6a expressing cells in the developing zebrafish brain. Dev Biol. 2017;427:131-147 pubmed 出版商
  182. Takahashi Y, Wu J, Suzuki K, Martínez Redondo P, Li M, Liao H, et al. Integration of CpG-free DNA induces de novo methylation of CpG islands in pluripotent stem cells. Science. 2017;356:503-508 pubmed 出版商
  183. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed 出版商
  184. Dominici C, Moreno Bravo J, Puiggros S, Rappeneau Q, Rama N, Vieugué P, et al. Floor-plate-derived netrin-1 is dispensable for commissural axon guidance. Nature. 2017;545:350-354 pubmed 出版商
  185. Yan Y, Zhao W, Huang Y, Tong H, Xia Y, Jiang Q, et al. Loss of Polycomb Group Protein Pcgf1 Severely Compromises Proper Differentiation of Embryonic Stem Cells. Sci Rep. 2017;7:46276 pubmed 出版商
  186. McCauley K, Hawkins F, Serra M, Thomas D, JACOB A, Kotton D. Efficient Derivation of Functional Human Airway Epithelium from Pluripotent Stem Cells via Temporal Regulation of Wnt Signaling. Cell Stem Cell. 2017;20:844-857.e6 pubmed 出版商
  187. Ji H, Xiong Y, Zhang E, Song W, Gao Z, Yao F, et al. Which has more stem-cell characteristics: Müller cells or Müller cells derived from in vivo culture in neurospheres?. Am J Transl Res. 2017;9:611-619 pubmed
  188. Lin C, Yao E, Zhang K, Jiang X, Croll S, Thompson Peer K, et al. YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis. elife. 2017;6: pubmed 出版商
  189. Ram R, Brasch H, Dunne J, Davis P, Tan S, Itinteang T. The Identification of Three Cancer Stem Cell Subpopulations within Moderately Differentiated Lip Squamous Cell Carcinoma. Front Surg. 2017;4:12 pubmed 出版商
  190. Feng W, Kawauchi D, Körkel Qu H, Deng H, Serger E, Sieber L, et al. Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nat Commun. 2017;8:14758 pubmed 出版商
  191. Barford K, Yap C, Dwyer N, Winckler B. The related neuronal endosomal proteins NEEP21 (Nsg1) and P19 (Nsg2) have divergent expression profiles in vivo. J Comp Neurol. 2017;525:1861-1878 pubmed 出版商
  192. Jang S, Choubey S, Furchtgott L, Zou L, Doyle A, Menon V, et al. Dynamics of embryonic stem cell differentiation inferred from single-cell transcriptomics show a series of transitions through discrete cell states. elife. 2017;6: pubmed 出版商
  193. Chen K, Harris L, Lim J, Harvey T, Piper M, Gronostajski R, et al. Differential neuronal and glial expression of nuclear factor I proteins in the cerebral cortex of adult mice. J Comp Neurol. 2017;525:2465-2483 pubmed 出版商
  194. Bucks S, Cox B, Vlosich B, Manning J, Nguyen T, Stone J. Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice. elife. 2017;6: pubmed 出版商
  195. Chen H, Zuo Q, Wang Y, Song J, Yang H, Zhang Y, et al. Inducing goat pluripotent stem cells with four transcription factor mRNAs that activate endogenous promoters. BMC Biotechnol. 2017;17:11 pubmed 出版商
  196. Borghesi J, Mario L, Carreira A, Miglino M, Favaron P. Phenotype and multipotency of rabbit (Oryctolagus cuniculus) amniotic stem cells. Stem Cell Res Ther. 2017;8:27 pubmed 出版商
  197. Korotkevich E, Niwayama R, Courtois A, Friese S, Berger N, Buchholz F, et al. The Apical Domain Is Required and Sufficient for the First Lineage Segregation in the Mouse Embryo. Dev Cell. 2017;40:235-247.e7 pubmed 出版商
  198. Andersson Rolf A, Mustata R, Merenda A, Kim J, Perera S, Grego T, et al. One-step generation of conditional and reversible gene knockouts. Nat Methods. 2017;14:287-289 pubmed 出版商
  199. Bershteyn M, Nowakowski T, Pollen A, Di Lullo E, Nene A, Wynshaw Boris A, et al. Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell. 2017;20:435-449.e4 pubmed 出版商
  200. Zhang C, Mukherjee S, Tucker Burden C, Ross J, Chau M, Kong J, et al. TRIM8 regulates stemness in glioblastoma through PIAS3-STAT3. Mol Oncol. 2017;11:280-294 pubmed 出版商
  201. Bharathan S, Manian K, Aalam S, Palani D, Deshpande P, Pratheesh M, et al. Systematic evaluation of markers used for the identification of human induced pluripotent stem cells. Biol Open. 2017;6:100-108 pubmed 出版商
  202. Sendoel A, Dunn J, Rodriguez E, Naik S, Gomez N, Hurwitz B, et al. Translation from unconventional 5' start sites drives tumour initiation. Nature. 2017;541:494-499 pubmed 出版商
  203. Corbineau S, Lassalle B, Givelet M, Souissi Sarahoui I, Firlej V, Romeo P, et al. Spermatogonial stem cells and progenitors are refractory to reprogramming to pluripotency by the transcription factors Oct3/4, c-Myc, Sox2 and Klf4. Oncotarget. 2017;8:10050-10063 pubmed 出版商
  204. Dormiani K, Mir Mohammad Sadeghi H, Sadeghi Aliabadi H, Forouzanfar M, Baharvand H, Ghaedi K, et al. Rational Development of A Polycistronic Plasmid with A CpG-Free Bacterial Backbone as A Potential Tool for Direct Reprogramming. Cell J. 2017;18:565-581 pubmed
  205. Xiao Y, Ma H, Wan P, Qin D, Wang X, Zhang X, et al. Trp-Asp (WD) Repeat Domain 1 Is Essential for Mouse Peri-implantation Development and Regulates Cofilin Phosphorylation. J Biol Chem. 2017;292:1438-1448 pubmed 出版商
  206. Koh S, On N, Brasch H, Chibnall A, Armstrong J, Davis P, et al. Embryonic Stem Cell-like Population in Dupuytren's Disease. Plast Reconstr Surg Glob Open. 2016;4:e1064 pubmed
  207. Shams Najafabadi H, Soheili Z, Samiei S, Ahmadieh H, Ranaei Pirmardan E, Masoumi M. Isolation, Characterization, and Establishment of Spontaneously Immortalized Cell Line HRPE-2S With Stem Cell Properties. J Cell Physiol. 2017;232:2626-2640 pubmed 出版商
  208. Katsushima K, Natsume A, Ohka F, Shinjo K, Hatanaka A, Ichimura N, et al. Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nat Commun. 2016;7:13616 pubmed 出版商
  209. Deluz C, Friman E, Strebinger D, Benke A, Raccaud M, Callegari A, et al. A role for mitotic bookmarking of SOX2 in pluripotency and differentiation. Genes Dev. 2016;30:2538-2550 pubmed
  210. Retallack H, Di Lullo E, Arias C, Knopp K, Laurie M, Sandoval Espinosa C, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci U S A. 2016;113:14408-14413 pubmed
  211. Zane M, Parello C, Pennelli G, Townsend D, Merigliano S, Boscaro M, et al. Estrogen and thyroid cancer is a stem affair: A preliminary study. Biomed Pharmacother. 2017;85:399-411 pubmed 出版商
  212. Sareddy G, Viswanadhapalli S, Surapaneni P, Suzuki T, Brenner A, Vadlamudi R. Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway. Oncogene. 2017;36:2423-2434 pubmed 出版商
  213. Zeltner N, Fattahi F, Dubois N, Saurat N, Lafaille F, Shang L, et al. Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med. 2016;22:1421-1427 pubmed 出版商
  214. Fukunaga I, Fujimoto A, Hatakeyama K, Aoki T, Nishikawa A, Noda T, et al. In Vitro Models of GJB2-Related Hearing Loss Recapitulate Ca2+ Transients via a Gap Junction Characteristic of Developing Cochlea. Stem Cell Reports. 2016;7:1023-1036 pubmed 出版商
  215. Zhu L, Gómez Durán A, Saretzki G, Jin S, Tilgner K, Melguizo Sanchís D, et al. The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages. J Cell Biol. 2016;215:187-202 pubmed
  216. Shepherd D, Tsai S, O Brien T, Farrer R, Kartje G. Anti-Nogo-A Immunotherapy Does Not Alter Hippocampal Neurogenesis after Stroke in Adult Rats. Front Neurosci. 2016;10:467 pubmed
  217. Tahmasebi S, Jafarnejad S, Tam I, Gonatopoulos Pournatzis T, Matta Camacho E, Tsukumo Y, et al. Control of embryonic stem cell self-renewal and differentiation via coordinated alternative splicing and translation of YY2. Proc Natl Acad Sci U S A. 2016;113:12360-12367 pubmed
  218. Junge H, Yung A, Goodrich L, Chen Z. Netrin1/DCC signaling promotes neuronal migration in the dorsal spinal cord. Neural Dev. 2016;11:19 pubmed
  219. Pibiri V, Ravarino A, Gerosa C, Pintus M, Fanos V, Faa G. Stem/progenitor cells in the developing human cerebellum: an immunohistochemical study. Eur J Histochem. 2016;60:2686 pubmed 出版商
  220. Featherston T, Yu H, Dunne J, Chibnall A, Brasch H, Davis P, et al. Cancer Stem Cells in Moderately Differentiated Buccal Mucosal Squamous Cell Carcinoma Express Components of the Renin-Angiotensin System. Front Surg. 2016;3:52 pubmed
  221. Bradshaw A, Wickremesekera A, Brasch H, Chibnall A, Davis P, Tan S, et al. Glioblastoma Multiforme Cancer Stem Cells Express Components of the Renin-Angiotensin System. Front Surg. 2016;3:51 pubmed
  222. Koch K, Hartmann R, Schröter F, Suwala A, Maciaczyk D, Krüger A, et al. Reciprocal regulation of the cholinic phenotype and epithelial-mesenchymal transition in glioblastoma cells. Oncotarget. 2016;7:73414-73431 pubmed 出版商
  223. Brooker S, Gobeske K, Chen J, Peng C, Kessler J. Hippocampal bone morphogenetic protein signaling mediates behavioral effects of antidepressant treatment. Mol Psychiatry. 2017;22:910-919 pubmed 出版商
  224. Kotoku T, Kosaka K, Nishio M, Ishida Y, Kawaichi M, Matsuda E. CIBZ Regulates Mesodermal and Cardiac Differentiation of by Suppressing T and Mesp1 Expression in Mouse Embryonic Stem Cells. Sci Rep. 2016;6:34188 pubmed 出版商
  225. Lee E, Wang J, Yumoto K, Jung Y, Cackowski F, Decker A, et al. DNMT1 Regulates Epithelial-Mesenchymal Transition and Cancer Stem Cells, Which Promotes Prostate Cancer Metastasis. Neoplasia. 2016;18:553-66 pubmed 出版商
  226. BRADSHAW A, Wickremesekera A, Brasch H, Chibnall A, Davis P, Tan S, et al. Cancer Stem Cells in Glioblastoma Multiforme. Front Surg. 2016;3:48 pubmed 出版商
  227. Magown P, Brownstone R, Rafuse V. Tumor prevention facilitates delayed transplant of stem cell-derived motoneurons. Ann Clin Transl Neurol. 2016;3:637-49 pubmed 出版商
  228. Mao S, Li X, Wang J, Ding X, Zhang C, Li L. miR-17-92 facilitates neuronal differentiation of transplanted neural stem/precursor cells under neuroinflammatory conditions. J Neuroinflammation. 2016;13:208 pubmed 出版商
  229. Zak M, van Oort T, Hendriksen F, Garcia M, Vassart G, Grolman W. LGR4 and LGR5 Regulate Hair Cell Differentiation in the Sensory Epithelium of the Developing Mouse Cochlea. Front Cell Neurosci. 2016;10:186 pubmed 出版商
  230. Lv D, Yu S, Ping Y, Wu H, Zhao X, Zhang H, et al. A three-dimensional collagen scaffold cell culture system for screening anti-glioma therapeutics. Oncotarget. 2016;7:56904-56914 pubmed 出版商
  231. Palibrk V, Suganthan R, Scheffler K, Wang W, BjørÃ¥s M, Bøe S. PML regulates neuroprotective innate immunity and neuroblast commitment in a hypoxic-ischemic encephalopathy model. Cell Death Dis. 2016;7:e2320 pubmed 出版商
  232. Mansouri S, Singh S, Alamsahebpour A, Burrell K, Li M, Karabork M, et al. DICER governs characteristics of glioma stem cells and the resulting tumors in xenograft mouse models of glioblastoma. Oncotarget. 2016;7:56431-56446 pubmed 出版商
  233. Pijuan Galitó S, Tamm C, Schuster J, Sobol M, Forsberg L, Merry C, et al. Human serum-derived protein removes the need for coating in defined human pluripotent stem cell culture. Nat Commun. 2016;7:12170 pubmed 出版商
  234. Pinet S, Bessette B, Vedrenne N, Lacroix A, Richard L, Jauberteau M, et al. TrkB-containing exosomes promote the transfer of glioblastoma aggressiveness to YKL-40-inactivated glioblastoma cells. Oncotarget. 2016;7:50349-50364 pubmed 出版商
  235. Duru N, Gernapudi R, Lo P, Yao Y, Wolfson B, Zhang Y, et al. Characterization of the CD49f+/CD44+/CD24- single-cell derived stem cell population in basal-like DCIS cells. Oncotarget. 2016;7:47511-47525 pubmed 出版商
  236. Krusche B, Ottone C, Clements M, Johnstone E, Goetsch K, Lieven H, et al. EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. elife. 2016;5: pubmed 出版商
  237. Zhang Y, Cabarcas S, Zheng J, Sun L, Mathews L, Zhang X, et al. Cryptotanshinone targets tumor-initiating cells through down-regulation of stemness genes expression. Oncol Lett. 2016;11:3803-3812 pubmed
  238. Hisamatsu D, Ohno Oishi M, Nakamura S, Mabuchi Y, Naka Kaneda H. Growth differentiation factor 6 derived from mesenchymal stem/stromal cells reduces age-related functional deterioration in multiple tissues. Aging (Albany NY). 2016;8:1259-75 pubmed 出版商
  239. Jones K, Han J, Debruyne J, Philpot B. Persistent neuronal Ube3a expression in the suprachiasmatic nucleus of Angelman syndrome model mice. Sci Rep. 2016;6:28238 pubmed 出版商
  240. Martinez Cruzado L, Tornin J, Santos L, Rodriguez A, Garcia Castro J, Morís F, et al. Aldh1 Expression and Activity Increase During Tumor Evolution in Sarcoma Cancer Stem Cell Populations. Sci Rep. 2016;6:27878 pubmed 出版商
  241. Lu Y, Liu Y, Liao S, Tu W, Shen Y, Yan Y, et al. Epigenetic modifications promote the expression of the orphan nuclear receptor NR0B1 in human lung adenocarcinoma cells. Oncotarget. 2016;7:43162-43176 pubmed 出版商
  242. Hyslop L, Blakeley P, Craven L, Richardson J, Fogarty N, Fragouli E, et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature. 2016;534:383-6 pubmed 出版商
  243. Hudish L, Galati D, Ravanelli A, Pearson C, Huang P, Appel B. miR-219 regulates neural progenitors by dampening apical Par protein-dependent Hedgehog signaling. Development. 2016;143:2292-304 pubmed 出版商
  244. Leggere J, Saito Y, Darnell R, Tessier Lavigne M, Junge H, Chen Z. NOVA regulates Dcc alternative splicing during neuronal migration and axon guidance in the spinal cord. elife. 2016;5: pubmed 出版商
  245. Rodríguez Jiménez F, Alastrue A, Stojkovic M, Erceg S, Moreno Manzano V. Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells. Cell Tissue Res. 2016;365:295-307 pubmed 出版商
  246. Liu X, Koehler K, Mikosz A, Hashino E, Holt J. Functional development of mechanosensitive hair cells in stem cell-derived organoids parallels native vestibular hair cells. Nat Commun. 2016;7:11508 pubmed 出版商
  247. Wang L, Hou S, Han Y. Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex. Nat Neurosci. 2016;19:888-96 pubmed 出版商
  248. Jung J, Kang K, Kim J, Hong S, Park Y, Kim B. CXCR2 Inhibition in Human Pluripotent Stem Cells Induces Predominant Differentiation to Mesoderm and Endoderm Through Repression of mTOR, ?-Catenin, and hTERT Activities. Stem Cells Dev. 2016;25:1006-19 pubmed 出版商
  249. Reboun M, Rybová J, Dobrovolny R, Vcelak J, Veselková T, Storkanova G, et al. X-Chromosome Inactivation Analysis in Different Cell Types and Induced Pluripotent Stem Cells Elucidates the Disease Mechanism in a Rare Case of Mucopolysaccharidosis Type II in a Female. Folia Biol (Praha). 2016;62:82-9 pubmed
  250. Rosiak K, Smolarz M, Stec W, Peciak J, Grzela D, Winiecka Klimek M, et al. IDH1R132H in Neural Stem Cells: Differentiation Impaired by Increased Apoptosis. PLoS ONE. 2016;11:e0154726 pubmed 出版商
  251. Cutts J, Brookhouser N, Brafman D. Generation of Regionally Specific Neural Progenitor Cells (NPCs) and Neurons from Human Pluripotent Stem Cells (hPSCs). Methods Mol Biol. 2016;1516:121-144 pubmed 出版商
  252. Leung C, Mak W, Kai A, Chan K, Lee T, Ng I, et al. Sox9 confers stemness properties in hepatocellular carcinoma through Frizzled-7 mediated Wnt/?-catenin signaling. Oncotarget. 2016;7:29371-86 pubmed 出版商
  253. Baillie R, Itinteang T, Yu H, Brasch H, Davis P, Tan S. Cancer stem cells in moderately differentiated oral tongue squamous cell carcinoma. J Clin Pathol. 2016;69:742-4 pubmed 出版商
  254. Okamoto M, Miyata T, Konno D, Ueda H, Kasukawa T, Hashimoto M, et al. Cell-cycle-independent transitions in temporal identity of mammalian neural progenitor cells. Nat Commun. 2016;7:11349 pubmed 出版商
  255. Burridge P, Li Y, Matsa E, Wu H, Ong S, Sharma A, et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med. 2016;22:547-56 pubmed 出版商
  256. Fan W, Li X, Yao H, Deng J, Liu H, Cui Z, et al. Neural differentiation and synaptogenesis in retinal development. Neural Regen Res. 2016;11:312-8 pubmed 出版商
  257. Lodge E, Russell J, Patist A, Francis West P, Andoniadou C. Expression Analysis of the Hippo Cascade Indicates a Role in Pituitary Stem Cell Development. Front Physiol. 2016;7:114 pubmed 出版商
  258. Balakrishnan A, Stykel M, Touahri Y, Stratton J, Biernaskie J, Schuurmans C. Temporal Analysis of Gene Expression in the Murine Schwann Cell Lineage and the Acutely Injured Postnatal Nerve. PLoS ONE. 2016;11:e0153256 pubmed 出版商
  259. Sanchez M, Ceci M, Gutiérrez D, Anguita Salinas C, Allende M. Mechanosensory organ regeneration in zebrafish depends on a population of multipotent progenitor cells kept latent by Schwann cells. BMC Biol. 2016;14:27 pubmed 出版商
  260. Langer D, Martianov I, Alpern D, Rhinn M, Keime C, Dolle P, et al. Essential role of the TFIID subunit TAF4 in murine embryogenesis and embryonic stem cell differentiation. Nat Commun. 2016;7:11063 pubmed 出版商
  261. Francis K, Ton A, Xin Y, O Halloran P, Wassif C, Malik N, et al. Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/β-catenin defects in neuronal cholesterol synthesis phenotypes. Nat Med. 2016;22:388-96 pubmed 出版商
  262. Park S, Kim J, Kim N, Yang K, Shim J, Heo K. Estradiol, TGF-?1 and hypoxia promote breast cancer stemness and EMT-mediated breast cancer migration. Oncol Lett. 2016;11:1895-1902 pubmed
  263. Cui Y, Han J, Xiao Z, Chen T, Wang B, Chen B, et al. The miR-20-Rest-Wnt signaling axis regulates neural progenitor cell differentiation. Sci Rep. 2016;6:23300 pubmed 出版商
  264. Ananthula S, Sinha A, El Gassim M, Batth S, Marshall G, Gardner L, et al. Geminin overexpression-dependent recruitment and crosstalk with mesenchymal stem cells enhance aggressiveness in triple negative breast cancers. Oncotarget. 2016;7:20869-89 pubmed 出版商
  265. Stanford E, Wang Z, Novikov O, Mulas F, Landesman Bollag E, Monti S, et al. The role of the aryl hydrocarbon receptor in the development of cells with the molecular and functional characteristics of cancer stem-like cells. BMC Biol. 2016;14:20 pubmed 出版商
  266. Vinci L, Ravarino A, Fanos V, Naccarato A, Senes G, Gerosa C, et al. Immunohistochemical markers of neural progenitor cells in the early embryonic human cerebral cortex. Eur J Histochem. 2016;60:2563 pubmed 出版商
  267. Ren C, Ren T, Yang K, Wang S, Bao X, Zhang F, et al. Inhibition of SOX2 induces cell apoptosis and G1/S arrest in Ewing's sarcoma through the PI3K/Akt pathway. J Exp Clin Cancer Res. 2016;35:44 pubmed 出版商
  268. Goodliffe J, Olmos Serrano J, Aziz N, Pennings J, Guedj F, Bianchi D, et al. Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome. J Neurosci. 2016;36:2926-44 pubmed 出版商
  269. Shao Z, Zhang R, Khodadadi Jamayran A, Chen B, Crowley M, Festok M, et al. The acetyllysine reader BRD3R promotes human nuclear reprogramming and regulates mitosis. Nat Commun. 2016;7:10869 pubmed 出版商
  270. Li Y, Wei Z, Dong B, Lian Z, Xu Y. Silencing of phosphoglucose isomerase/autocrine motility factor decreases U87 human glioblastoma cell migration. Int J Mol Med. 2016;37:998-1004 pubmed 出版商
  271. Xu M, Bian S, Li J, He J, Chen H, Ge L, et al. MeCP2 suppresses LIN28A expression via binding to its methylated-CpG islands in pancreatic cancer cells. Oncotarget. 2016;7:14476-85 pubmed 出版商
  272. Li M, Lu G, Hu J, Shen X, Ju J, Gao Y, et al. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy. Stem Cell Reports. 2016;6:396-410 pubmed 出版商
  273. Castaño J, Morera C, Sesé B, Boue S, Bonet Costa C, Marti M, et al. SETD7 Regulates the Differentiation of Human Embryonic Stem Cells. PLoS ONE. 2016;11:e0149502 pubmed 出版商
  274. Gerashchenko B, Salmina K, Eglitis J, Huna A, Grjunberga V, Erenpreisa J. Disentangling the aneuploidy and senescence paradoxes: a study of triploid breast cancers non-responsive to neoadjuvant therapy. Histochem Cell Biol. 2016;145:497-508 pubmed 出版商
  275. Bagó J, Alfonso Pecchio A, Okolie O, Dumitru R, Rinkenbaugh A, Baldwin A, et al. Therapeutically engineered induced neural stem cells are tumour-homing and inhibit progression of glioblastoma. Nat Commun. 2016;7:10593 pubmed 出版商
  276. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  277. Wymeersch F, Huang Y, Blin G, Cambray N, Wilkie R, Wong F, et al. Position-dependent plasticity of distinct progenitor types in the primitive streak. elife. 2016;5:e10042 pubmed 出版商
  278. Liu Q, Sanai N, Jin W, La Cava A, Van Kaer L, Shi F. Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation. Nat Neurosci. 2016;19:243-52 pubmed 出版商
  279. Murakami K, Günesdogan U, Zylicz J, Tang W, Sengupta R, Kobayashi T, et al. NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers. Nature. 2016;529:403-407 pubmed 出版商
  280. Nomura T, Ohtaka Maruyama C, Yamashita W, Wakamatsu Y, Murakami Y, Calegari F, et al. The evolution of basal progenitors in the developing non-mammalian brain. Development. 2016;143:66-74 pubmed 出版商
  281. Joseph J, van Roosmalen I, Busschers E, Tomar T, Conroy S, Eggens Meijer E, et al. Serum-Induced Differentiation of Glioblastoma Neurospheres Leads to Enhanced Migration/Invasion Capacity That Is Associated with Increased MMP9. PLoS ONE. 2015;10:e0145393 pubmed 出版商
  282. Xiao S, Chang R, Yang M, Lei X, Liu X, Gao W, et al. Actin-like 6A predicts poor prognosis of hepatocellular carcinoma and promotes metastasis and epithelial-mesenchymal transition. Hepatology. 2016;63:1256-71 pubmed 出版商
  283. Vijaya Chandra S, Makhija H, Peter S, Myint Wai C, Li J, Zhu J, et al. Conservative site-specific and single-copy transgenesis in human LINE-1 elements. Nucleic Acids Res. 2016;44:e55 pubmed 出版商
  284. Amadei G, Zander M, Yang G, Dumelie J, Vessey J, Lipshitz H, et al. A Smaug2-Based Translational Repression Complex Determines the Balance between Precursor Maintenance versus Differentiation during Mammalian Neurogenesis. J Neurosci. 2015;35:15666-81 pubmed 出版商
  285. Alexandrova S, Kalkan T, Humphreys P, Riddell A, Scognamiglio R, Trumpp A, et al. Selection and dynamics of embryonic stem cell integration into early mouse embryos. Development. 2016;143:24-34 pubmed 出版商
  286. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  287. Thomsen E, Mich J, Yao Z, Hodge R, Doyle A, Jang S, et al. Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat Methods. 2016;13:87-93 pubmed 出版商
  288. Ramaswamy K, Yik W, Wang X, Oliphant E, Lu W, Shibata D, et al. Derivation of induced pluripotent stem cells from orangutan skin fibroblasts. BMC Res Notes. 2015;8:577 pubmed 出版商
  289. Kuo H, Hsu H, Chen Y, Chang Y, Liu F, Wu C. Galectin-3 modulates the EGFR signalling-mediated regulation of Sox2 expression via c-Myc in lung cancer. Glycobiology. 2016;26:155-65 pubmed 出版商
  290. Balboa D, Weltner J, Eurola S, Trokovic R, Wartiovaara K, Otonkoski T. Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation. Stem Cell Reports. 2015;5:448-59 pubmed 出版商
  291. Neri T, Muggeo S, Paulis M, Caldana M, Crisafulli L, Strina D, et al. Targeted Gene Correction in Osteopetrotic-Induced Pluripotent Stem Cells for the Generation of Functional Osteoclasts. Stem Cell Reports. 2015;5:558-68 pubmed 出版商
  292. Bora Singhal N, Perumal D, Nguyen J, Chellappan S. Gli1-Mediated Regulation of Sox2 Facilitates Self-Renewal of Stem-Like Cells and Confers Resistance to EGFR Inhibitors in Non-Small Cell Lung Cancer. Neoplasia. 2015;17:538-51 pubmed 出版商
  293. Míguez D. A Branching Process to Characterize the Dynamics of Stem Cell Differentiation. Sci Rep. 2015;5:13265 pubmed 出版商
  294. Mohammadi A, Attari F, Babapour V, Hassani S, Masoudi N, Shahverdi A, et al. Generation of Rat Embryonic Germ Cells via Inhibition of TGFß and MEK Pathways. Cell J. 2015;17:288-95 pubmed
  295. Kegler K, Spitzbarth I, Imbschweiler I, Wewetzer K, Baumgärtner W, Seehusen F. Contribution of Schwann Cells to Remyelination in a Naturally Occurring Canine Model of CNS Neuroinflammation. PLoS ONE. 2015;10:e0133916 pubmed 出版商
  296. Huna A, Salmina K, Erenpreisa J, Vazquez Martin A, Krigerts J, Inashkina I, et al. Role of stress-activated OCT4A in the cell fate decisions of embryonal carcinoma cells treated with etoposide. Cell Cycle. 2015;14:2969-84 pubmed 出版商
  297. Zucha M, Wu A, Lee W, Wang L, Lin W, Yuan C, et al. Bruton's tyrosine kinase (Btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer. Oncotarget. 2015;6:13255-68 pubmed
  298. Di Cristofori A, Ferrero S, Bertolini I, Gaudioso G, Russo M, Berno V, et al. The vacuolar H+ ATPase is a novel therapeutic target for glioblastoma. Oncotarget. 2015;6:17514-31 pubmed
  299. Higuchi Y, Nguyen C, Yasuda S, McMillan M, Hasegawa K, Kahn M. Specific Direct Small Molecule p300/?-Catenin Antagonists Maintain Stem Cell Potency. Curr Mol Pharmacol. 2016;9:272-279 pubmed
  300. Machado C, Griesi Oliveira K, Rosenberg C, Kok F, Martins S, Passos Bueno M, et al. Collybistin binds and inhibits mTORC1 signaling: a potential novel mechanism contributing to intellectual disability and autism. Eur J Hum Genet. 2016;24:59-65 pubmed 出版商
  301. Deleyrolle L, Sabourin J, Rothhut B, Fujita H, Guichet P, Teigell M, et al. OCAM regulates embryonic spinal cord stem cell proliferation by modulating ErbB2 receptor. PLoS ONE. 2015;10:e0122337 pubmed 出版商
  302. Jung K, Gupta N, Wang P, Lewis J, Gopal K, Wu F, et al. Triple negative breast cancers comprise a highly tumorigenic cell subpopulation detectable by its high responsiveness to a Sox2 regulatory region 2 (SRR2) reporter. Oncotarget. 2015;6:10366-73 pubmed
  303. Debowski K, Warthemann R, Lentes J, Salinas Riester G, Dressel R, Langenstroth D, et al. Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach. PLoS ONE. 2015;10:e0118424 pubmed 出版商
  304. Costabile V, Duraturo F, Delrio P, Rega D, Pace U, Liccardo R, et al. Lithium chloride induces mesenchymal‑to‑epithelial reverting transition in primary colon cancer cell cultures. Int J Oncol. 2015;46:1913-23 pubmed 出版商
  305. Ma R, Latif R, Davies T. Human embryonic stem cells form functional thyroid follicles. Thyroid. 2015;25:455-61 pubmed 出版商
  306. Weissferdt A, Rodriguez Canales J, Liu H, Fujimoto J, Wistuba I, Moran C. Primary mediastinal seminomas: a comprehensive immunohistochemical study with a focus on novel markers. Hum Pathol. 2015;46:376-83 pubmed 出版商
  307. Miconi G, Palumbo P, Dehcordi S, La Torre C, Lombardi F, Evtoski Z, et al. Immunophenotypic characterization of human glioblastoma stem cells: correlation with clinical outcome. J Cell Biochem. 2015;116:864-76 pubmed 出版商
  308. Yao P, Kang D, Wang X, Lin R, Ye Z. Cell-density-dependent manifestation of partial characteristics for neuronal precursors in a newly established human gliosarcoma cell line. In Vitro Cell Dev Biol Anim. 2015;51:345-52 pubmed 出版商
  309. Hoefflin S, Carter D. Neuronal expression of SOX2 is enriched in specific hypothalamic cell groups. J Chem Neuroanat. 2014;61-62:153-60 pubmed 出版商
  310. Jia D, Yang W, Li L, Liu H, Tan Y, Ooi S, et al. β-Catenin and NF-κB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer. Cell Death Differ. 2015;22:298-310 pubmed 出版商
  311. Holmberg Olausson K, Maire C, Haidar S, Ling J, Learner E, Nistér M, et al. Prominin-1 (CD133) defines both stem and non-stem cell populations in CNS development and gliomas. PLoS ONE. 2014;9:e106694 pubmed 出版商
  312. Ma M, Czepiel M, Krause T, Schafer K, Boddeke E, Copray S. Generation of induced pluripotent stem cells from hair follicle bulge neural crest stem cells. Cell Reprogram. 2014;16:307-13 pubmed 出版商
  313. Requejo Aguilar R, Lopez Fabuel I, Fernandez E, Martins L, Almeida A, Bolanos J. PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1. Nat Commun. 2014;5:4514 pubmed 出版商
  314. Germán Castelán L, Manjarrez Marmolejo J, González Arenas A, González Morán M, Camacho Arroyo I. Progesterone induces the growth and infiltration of human astrocytoma cells implanted in the cerebral cortex of the rat. Biomed Res Int. 2014;2014:393174 pubmed 出版商
  315. Piazzolla D, Palla A, Pantoja C, Canamero M, de Castro I, Ortega S, et al. Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia. Nat Commun. 2014;5:4226 pubmed 出版商
  316. Jung K, Wu F, Wang P, Ye X, Abdulkarim B, Lai R. YB-1 regulates Sox2 to coordinately sustain stemness and tumorigenic properties in a phenotypically distinct subset of breast cancer cells. BMC Cancer. 2014;14:328 pubmed 出版商
  317. Muchkaeva I, Dashinimaev E, Artyuhov A, Myagkova E, Vorotelyak E, Yegorov Y, et al. Generation of iPS Cells from Human Hair Follice Dermal Papilla Cells. Acta Naturae. 2014;6:45-53 pubmed
  318. Mouallif M, Albert A, Zeddou M, Ennaji M, Delvenne P, Guenin S. Expression profile of undifferentiated cell transcription factor 1 in normal and cancerous human epithelia. Int J Exp Pathol. 2014;95:251-9 pubmed 出版商
  319. Zhang P, Wu C, Liu N, Niu L, Yan Z, Feng Y, et al. Protocadherin 11 x regulates differentiation and proliferation of neural stem cell in vitro and in vivo. J Mol Neurosci. 2014;54:199-210 pubmed 出版商
  320. Martianov I, Cler E, Duluc I, Vicaire S, Philipps M, Freund J, et al. TAF4 inactivation reveals the 3 dimensional growth promoting activities of collagen 6A3. PLoS ONE. 2014;9:e87365 pubmed 出版商
  321. Batailler M, Droguerre M, Baroncini M, Fontaine C, Prevot V, Migaud M. DCX-expressing cells in the vicinity of the hypothalamic neurogenic niche: a comparative study between mouse, sheep, and human tissues. J Comp Neurol. 2014;522:1966-85 pubmed 出版商
  322. Liu H, Zhang W, Jia Y, Yu Q, Grau G, Peng L, et al. Single-cell clones of liver cancer stem cells have the potential of differentiating into different types of tumor cells. Cell Death Dis. 2013;4:e857 pubmed 出版商
  323. Mao X, Hütt Cabezas M, Orr B, Weingart M, Taylor I, Rajan A, et al. LIN28A facilitates the transformation of human neural stem cells and promotes glioblastoma tumorigenesis through a pro-invasive genetic program. Oncotarget. 2013;4:1050-64 pubmed
  324. Camps J, Pitt J, Emons G, Hummon A, Case C, Grade M, et al. Genetic amplification of the NOTCH modulator LNX2 upregulates the WNT/β-catenin pathway in colorectal cancer. Cancer Res. 2013;73:2003-13 pubmed 出版商