这是一篇来自已证抗体库的有关人类 SRSF1的综述,是根据50篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合SRSF1 抗体。
SRSF1 同义词: ASF; SF2; SF2p33; SFRS1; SRp30a

赛默飞世尔
小鼠 单克隆(96)
  • 免疫印迹; 人类; 1:2000; 图 3d
赛默飞世尔 SRSF1抗体(Thermo Fisher, 32-4500)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3d). Nat Commun (2019) ncbi
小鼠 单克隆(96)
  • 其他; 人类; 图 4c
赛默飞世尔 SRSF1抗体(Thermo Fisher Scientific, 32-4500)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(96)
  • reverse phase protein lysate microarray; 人类; 图 7a
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4500)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 7a). Cancer Cell (2017) ncbi
小鼠 单克隆(96)
  • reverse phase protein lysate microarray; 人类; 图 3a
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4500)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
小鼠 单克隆(96)
  • 免疫印迹; 人类; 图 6a
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4500)被用于被用于免疫印迹在人类样本上 (图 6a). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(103)
  • 免疫印迹; 人类; 1:100; 图 s1c
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4600)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 s1c). J Cell Sci (2016) ncbi
小鼠 单克隆(96)
  • 免疫印迹; 人类; 图 9b
赛默飞世尔 SRSF1抗体(生活技术, 96)被用于被用于免疫印迹在人类样本上 (图 9b). J Virol (2016) ncbi
小鼠 单克隆(96)
  • 免疫印迹; 小鼠; 图 7
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4500)被用于被用于免疫印迹在小鼠样本上 (图 7). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(103)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔 SRSF1抗体(Invitrogen, 324600)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). BMC Cancer (2016) ncbi
小鼠 单克隆(96)
  • 免疫印迹; 大鼠; 1:1000; 表 1
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4500)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (表 1). Endocrinology (2016) ncbi
小鼠 单克隆(96)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4500)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Virol (2016) ncbi
小鼠 单克隆(96)
  • 免疫印迹; 小鼠; 图 7
  • 免疫组化; 人类; 图 s5
  • 免疫印迹; 人类; 图 7
赛默飞世尔 SRSF1抗体(Invitrogen, 96)被用于被用于免疫印迹在小鼠样本上 (图 7), 被用于免疫组化在人类样本上 (图 s5) 和 被用于免疫印迹在人类样本上 (图 7). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(103)
  • 免疫组化; 人类; 图 1
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4600)被用于被用于免疫组化在人类样本上 (图 1). Genes Cells (2015) ncbi
小鼠 单克隆(96)
  • 免疫印迹; 人类
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4500)被用于被用于免疫印迹在人类样本上. Sci Rep (2015) ncbi
小鼠 单克隆(96)
  • 免疫印迹; 人类
赛默飞世尔 SRSF1抗体(Zymed Laboratories, AK96)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(103)
  • 免疫印迹; 人类; 图 5i
赛默飞世尔 SRSF1抗体(Novex, Life Technologies, 32-46000)被用于被用于免疫印迹在人类样本上 (图 5i). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(96)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 SRSF1抗体(Zymed, 96)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Virol (2015) ncbi
小鼠 单克隆(96)
  • 免疫沉淀; 人类
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4500)被用于被用于免疫沉淀在人类样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(96)
  • 染色质免疫沉淀 ; 人类
赛默飞世尔 SRSF1抗体(Invitrogen, 96)被用于被用于染色质免疫沉淀 在人类样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(96)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 SRSF1抗体(Zymed, 32-4500)被用于被用于免疫印迹在人类样本上 (图 4). RNA (2014) ncbi
小鼠 单克隆(103)
  • 免疫细胞化学; 人类
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4600)被用于被用于免疫细胞化学在人类样本上. J Lipid Res (2014) ncbi
小鼠 单克隆(103)
  • 免疫印迹; 人类
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4600)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(103)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4600)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(103)
  • 免疫细胞化学; 人类; 图 s8
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4600)被用于被用于免疫细胞化学在人类样本上 (图 s8). Nat Chem Biol (2014) ncbi
小鼠 单克隆(96)
  • 免疫沉淀; 人类; 图 8
  • 免疫印迹; 人类; 图 8
赛默飞世尔 SRSF1抗体(Zymed, 32-4500)被用于被用于免疫沉淀在人类样本上 (图 8) 和 被用于免疫印迹在人类样本上 (图 8). PLoS Pathog (2013) ncbi
小鼠 单克隆(96)
  • 免疫印迹; 人类
赛默飞世尔 SRSF1抗体(Invitrogen, 96)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(96)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4500)被用于被用于免疫印迹在人类样本上 (图 3). Mol Genet Metab (2013) ncbi
小鼠 单克隆(96)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 SRSF1抗体(Invitrogen, clone 96)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(103)
  • 免疫细胞化学; 人类
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4600)被用于被用于免疫细胞化学在人类样本上. Nucleic Acids Res (2013) ncbi
小鼠 单克隆(96)
  • 免疫组化-石蜡切片; 人类; 1:1000
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4500)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. PLoS ONE (2012) ncbi
小鼠 单克隆(96)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4500)被用于被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2012) ncbi
小鼠 单克隆(103)
  • 免疫印迹; 小鼠
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4600)被用于被用于免疫印迹在小鼠样本上. RNA (2012) ncbi
小鼠 单克隆(96)
  • 染色质免疫沉淀 ; 小鼠; 4 ug; 图 3
  • 免疫印迹; 小鼠; 1:2000; 图 3
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4500)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为4 ug (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). PLoS Genet (2012) ncbi
小鼠 单克隆(96)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4500)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2011) ncbi
小鼠 单克隆(103)
  • 免疫细胞化学; 人类; 1:500; 图 s2
  • 免疫印迹; 人类; 1:500; 图 6
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4600)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s2) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 6). Mol Syst Biol (2011) ncbi
小鼠 单克隆(96)
  • 免疫印迹; 人类; 1:500; 图 4
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4500)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). PLoS ONE (2010) ncbi
小鼠 单克隆(96)
  • 染色质免疫沉淀 ; 人类; 图 8
赛默飞世尔 SRSF1抗体(Invitrogen, 32-4500)被用于被用于染色质免疫沉淀 在人类样本上 (图 8). Cell Cycle (2009) ncbi
小鼠 单克隆(103)
  • 免疫细胞化学; 小鼠; 图 1
赛默飞世尔 SRSF1抗体(Zymed, 32-4600)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Chromosoma (2008) ncbi
小鼠 单克隆(103)
  • 免疫细胞化学; 人类; 1:30; 图 6
赛默飞世尔 SRSF1抗体(Zymed, 32-4600)被用于被用于免疫细胞化学在人类样本上浓度为1:30 (图 6). Biol Cell (2008) ncbi
小鼠 单克隆(96)
  • 免疫印迹; 人类; 1:250; 图 2
赛默飞世尔 SRSF1抗体(Zymed, 32-4500)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 2). J Gen Virol (2004) ncbi
圣克鲁斯生物技术
小鼠 单克隆(96)
  • 核糖核酸免疫沉淀; 人类; 图 7i
圣克鲁斯生物技术 SRSF1抗体(Santa Cruz, sc-33652)被用于被用于核糖核酸免疫沉淀在人类样本上 (图 7i). Commun Biol (2022) ncbi
小鼠 单克隆(3G268)
  • 免疫印迹; 人类; 1:1000; 图 3f
圣克鲁斯生物技术 SRSF1抗体(Santa Cruz, sc-73026)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Cell Death Dis (2021) ncbi
小鼠 单克隆(96)
  • 免疫印迹; 小鼠; 图 4e
  • 免疫细胞化学; 人类; 图 4a
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 SRSF1抗体(Santa Cruz, sc-33652)被用于被用于免疫印迹在小鼠样本上 (图 4e), 被用于免疫细胞化学在人类样本上 (图 4a) 和 被用于免疫印迹在人类样本上 (图 4a). Nucleic Acids Res (2021) ncbi
小鼠 单克隆(96)
  • 免疫印迹; 人类; 1:1000; 图 1d
圣克鲁斯生物技术 SRSF1抗体(Santa Cruz Biotechnology, sc-33652)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). elife (2020) ncbi
小鼠 单克隆(96)
  • 免疫细胞化学; 小鼠; 1:500; 图 2a
圣克鲁斯生物技术 SRSF1抗体(Santa Cruz, 33652)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2a). Nature (2019) ncbi
小鼠 单克隆(3G268)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 SRSF1抗体(Santa Cruz Biotechnology, 3G268)被用于被用于免疫印迹在人类样本上 (图 4b). Cell Death Dis (2019) ncbi
小鼠 单克隆(96)
  • 免疫印迹; 小鼠; 1:500; 图 s8c
  • 免疫印迹; 人类; 1:500; 图 s8c
圣克鲁斯生物技术 SRSF1抗体(Santa Cruz Biotechnology, sc-33652)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s8c) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 s8c). Nat Commun (2018) ncbi
小鼠 单克隆(1H4)
  • 免疫印迹; 人类; 1:200; 图 1
圣克鲁斯生物技术 SRSF1抗体(Santa Cruz, sc-13,509)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1). BMC Mol Biol (2016) ncbi
小鼠 单克隆(96)
  • 免疫印迹; 人类; 1:100
圣克鲁斯生物技术 SRSF1抗体(Santa Cruz, sc-33652)被用于被用于免疫印迹在人类样本上浓度为1:100. Exp Cell Res (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR8239)
  • 免疫印迹; 人类; 图 4c
艾博抗(上海)贸易有限公司 SRSF1抗体(Abcam, ab129108)被用于被用于免疫印迹在人类样本上 (图 4c). J Mol Biol (2018) ncbi
文章列表
  1. Turco C, Esposito G, Iaiza A, Goeman F, Benedetti A, Gallo E, et al. MALAT1-dependent hsa_circ_0076611 regulates translation rate in triple-negative breast cancer. Commun Biol. 2022;5:598 pubmed 出版商
  2. Duan Y, Jia Y, Wang J, Liu T, Cheng Z, Sang M, et al. Long noncoding RNA DGCR5 involves in tumorigenesis of esophageal squamous cell carcinoma via SRSF1-mediated alternative splicing of Mcl-1. Cell Death Dis. 2021;12:587 pubmed 出版商
  3. Kim C, Park S, Lee S, Kim Y, Jang S, Woo S, et al. NSrp70 is a lymphocyte-essential splicing factor that controls thymocyte development. Nucleic Acids Res. 2021;49:5760-5778 pubmed 出版商
  4. Ilik I, Malszycki M, Lübke A, Schade C, Meierhofer D, Aktas T. SON and SRRM2 are essential for nuclear speckle formation. elife. 2020;9: pubmed 出版商
  5. Guo Y, Manteiga J, Henninger J, Sabari B, Dall Agnese A, Hannett N, et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature. 2019;572:543-548 pubmed 出版商
  6. Sajini A, Choudhury N, Wagner R, Bornelöv S, Selmi T, Spanos C, et al. Loss of 5-methylcytosine alters the biogenesis of vault-derived small RNAs to coordinate epidermal differentiation. Nat Commun. 2019;10:2550 pubmed 出版商
  7. Donadoni M, Cicalese S, Sarkar D, Chang S, Sariyer I. Alcohol exposure alters pre-mRNA splicing of antiapoptotic Mcl-1L isoform and induces apoptosis in neural progenitors and immature neurons. Cell Death Dis. 2019;10:447 pubmed 出版商
  8. Neueder A, Dumas A, Benjamin A, Bates G. Regulatory mechanisms of incomplete huntingtin mRNA splicing. Nat Commun. 2018;9:3955 pubmed 出版商
  9. Sithole N, Williams C, Vaughan A, Kenyon J, Lever A. DDX17 Specifically, and Independently of DDX5, Controls Use of the HIV A4/5 Splice Acceptor Cluster and Is Essential for Efficient Replication of HIV. J Mol Biol. 2018;430:3111-3128 pubmed 出版商
  10. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  11. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  12. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  13. Brillen A, Schöneweis K, Walotka L, Hartmann L, Muller L, Ptok J, et al. Succession of splicing regulatory elements determines cryptic 5΄ss functionality. Nucleic Acids Res. 2017;45:4202-4216 pubmed 出版商
  14. Skrdlant L, Stark J, Lin R. Myelodysplasia-associated mutations in serine/arginine-rich splicing factor SRSF2 lead to alternative splicing of CDC25C. BMC Mol Biol. 2016;17:18 pubmed 出版商
  15. Goenka A, Sengupta S, Pandey R, Parihar R, Mohanta G, Mukerji M, et al. Human satellite-III non-coding RNAs modulate heat-shock-induced transcriptional repression. J Cell Sci. 2016;129:3541-3552 pubmed
  16. Ajiro M, Tang S, Doorbar J, Zheng Z. Serine/Arginine-Rich Splicing Factor 3 and Heterogeneous Nuclear Ribonucleoprotein A1 Regulate Alternative RNA Splicing and Gene Expression of Human Papillomavirus 18 through Two Functionally Distinguishable cis Elements. J Virol. 2016;90:9138-52 pubmed 出版商
  17. Llorian M, Gooding C, Bellora N, Hallegger M, Buckroyd A, Wang X, et al. The alternative splicing program of differentiated smooth muscle cells involves concerted non-productive splicing of post-transcriptional regulators. Nucleic Acids Res. 2016;44:8933-8950 pubmed
  18. Park W, Kim H, Kang D, Ryu J, Choi K, Lee G, et al. Comparative expression patterns and diagnostic efficacies of SR splicing factors and HNRNPA1 in gastric and colorectal cancer. BMC Cancer. 2016;16:358 pubmed 出版商
  19. Miletta M, Petkovic V, Eblé A, Flück C, Mullis P. Rescue of Isolated GH Deficiency Type II (IGHD II) via Pharmacologic Modulation of GH-1 Splicing. Endocrinology. 2016;157:3972-3982 pubmed
  20. Klymenko T, Hernández López H, MacDonald A, Bodily J, Graham S. Human Papillomavirus E2 Regulates SRSF3 (SRp20) To Promote Capsid Protein Expression in Infected Differentiated Keratinocytes. J Virol. 2016;90:5047-58 pubmed 出版商
  21. Ajiro M, Jia R, Yang Y, Zhu J, Zheng Z. A genome landscape of SRSF3-regulated splicing events and gene expression in human osteosarcoma U2OS cells. Nucleic Acids Res. 2016;44:1854-70 pubmed 出版商
  22. Ishida K, Miyauchi K, Kimura Y, Mito M, Okada S, Suzuki T, et al. Regulation of gene expression via retrotransposon insertions and the noncoding RNA 4.5S RNAH. Genes Cells. 2015;20:887-901 pubmed 出版商
  23. Rahman M, Azuma Y, Nasrin F, Takeda J, Nazim M, Bin Ahsan K, et al. SRSF1 and hnRNP H antagonistically regulate splicing of COLQ exon 16 in a congenital myasthenic syndrome. Sci Rep. 2015;5:13208 pubmed 出版商
  24. Palhais B, Præstegaard V, Sabaratnam R, Doktor T, Lutz S, Burda P, et al. Splice-shifting oligonucleotide (SSO) mediated blocking of an exonic splicing enhancer (ESE) created by the prevalent c.903+469T>C MTRR mutation corrects splicing and restores enzyme activity in patient cells. Nucleic Acids Res. 2015;43:4627-39 pubmed 出版商
  25. Comiskey D, Jacob A, Singh R, Tapia Santos A, Chandler D. Splicing factor SRSF1 negatively regulates alternative splicing of MDM2 under damage. Nucleic Acids Res. 2015;43:4202-18 pubmed 出版商
  26. McFarlane M, MacDonald A, Stevenson A, Graham S. Human Papillomavirus 16 Oncoprotein Expression Is Controlled by the Cellular Splicing Factor SRSF2 (SC35). J Virol. 2015;89:5276-87 pubmed 出版商
  27. Salton M, Voss T, Misteli T. Identification by high-throughput imaging of the histone methyltransferase EHMT2 as an epigenetic regulator of VEGFA alternative splicing. Nucleic Acids Res. 2014;42:13662-73 pubmed 出版商
  28. Chang S, Chang W, Lu C, Tarn W. Alanine repeats influence protein localization in splicing speckles and paraspeckles. Nucleic Acids Res. 2014;42:13788-98 pubmed 出版商
  29. Majerciak V, Lu M, Li X, Zheng Z. Attenuation of the suppressive activity of cellular splicing factor SRSF3 by Kaposi sarcoma-associated herpesvirus ORF57 protein is required for RNA splicing. RNA. 2014;20:1747-58 pubmed 出版商
  30. Du C, Ma X, Meruvu S, Hugendubler L, Mueller E. The adipogenic transcriptional cofactor ZNF638 interacts with splicing regulators and influences alternative splicing. J Lipid Res. 2014;55:1886-96 pubmed 出版商
  31. Jacob A, Singh R, Mohammad F, Bebee T, Chandler D. The splicing factor FUBP1 is required for the efficient splicing of oncogene MDM2 pre-mRNA. J Biol Chem. 2014;289:17350-64 pubmed 出版商
  32. Rappe U, Schlechter T, Aschoff M, Hotz Wagenblatt A, Hofmann I. Nuclear ARVCF protein binds splicing factors and contributes to the regulation of alternative splicing. J Biol Chem. 2014;289:12421-34 pubmed 出版商
  33. Hu Y, Ericsson I, Doseth B, Liabakk N, Krokan H, Kavli B. Activation-induced cytidine deaminase (AID) is localized to subnuclear domains enriched in splicing factors. Exp Cell Res. 2014;322:178-92 pubmed 出版商
  34. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10:93-5 pubmed 出版商
  35. Mui M, Kucharski M, Miron M, Hur W, Berghuis A, Blanchette P, et al. Identification of the adenovirus E4orf4 protein binding site on the B55? and Cdc55 regulatory subunits of PP2A: Implications for PP2A function, tumor cell killing and viral replication. PLoS Pathog. 2013;9:e1003742 pubmed 出版商
  36. Li X, Johansson C, Cardoso Palacios C, Mossberg A, Dhanjal S, Bergvall M, et al. Eight nucleotide substitutions inhibit splicing to HPV-16 3'-splice site SA3358 and reduce the efficiency by which HPV-16 increases the life span of primary human keratinocytes. PLoS ONE. 2013;8:e72776 pubmed 出版商
  37. Bruun G, Doktor T, Andresen B. A synonymous polymorphic variation in ACADM exon 11 affects splicing efficiency and may affect fatty acid oxidation. Mol Genet Metab. 2013;110:122-8 pubmed 出版商
  38. Vivarelli S, Lenzken S, Ruepp M, Ranzini F, Maffioletti A, Alvarez R, et al. Paraquat modulates alternative pre-mRNA splicing by modifying the intracellular distribution of SRPK2. PLoS ONE. 2013;8:e61980 pubmed 出版商
  39. Gu B, Eick D, Bensaude O. CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo. Nucleic Acids Res. 2013;41:1591-603 pubmed 出版商
  40. Gout S, Brambilla E, Boudria A, Drissi R, Lantuejoul S, Gazzeri S, et al. Abnormal expression of the pre-mRNA splicing regulators SRSF1, SRSF2, SRPK1 and SRPK2 in non small cell lung carcinoma. PLoS ONE. 2012;7:e46539 pubmed 出版商
  41. Becker K, Braune M, Benderska N, Buratti E, Baralle F, Villmann C, et al. A retroelement modifies pre-mRNA splicing: the murine Glrb(spa) allele is a splicing signal polymorphism amplified by long interspersed nuclear element insertion. J Biol Chem. 2012;287:31185-94 pubmed 出版商
  42. Nakagawa S, Ip J, Shioi G, Tripathi V, Zong X, Hirose T, et al. Malat1 is not an essential component of nuclear speckles in mice. RNA. 2012;18:1487-99 pubmed 出版商
  43. Pradeepa M, Sutherland H, Ule J, Grimes G, Bickmore W. Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet. 2012;8:e1002717 pubmed 出版商
  44. Markus M, Marques F, Morris B. Resveratrol, by modulating RNA processing factor levels, can influence the alternative splicing of pre-mRNAs. PLoS ONE. 2011;6:e28926 pubmed 出版商
  45. Waks Z, Klein A, Silver P. Cell-to-cell variability of alternative RNA splicing. Mol Syst Biol. 2011;7:506 pubmed 出版商
  46. Piekielko Witkowska A, Wiszomirska H, Wojcicka A, Poplawski P, Boguslawska J, Tanski Z, et al. Disturbed expression of splicing factors in renal cancer affects alternative splicing of apoptosis regulators, oncogenes, and tumor suppressors. PLoS ONE. 2010;5:e13690 pubmed 出版商
  47. He M, Shah D, Choung H, Coffman F. The splicing factor SF2/ASF binds to ARS homologs in a human rDNA replication origin. Cell Cycle. 2009;8:2631-42 pubmed
  48. Hepperger C, Mannes A, Merz J, Peters J, Dietzel S. Three-dimensional positioning of genes in mouse cell nuclei. Chromosoma. 2008;117:535-51 pubmed 出版商
  49. Inoue A, Tsugawa K, Tokunaga K, Takahashi K, Uni S, Kimura M, et al. S1-1 nuclear domains: characterization and dynamics as a function of transcriptional activity. Biol Cell. 2008;100:523-35 pubmed 出版商
  50. Adair R, Liebisch G, Su Y, COLBERG POLEY A. Alteration of cellular RNA splicing and polyadenylation machineries during productive human cytomegalovirus infection. J Gen Virol. 2004;85:3541-53 pubmed