这是一篇来自已证抗体库的有关人类 SPTAN1的综述,是根据32篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合SPTAN1 抗体。
SPTAN1 同义词: EIEE5; NEAS; SPTA2

圣克鲁斯生物技术
小鼠 单克隆(C-3)
  • 免疫印迹; 人类; 1:500; 图 4c
圣克鲁斯生物技术 SPTAN1抗体(Santa Cruz Biotechnology, sc-48382)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4c). Nat Commun (2021) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠; 1:150; 图 4a
圣克鲁斯生物技术 SPTAN1抗体(Santa Cruz Biotechnology, sc-46696)被用于被用于免疫印迹在小鼠样本上浓度为1:150 (图 4a). J Clin Invest (2017) ncbi
小鼠 单克隆(C-3)
  • 免疫印迹; 大鼠; 1:200; 图 3
圣克鲁斯生物技术 SPTAN1抗体(Santa Cruz, sc-48382)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 大鼠; 图 8
圣克鲁斯生物技术 SPTAN1抗体(Santa Cruz, sc-46696)被用于被用于免疫印迹在大鼠样本上 (图 8). Evid Based Complement Alternat Med (2015) ncbi
小鼠 单克隆(C-3)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 SPTAN1抗体(Santa Cruz Biotechnology, sc-48382)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci Res (2015) ncbi
小鼠 单克隆(C-3)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 SPTAN1抗体(SCB, sc-48382)被用于被用于免疫印迹在大鼠样本上. FASEB J (2014) ncbi
小鼠 单克隆(C-3)
  • 免疫印迹; 小鼠; 图 1j
圣克鲁斯生物技术 SPTAN1抗体(SantaCruz, sc-48382)被用于被用于免疫印迹在小鼠样本上 (图 1j). Cell Rep (2014) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; 小鼠; 图 1
圣克鲁斯生物技术 SPTAN1抗体(Santa Cruz Biotechnology, sc-46696)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Front Physiol (2013) ncbi
BioLegend
小鼠 单克隆(D8B7)
  • 免疫细胞化学基因敲除验证; 小鼠; 图 2h, 2j
  • 免疫印迹基因敲除验证; 小鼠; 图 2b
  • 免疫印迹; 小鼠; 图 2e, s10a
  • 免疫印迹; 人类; 图 1a
BioLegend SPTAN1抗体(BioLegend, 803201)被用于被用于免疫细胞化学基因敲除验证在小鼠样本上 (图 2h, 2j), 被用于免疫印迹基因敲除验证在小鼠样本上 (图 2b), 被用于免疫印迹在小鼠样本上 (图 2e, s10a) 和 被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2019) ncbi
小鼠 单克隆(D8B7)
  • 免疫印迹; 小鼠; 1:250; 图 2f
BioLegend SPTAN1抗体(BioLegend, 803201)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 2f). elife (2019) ncbi
Enzo Life Sciences
小鼠 单克隆(AA6)
  • 免疫印迹; 大鼠; 1:3000
Enzo Life Sciences SPTAN1抗体(Enzo Life Sciences, AA6)被用于被用于免疫印迹在大鼠样本上浓度为1:3000. Mol Genet Metab (2016) ncbi
小鼠 单克隆(AA6)
  • 免疫印迹; 小鼠; 图 6
  • 免疫印迹; 大鼠; 图 2
Enzo Life Sciences SPTAN1抗体(Enzo, BML-FG6090)被用于被用于免疫印迹在小鼠样本上 (图 6) 和 被用于免疫印迹在大鼠样本上 (图 2). Cell Death Differ (2016) ncbi
小鼠 单克隆(AA6)
  • 免疫印迹; 小鼠; 图 s5
Enzo Life Sciences SPTAN1抗体(Enzo Life Sciences, BML-FG6090-0500)被用于被用于免疫印迹在小鼠样本上 (图 s5). J Cereb Blood Flow Metab (2015) ncbi
小鼠 单克隆(AA6)
  • 免疫印迹; 人类
Enzo Life Sciences SPTAN1抗体(Biomol, FG6090)被用于被用于免疫印迹在人类样本上. Ann Neurol (2014) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(D8B7)
  • 免疫印迹; 大鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 SPTAN1抗体(Abcam, ab11755)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). J Neurochem (2017) ncbi
domestic rabbit 单克隆(EPR3830-43)
  • 免疫印迹; 人类; 1:10,000; 表 s4
艾博抗(上海)贸易有限公司 SPTAN1抗体(Abcam, ab133320)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (表 s4). Stem Cell Res (2016) ncbi
domestic rabbit 单克隆(EPR3017)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 SPTAN1抗体(Abcam, ab75755)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurochem (2014) ncbi
赛默飞世尔
小鼠 单克隆(D8B7)
  • 免疫印迹; 人类; 1:5000; 图 1
赛默飞世尔 SPTAN1抗体(ThermoFisher Scientific, MA1-91103)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Exp Ther Med (2016) ncbi
碧迪BD
小鼠 单克隆(42/B-Spectrin II)
  • 免疫组化; 小鼠; 1:200; 图 1d
碧迪BD SPTAN1抗体(BD Transduction Lab, 612562)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1d). Nat Commun (2021) ncbi
小鼠 单克隆(42/B-Spectrin II)
  • 免疫细胞化学; 大鼠; 1:200; 图 1e
  • 免疫细胞化学; 人类; 1:200; 图 4f
碧迪BD SPTAN1抗体(BD Transduction, 612563)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 1e) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 4f). elife (2020) ncbi
小鼠 单克隆(42/B-Spectrin II)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5d
碧迪BD SPTAN1抗体(BD Biosciences, 612563)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5d). elife (2020) ncbi
小鼠 单克隆(42/B-Spectrin II)
  • 免疫组化; 小鼠; 图 4b
碧迪BD SPTAN1抗体(BD Bioscience, 612562)被用于被用于免疫组化在小鼠样本上 (图 4b). EMBO Rep (2017) ncbi
小鼠 单克隆(42/B-Spectrin II)
  • 免疫组化; 鸡; 1:500; 图 9a
  • 免疫组化; 小鼠; 1:500; 图 2c
碧迪BD SPTAN1抗体(BD Biosciences, 612562)被用于被用于免疫组化在鸡样本上浓度为1:500 (图 9a) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 2c). elife (2017) ncbi
小鼠 单克隆(42/B-Spectrin II)
  • 免疫细胞化学; 小鼠; 图 s6a
碧迪BD SPTAN1抗体(BD Biosciences, 612563)被用于被用于免疫细胞化学在小鼠样本上 (图 s6a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(42/B-Spectrin II)
  • 免疫细胞化学; 大鼠; 1:200; 图 2
  • 免疫细胞化学; 小鼠; 1:200; 图 1
碧迪BD SPTAN1抗体(BD Biosciences, 612563)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 2) 和 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(42/B-Spectrin II)
  • 免疫细胞化学; 大鼠; 图 7
碧迪BD SPTAN1抗体(BD Biosciences, 612563)被用于被用于免疫细胞化学在大鼠样本上 (图 7). elife (2014) ncbi
小鼠 单克隆(42/B-Spectrin II)
  • 免疫组化; 大鼠; 1:400
碧迪BD SPTAN1抗体(BD Biosciences, 612562)被用于被用于免疫组化在大鼠样本上浓度为1:400. Hum Mol Genet (2015) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆(RBC2/3D5)
  • 免疫组化-冰冻切片; 人类; 图 7fs2bc
徕卡显微系统(上海)贸易有限公司 SPTAN1抗体(Leica, NCL-SPEC1)被用于被用于免疫组化-冰冻切片在人类样本上 (图 7fs2bc). elife (2016) ncbi
  • 免疫组化; 人类; 1:1000; 表 1
徕卡显微系统(上海)贸易有限公司 SPTAN1抗体(Leica Biosystems, NCL-SPEC2)被用于被用于免疫组化在人类样本上浓度为1:1000 (表 1). J Anat (2016) ncbi
小鼠 单克隆(RBC2/3D5)
  • 免疫组化-冰冻切片; 人类; 1:20; 图 6
徕卡显微系统(上海)贸易有限公司 SPTAN1抗体(Leica, NCL-SPEC1)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:20 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(RBC2/3D5)
  • 免疫细胞化学; 人类; 1:20
徕卡显微系统(上海)贸易有限公司 SPTAN1抗体(Leica, NCL-SPEC1)被用于被用于免疫细胞化学在人类样本上浓度为1:20. Mol Ther (2015) ncbi
小鼠 单克隆(RBC2/3D5)
  • 免疫组化-冰冻切片; 人类
徕卡显微系统(上海)贸易有限公司 SPTAN1抗体(Novocastra, NCL-SPEC1)被用于被用于免疫组化-冰冻切片在人类样本上. PLoS ONE (2014) ncbi
文章列表
  1. Hu D, Sun X, Magpusao A, Fedorov Y, Thompson M, Wang B, et al. Small-molecule suppression of calpastatin degradation reduces neuropathology in models of Huntington's disease. Nat Commun. 2021;12:5305 pubmed 出版商
  2. Kindt K, Akturk A, Jarysta A, Day M, Beirl A, Flonard M, et al. EMX2-GPR156-Gαi reverses hair cell orientation in mechanosensory epithelia. Nat Commun. 2021;12:2861 pubmed 出版商
  3. Costa A, Sousa S, Pinto Costa R, Mateus J, Lopes C, Costa A, et al. The membrane periodic skeleton is an actomyosin network that regulates axonal diameter and conduction. elife. 2020;9: pubmed 出版商
  4. Liu C, Stevens S, Teliska L, Stankewich M, Mohler P, Hund T, et al. Nodal β spectrins are required to maintain Na+ channel clustering and axon integrity. elife. 2020;9: pubmed 出版商
  5. Lubbers E, Murphy N, Musa H, Huang C, Gupta R, Price M, et al. Defining new mechanistic roles for αII spectrin in cardiac function. J Biol Chem. 2019;294:9576-9591 pubmed 出版商
  6. Wang G, Simon D, Wu Z, Belsky D, Heller E, O Rourke M, et al. Structural plasticity of actin-spectrin membrane skeleton and functional role of actin and spectrin in axon degeneration. elife. 2019;8: pubmed 出版商
  7. Kumar A, Dejanovic B, Hetsch F, Semtner M, Fusca D, Arjune S, et al. S-sulfocysteine/NMDA receptor-dependent signaling underlies neurodegeneration in molybdenum cofactor deficiency. J Clin Invest. 2017;127:4365-4378 pubmed 出版商
  8. Vogl C, Butola T, Haag N, Hausrat T, Leitner M, Moutschen M, et al. The BEACH protein LRBA is required for hair bundle maintenance in cochlear hair cells and for hearing. EMBO Rep. 2017;18:2015-2029 pubmed 出版商
  9. Jiang T, Kindt K, Wu D. Transcription factor Emx2 controls stereociliary bundle orientation of sensory hair cells. elife. 2017;6: pubmed 出版商
  10. Yamamoto K, Sato K, Yukita M, Yasuda M, Omodaka K, Ryu M, et al. The neuroprotective effect of latanoprost acts via klotho-mediated suppression of calpain activation after optic nerve transection. J Neurochem. 2017;140:495-508 pubmed 出版商
  11. Cudré Cung H, Zavadakova P, Do Vale Pereira S, Remacle N, Henry H, Ivanisevic J, et al. Ammonium accumulation is a primary effect of 2-methylcitrate exposure in an in vitro model for brain damage in methylmalonic aciduria. Mol Genet Metab. 2016;119:57-67 pubmed 出版商
  12. Hansen S, Stummann T, Borland H, Hasholt L, Tumer Z, Nielsen J, et al. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3. Stem Cell Res. 2016;17:306-317 pubmed 出版商
  13. Chen S, Shi Q, Zheng S, Luo L, Yuan S, Wang X, et al. Role of ?-II-spectrin breakdown products in the prediction of the severity and clinical outcome of acute traumatic brain injury. Exp Ther Med. 2016;11:2049-2053 pubmed
  14. He J, Zhou R, Wu Z, Carrasco M, Kurshan P, Farley J, et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A. 2016;113:6029-34 pubmed 出版商
  15. Praissman J, Willer T, Sheikh M, Toi A, Chitayat D, Lin Y, et al. The functional O-mannose glycan on ?-dystroglycan contains a phospho-ribitol primed for matriglycan addition. elife. 2016;5: pubmed 出版商
  16. D Este E, Kamin D, Velte C, Göttfert F, Simons M, Hell S. Subcortical cytoskeleton periodicity throughout the nervous system. Sci Rep. 2016;6:22741 pubmed 出版商
  17. Talbert E, Smuder A, Kwon O, Sollanek K, Wiggs M, Powers S. Blockage of the Ryanodine Receptor via Azumolene Does Not Prevent Mechanical Ventilation-Induced Diaphragm Atrophy. PLoS ONE. 2016;11:e0148161 pubmed 出版商
  18. Shah F, Berggren D, Holmlund T, Levring Jäghagen E, StÃ¥l P. Unique expression of cytoskeletal proteins in human soft palate muscles. J Anat. 2016;228:487-94 pubmed 出版商
  19. Guo C, Zheng L, Fu J, Zhu J, Zhou Y, Zeng T, et al. Antiosteoporotic Effects of Huangqi Sanxian Decoction in Cultured Rat Osteoblasts by Proteomic Characterization of the Target and Mechanism. Evid Based Complement Alternat Med. 2015;2015:514063 pubmed 出版商
  20. Sabirzhanov B, Stoica B, Zhao Z, Loane D, Wu J, Dorsey S, et al. miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ. 2016;23:654-68 pubmed 出版商
  21. Ousterout D, Kabadi A, Thakore P, Majoros W, Reddy T, Gersbach C. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun. 2015;6:6244 pubmed 出版商
  22. Jackson T, Du L, Janesko Feldman K, Vagni V, Dezfulian C, Poloyac S, et al. The nuclear splicing factor RNA binding motif 5 promotes caspase activation in human neuronal cells, and increases after traumatic brain injury in mice. J Cereb Blood Flow Metab. 2015;35:655-66 pubmed 出版商
  23. Zhong G, He J, Zhou R, LORENZO D, Babcock H, Bennett V, et al. Developmental mechanism of the periodic membrane skeleton in axons. elife. 2014;3: pubmed 出版商
  24. Ousterout D, Kabadi A, Thakore P, Perez Pinera P, Brown M, Majoros W, et al. Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Mol Ther. 2015;23:523-32 pubmed 出版商
  25. Requena T, Cabrera S, Martín Sierra C, Price S, Lysakowski A, Lopez Escamez J. Identification of two novel mutations in FAM136A and DTNA genes in autosomal-dominant familial Meniere's disease. Hum Mol Genet. 2015;24:1119-26 pubmed 出版商
  26. Singhal K, Sandhir R. L-type calcium channel blocker ameliorates diabetic encephalopathy by modulating dysregulated calcium homeostasis. J Neurosci Res. 2015;93:296-308 pubmed 出版商
  27. Beekman C, Sipkens J, Testerink J, Giannakopoulos S, Kreuger D, van Deutekom J, et al. A sensitive, reproducible and objective immunofluorescence analysis method of dystrophin in individual fibers in samples from patients with duchenne muscular dystrophy. PLoS ONE. 2014;9:e107494 pubmed 出版商
  28. Ginet V, Pittet M, Rummel C, Osterheld M, Meuli R, Clarke P, et al. Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic. Ann Neurol. 2014;76:695-711 pubmed 出版商
  29. Smith I, Godinez G, Singh B, McCaughey K, Alcantara R, Gururaja T, et al. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction. FASEB J. 2014;28:2790-803 pubmed 出版商
  30. Campos Martorell M, Salvador N, Monge M, Canals F, Garcia Bonilla L, Hernandez Guillamon M, et al. Brain proteomics identifies potential simvastatin targets in acute phase of stroke in a rat embolic model. J Neurochem. 2014;130:301-12 pubmed 出版商
  31. Wang Y, Zhang Y. Regulation of TET protein stability by calpains. Cell Rep. 2014;6:278-84 pubmed 出版商
  32. Christensen I, Gyldenholm T, Damkier H, Praetorius J. Polarization of membrane associated proteins in the choroid plexus epithelium from normal and slc4a10 knockout mice. Front Physiol. 2013;4:344 pubmed 出版商