这是一篇来自已证抗体库的有关人类 信号传导子及转录激活子1 (STAT1) 的综述,是根据257篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合信号传导子及转录激活子1 抗体。
信号传导子及转录激活子1 同义词: CANDF7; IMD31A; IMD31B; IMD31C; ISGF-3; STAT91

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2e
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(Abcam, ab4742)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Allergy Asthma Clin Immunol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2e
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(Abcam, ab31369)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Allergy Asthma Clin Immunol (2021) ncbi
小鼠 单克隆(M135)
  • 免疫组化-石蜡切片; 小鼠; 图 1e
  • 免疫印迹; 小鼠; 图 1d
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(Abcam, ab29045)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1e) 和 被用于免疫印迹在小鼠样本上 (图 1d). Front Physiol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 5a
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(Abcam, ab47425)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 5a). Genes (Basel) (2021) ncbi
domestic rabbit 单克隆(EPR3146)
  • 免疫印迹; 人类; 1:1000; 图 s5a
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(Abcam, ab109461)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5a). Nucleic Acids Res (2021) ncbi
小鼠 单克隆(M135)
  • 免疫印迹; 人类; 1:1000; 图 5s1a
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(Abcam, ab29045)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5s1a). elife (2019) ncbi
小鼠 单克隆(SM1)
  • 免疫印迹; 人类; 1:1000; 图 5s1a
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(Abcam, ab3987)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5s1a). elife (2019) ncbi
domestic rabbit 单克隆(EPR3146)
  • 免疫组化; 小鼠; 1:50; 图 4a
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(Abcam, ab109461)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4a). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7b
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(Abcam, ab30645)被用于被用于免疫印迹在人类样本上 (图 7b). Cell Physiol Biochem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7b
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(Abcam, ab31369)被用于被用于免疫印迹在人类样本上 (图 7b). Cell Physiol Biochem (2018) ncbi
domestic rabbit 单克隆(EPR4407)
  • 流式细胞仪; 人类; 图 s3b
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(Abcam, ab109320)被用于被用于流式细胞仪在人类样本上 (图 s3b). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2g
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(Abcam, AB47425)被用于被用于免疫组化在小鼠样本上 (图 2g). Nature (2017) ncbi
小鼠 单克隆(M135)
  • 免疫印迹; 大鼠; 图 4g
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(Abcam, ab29045)被用于被用于免疫印迹在大鼠样本上 (图 4g). J Neuroinflammation (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4g
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(Abcam, ab31369)被用于被用于免疫印迹在大鼠样本上 (图 4g). J Neuroinflammation (2017) ncbi
domestic rabbit 单克隆(EPR4407)
  • 免疫细胞化学; 人类; 图 s5
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(abcam, ab109320)被用于被用于免疫细胞化学在人类样本上 (图 s5). Oncogene (2017) ncbi
小鼠 单克隆(M135)
  • 免疫细胞化学; 人类; 图 s3
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(Abcam, ab29045)被用于被用于免疫细胞化学在人类样本上 (图 s3). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; African green monkey; 图 2
  • 免疫印迹; African green monkey; 图 2
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(Abcam, ab31369)被用于被用于免疫细胞化学在African green monkey样本上 (图 2), 被用于免疫印迹在African green monkey样本上 (图 2), 被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; African green monkey; 图 2
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(Abcam, ab30645)被用于被用于免疫印迹在African green monkey样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EPYR2154)
  • 免疫印迹; 小鼠; 1:25; 图 4c
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(Abcam, ab92506)被用于被用于免疫印迹在小鼠样本上浓度为1:25 (图 4c). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(M135)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(Abcam, ab29045)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(M135)
  • 免疫印迹; 小鼠; 图 S9
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(abcam, ab29045)被用于被用于免疫印迹在小鼠样本上 (图 S9). PLoS Pathog (2015) ncbi
小鼠 单克隆(M135)
  • 免疫印迹; 小鼠; 图 7a
艾博抗(上海)贸易有限公司信号传导子及转录激活子1抗体(Abcam, ab29045)被用于被用于免疫印迹在小鼠样本上 (图 7a). Mucosal Immunol (2015) ncbi
赛默飞世尔
小鼠 单克隆(ST1P-11A5)
  • 免疫印迹; 小鼠; 图 1c
赛默飞世尔信号传导子及转录激活子1抗体(ThermoFisher Scientific, ST1P-11A5)被用于被用于免疫印迹在小鼠样本上 (图 1c). Nat Commun (2020) ncbi
domestic rabbit 重组(15H13L67)
  • 免疫细胞化学; 人类; 1:500; 图 3c
  • 免疫印迹; 人类; 图 2
赛默飞世尔信号传导子及转录激活子1抗体(Thermo Scientific, 700349)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3c) 和 被用于免疫印迹在人类样本上 (图 2). J Virol (2018) ncbi
小鼠 单克隆(ST1P-11A5)
  • 流式细胞仪; African green monkey; 图 2b
  • 免疫印迹; African green monkey; 图 2c
赛默飞世尔信号传导子及转录激活子1抗体(Thermo Fisher, ST1P-11A5)被用于被用于流式细胞仪在African green monkey样本上 (图 2b) 和 被用于免疫印迹在African green monkey样本上 (图 2c). J Gen Virol (2017) ncbi
小鼠 单克隆(KIKSI0803)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔信号传导子及转录激活子1抗体(Thermo Fisher, KIKSI0803)被用于被用于流式细胞仪在人类样本上 (图 2). AIDS Res Ther (2017) ncbi
小鼠 单克隆(15H3)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛默飞世尔信号传导子及转录激活子1抗体(Thermo Fisher Scientific, MA1-037X)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Oncol Lett (2017) ncbi
小鼠 单克隆(STAT1-79)
  • 免疫印迹; 人类; 图 4d
赛默飞世尔信号传导子及转录激活子1抗体(Thermo Fisher, STAT1-79)被用于被用于免疫印迹在人类样本上 (图 4d). J Immunol (2017) ncbi
小鼠 单克隆(15H3)
  • 免疫印迹; 人类; 图 3a
赛默飞世尔信号传导子及转录激活子1抗体(Thermo Scientific, 15H3)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Cell Proteomics (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 小鼠; 1:500; 图 4
赛默飞世尔信号传导子及转录激活子1抗体(生活技术, 44376G)被用于被用于reverse phase protein lysate microarray在小鼠样本上浓度为1:500 (图 4). Sci Data (2016) ncbi
domestic rabbit 单克隆(S.213.5)
  • 免疫细胞化学; 人类; 1:500; 图 4b
  • 免疫印迹; African green monkey; 1:500; 图 4a
赛默飞世尔信号传导子及转录激活子1抗体(Thermo-Scientific, MA5-15071)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4b) 和 被用于免疫印迹在African green monkey样本上浓度为1:500 (图 4a). J Virol (2015) ncbi
小鼠 单克隆(ST1P-11A5)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛默飞世尔信号传导子及转录激活子1抗体(Invitrogen, 333400)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Nat Commun (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔信号传导子及转录激活子1抗体(生活技术, 44376G)被用于. Inflamm Res (2015) ncbi
小鼠 单克隆(15H3)
  • 免疫印迹; 人类; 1:1000; 图 4
赛默飞世尔信号传导子及转录激活子1抗体(Thermo Scientific, 15H3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(ST1P-11A5)
  • 免疫印迹; 人类
赛默飞世尔信号传导子及转录激活子1抗体(Zymed Laboratories, ST1P-11A5)被用于被用于免疫印迹在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(ST1P-11A5)
  • 免疫印迹; 人类; 1:10,000
赛默飞世尔信号传导子及转录激活子1抗体(Invitrogen, 33-3400)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Sci Signal (2014) ncbi
小鼠 单克隆(ST1P-11A5)
  • 免疫印迹; 人类; 图 6
赛默飞世尔信号传导子及转录激活子1抗体(Invitrogen, 33-3400)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2011) ncbi
小鼠 单克隆(ST1P-11A5)
  • 免疫组化-石蜡切片; 猕猴; 图 7
  • 免疫细胞化学; 猕猴; 图 8
赛默飞世尔信号传导子及转录激活子1抗体(Zymed, ST1P-11A5)被用于被用于免疫组化-石蜡切片在猕猴样本上 (图 7) 和 被用于免疫细胞化学在猕猴样本上 (图 8). PLoS Pathog (2007) ncbi
小鼠 单克隆(ST1P-11A5)
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔信号传导子及转录激活子1抗体(Zymed, noca)被用于被用于免疫印迹在大鼠样本上 (图 3). Mol Cell Biol (2005) ncbi
小鼠 单克隆(ST1P-11A5)
  • 免疫印迹; 小鼠
赛默飞世尔信号传导子及转录激活子1抗体(Zymed, noca)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2005) ncbi
小鼠 单克隆(ST1P-11A5)
  • 免疫印迹; 大鼠; 图 4
赛默飞世尔信号传导子及转录激活子1抗体(Zymed, ST1P-11A5)被用于被用于免疫印迹在大鼠样本上 (图 4). J Pediatr Surg (2004) ncbi
小鼠 单克隆(ST1P-11A5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔信号传导子及转录激活子1抗体(Zymed, ST1P-11A5)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2004) ncbi
小鼠 单克隆(ST1P-11A5)
  • 免疫印迹; 人类; 1 ug/ml; 图 7
赛默飞世尔信号传导子及转录激活子1抗体(Zymed, ST1P-11A5)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 7). Cancer Res (2003) ncbi
小鼠 单克隆(ST1P-11A5)
  • 免疫沉淀; 人类; 图 2
赛默飞世尔信号传导子及转录激活子1抗体(Zymed, ST1P-11A5)被用于被用于免疫沉淀在人类样本上 (图 2). Transplantation (2002) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C-136)
  • 免疫印迹; 小鼠; 图 7i
圣克鲁斯生物技术信号传导子及转录激活子1抗体(Santa Cruz, sc-464)被用于被用于免疫印迹在小鼠样本上 (图 7i). Theranostics (2022) ncbi
小鼠 单克隆(C-136)
  • 免疫印迹; 人类; 图 s7b
圣克鲁斯生物技术信号传导子及转录激活子1抗体(Santa Cruz, SC-464)被用于被用于免疫印迹在人类样本上 (图 s7b). Sci Rep (2022) ncbi
小鼠 单克隆(C-136)
  • 免疫印迹; 人类; 图 4l
圣克鲁斯生物技术信号传导子及转录激活子1抗体(Santa Cruz, SC-464)被用于被用于免疫印迹在人类样本上 (图 4l). J Immunother Cancer (2021) ncbi
小鼠 单克隆(pY701.4A)
  • 流式细胞仪; 人类; 图 6d
圣克鲁斯生物技术信号传导子及转录激活子1抗体(Santa Cruz, sc-136229)被用于被用于流式细胞仪在人类样本上 (图 6d). Sci Rep (2018) ncbi
小鼠 单克隆(C-111)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术信号传导子及转录激活子1抗体(Santa Cruz, c-111)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nature (2017) ncbi
小鼠 单克隆(C-111)
  • 免疫印迹; 人类; 图 3d
圣克鲁斯生物技术信号传导子及转录激活子1抗体(Santa Cruz, SC417)被用于被用于免疫印迹在人类样本上 (图 3d). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(C-136)
  • 其他; 人类; 图 1
圣克鲁斯生物技术信号传导子及转录激活子1抗体(Santa Cruz Biotechnology, sc-464)被用于被用于其他在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(A-2)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
圣克鲁斯生物技术信号传导子及转录激活子1抗体(Santa Cruz, SC-8394)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Nat Commun (2016) ncbi
小鼠 单克隆(C-111)
  • 免疫印迹; 小鼠; 图 1b
圣克鲁斯生物技术信号传导子及转录激活子1抗体(Santa Cruz Biotechnology, SC-417)被用于被用于免疫印迹在小鼠样本上 (图 1b). PLoS ONE (2016) ncbi
小鼠 单克隆(A-2)
  • 免疫细胞化学; 人类; 1:25; 图 5
圣克鲁斯生物技术信号传导子及转录激活子1抗体(Santa Cruz Biotechnology, sc-8394)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 5). MBio (2016) ncbi
小鼠 单克隆(C-111)
  • 免疫印迹; 人类
圣克鲁斯生物技术信号传导子及转录激活子1抗体(Santa Cruz, C-111)被用于被用于免疫印迹在人类样本上. Sci Rep (2015) ncbi
小鼠 单克隆(A-2)
  • 染色质免疫沉淀 ; 人类; 图 2
圣克鲁斯生物技术信号传导子及转录激活子1抗体(Santa Cruz, sc-8394)被用于被用于染色质免疫沉淀 在人类样本上 (图 2). Cancer Immunol Res (2015) ncbi
小鼠 单克隆(C-136)
  • 免疫印迹; 人类
圣克鲁斯生物技术信号传导子及转录激活子1抗体(Santa Cruz Biotechnology, sc-464)被用于被用于免疫印迹在人类样本上. Arthritis Res Ther (2014) ncbi
小鼠 单克隆(C-136)
  • 免疫印迹; 人类
圣克鲁斯生物技术信号传导子及转录激活子1抗体(Santa Cruz Biotechnology, sc-464)被用于被用于免疫印迹在人类样本上. Viral Immunol (2014) ncbi
BioLegend
小鼠 单克隆(A17012A)
  • 流式细胞仪; 小鼠; 图 6j
BioLegend信号传导子及转录激活子1抗体(Biolegend, 666408)被用于被用于流式细胞仪在小鼠样本上 (图 6j). Adv Sci (Weinh) (2022) ncbi
小鼠 单克隆(10C4B40)
  • 免疫印迹; 人类; 图 4c
BioLegend信号传导子及转录激活子1抗体(BioLegend, 10C4B40)被用于被用于免疫印迹在人类样本上 (图 4c). J Exp Clin Cancer Res (2019) ncbi
北京傲锐东源
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
北京傲锐东源信号传导子及转录激活子1抗体(Origene, TA309955)被用于被用于免疫印迹在小鼠样本上 (图 2). Genesis (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4j
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4j). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D3B7)
  • 免疫印迹; 人类; 1:1000; 图 s4j
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 8826)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4j). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫组化-自由浮动切片; 小鼠; 1:250; 图 2a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 14994S)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:250 (图 2a). Nat Neurosci (2022) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 1:1000; 图 6a, s6c
  • 免疫印迹; 人类; 1:1000; 图 2d, s3g
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a, s6c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2d, s3g). J Immunother Cancer (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a, s6c
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a, s6c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). J Immunother Cancer (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9172S)被用于被用于免疫印迹在人类样本上 (图 s3b). Nat Cancer (2022) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 图 s2e
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9167S)被用于被用于免疫印迹在人类样本上 (图 s2e). Nat Cancer (2022) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 14994S)被用于被用于免疫印迹在小鼠样本上 (图 5c). Clin Transl Med (2022) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫细胞化学; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9167S)被用于被用于免疫细胞化学在小鼠样本上 (图 5a). Clin Transl Med (2022) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 人类; 图 5a, 5d, 5g, 5j
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 14994)被用于被用于免疫印迹在人类样本上 (图 5a, 5d, 5g, 5j). Cell Oncol (Dordr) (2022) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 9167)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 14994)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 9172)被用于被用于免疫印迹在人类样本上 (图 s3a). J Immunother Cancer (2022) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 9167)被用于被用于免疫印迹在人类样本上 (图 s3a). J Immunother Cancer (2022) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹基因敲除验证; 人类; 图 s4a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 14994)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 s4a). iScience (2022) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 14994)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Cell Rep (2022) ncbi
domestic rabbit 单克隆(D3B7)
  • 免疫印迹; 人类; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 8826)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Cell Rep (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s7b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9177)被用于被用于免疫印迹在人类样本上 (图 s7b). Sci Rep (2022) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 图 2f
  • 免疫组化-石蜡切片; 小鼠; 图 1c, 1d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在人类样本上 (图 2f) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 1c, 1d). J Biomed Sci (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1c, 1d
  • 免疫印迹基因敲除验证; 人类; 图 s6d
  • 染色质免疫沉淀 ; 人类; 图 5f
  • 免疫沉淀; 人类; 图 3a
  • 免疫印迹; 人类; 图 2f, s1d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1c, 1d), 被用于免疫印迹基因敲除验证在人类样本上 (图 s6d), 被用于染色质免疫沉淀 在人类样本上 (图 5f), 被用于免疫沉淀在人类样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 2f, s1d). J Biomed Sci (2022) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 人类; 1:1000; 图 2a, 2b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 7649)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a, 2b). Cancers (Basel) (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172S)被用于被用于免疫印迹在人类样本上浓度为1:1000. Proc Natl Acad Sci U S A (2022) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s14b
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s14b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Proc Natl Acad Sci U S A (2022) ncbi
domestic rabbit 单克隆(42H3)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signalling, 9175)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). EMBO Mol Med (2022) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signalling, 9167)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). EMBO Mol Med (2022) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 1:1000; 图 s4c, s6b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4c, s6b). Cell Rep (2022) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1b, 1d
  • 免疫印迹; 人类; 1:1000; 图 1e, 2e, 2g, s1c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 14994)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1b, 1d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1e, 2e, 2g, s1c). Cell Rep (2022) ncbi
domestic rabbit 单克隆(42H3)
  • 免疫印迹; 人类; 图 3g
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 42H3)被用于被用于免疫印迹在人类样本上 (图 3g). Mol Neurodegener (2022) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 14994)被用于被用于免疫印迹在人类样本上 (图 2c). Int J Med Sci (2021) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 7649)被用于被用于免疫印迹在人类样本上 (图 1f). Int J Med Sci (2021) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 人类; 1:1000; 图 s1b
  • 免疫印迹; 小鼠; 图 s1b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 14,994)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1b) 和 被用于免疫印迹在小鼠样本上 (图 s1b). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 小鼠; 图 s1b
  • 免疫印迹; 人类; 1:1000; 图 s1b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 7649)被用于被用于免疫印迹在小鼠样本上 (图 s1b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s1b). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 染色质免疫沉淀 ; 小鼠; 1:50; 图 4e
  • 免疫细胞化学; 小鼠; 1:400; 图 3l
  • 免疫印迹; 小鼠; 1:1000; 图 3h
  • 免疫印迹; 人类; 1:1000; 图 3g, 3i
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 14994)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:50 (图 4e), 被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 3l), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3g, 3i). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 1:1000; 图 3g, 3i
  • 免疫印迹; 小鼠; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 9167)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g, 3i) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3h). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 人类; 1:500; 图 1g, 1i
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 7649S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1g, 1i). Cell Rep (2021) ncbi
domestic rabbit 单克隆(58D6)
  • 流式细胞仪; 人类; 1:100; 图 2h
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9174S)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2h). Cell Rep (2021) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 小鼠; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 7649S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7e). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 小鼠; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 14994S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7e). Cell Death Discov (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172S)被用于被用于免疫印迹在小鼠样本上 (图 4a). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167S)被用于被用于免疫印迹在小鼠样本上 (图 4a). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(D3B7)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 8826s)被用于被用于免疫印迹在小鼠样本上 (图 4b). J Cell Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 4b). Front Med (Lausanne) (2021) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫组化-冰冻切片; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 7649)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1d). Circulation (2021) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 小鼠; 图 5c
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 14994)被用于被用于免疫印迹在小鼠样本上 (图 5c) 和 被用于免疫印迹在人类样本上 (图 2a). Circulation (2021) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 1:1000; 图 s5a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 9167)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 小鼠; 1:1000; 图 s5a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 14994)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9172)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a). Redox Biol (2021) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 7649)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a). Redox Biol (2021) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 人类; 1:1000; 图 s4a, s4b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 7649)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4a, s4b). Neuro Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4a, s4b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4a, s4b). Neuro Oncol (2021) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫组化; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9167s)被用于被用于免疫组化在小鼠样本上 (图 7a). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫组化; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 14994s)被用于被用于免疫组化在小鼠样本上 (图 7a). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫组化; 小鼠; 1:500; 图 5d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 58D6)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9167)被用于被用于免疫印迹在小鼠样本上 (图 6d). Cell (2021) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 7649)被用于被用于免疫印迹在小鼠样本上. Oxid Med Cell Longev (2021) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 14994)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 1:1000; 图 s3d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 小鼠; 1:1000; 图 6i, 8e
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 7649)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6i, 8e). Cell Death Differ (2021) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signal Technology, 14994)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signal Technology, 9167)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4g
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 9172)被用于被用于免疫印迹在小鼠样本上 (图 4g). Nat Commun (2021) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 4g
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 9167)被用于被用于免疫印迹在小鼠样本上 (图 4g). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172S)被用于被用于免疫印迹在小鼠样本上 (图 6a). Front Physiol (2020) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 大鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 7649S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 9172S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 9177)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 14994)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Sci Rep (2021) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Sci Rep (2021) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 0.2 ug/ml; 图 4h
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5g
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 58D6)被用于被用于免疫印迹在小鼠样本上浓度为0.2 ug/ml (图 4h) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5g). Science (2021) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 9167)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9167)被用于被用于免疫印迹在人类样本上浓度为1:1000. Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a, 1b, 1c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫印迹在小鼠样本上 (图 1a, 1b, 1c). Diabetes (2021) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 1a, 1b, 1c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在小鼠样本上 (图 1a, 1b, 1c). Diabetes (2021) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 7649 S)被用于被用于免疫印迹在人类样本上 (图 6d). J Extracell Vesicles (2020) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 58D6)被用于被用于免疫印迹在人类样本上. Theranostics (2020) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, D1K9Y)被用于被用于免疫印迹在人类样本上. Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 3f
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 9172)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3f). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 3f
  • 免疫印迹; 人类; 1:2000; 图 2d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 9177)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3f) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 2d). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D3B7)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, D3B7)被用于被用于免疫印迹在小鼠样本上 (图 1c). Nat Commun (2020) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 58D6)被用于被用于免疫印迹在小鼠样本上 (图 1c). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, D1K9Y)被用于被用于免疫印迹在小鼠样本上 (图 1c). Nat Commun (2020) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9167S)被用于被用于免疫印迹在小鼠样本上 (图 4b). J Immunother Cancer (2020) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 1:1000; 图 2h
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2h). elife (2020) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫组化; 小鼠; 图 4d
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫组化在小鼠样本上 (图 4d) 和 被用于免疫印迹在小鼠样本上 (图 4b). Drug Des Devel Ther (2020) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 14994)被用于被用于免疫印迹在小鼠样本上 (图 4b). Drug Des Devel Ther (2020) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 1:1000; 图 8a
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8a
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Nat Commun (2020) ncbi
小鼠 单克隆(9H2)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9176)被用于被用于免疫印迹在人类样本上 (图 1a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9167)被用于被用于免疫印迹在人类样本上 (图 1a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 1:1000; 图 s6c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 9167)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6c). Science (2019) ncbi
domestic rabbit 单克隆(58D6)
  • 流式细胞仪; 人类; 1:100; 图 2a, 5b, 6s1a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 8009)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2a, 5b, 6s1a). elife (2019) ncbi
domestic rabbit 单克隆(D3B7)
  • 免疫印迹; 人类; 1:500; 图 6d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 8826)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6d). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 6d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6d). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3k
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫印迹在人类样本上 (图 3k). Cancer Discov (2019) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 58D6)被用于被用于免疫印迹在人类样本上 (图 4c). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 9167)被用于被用于免疫印迹在人类样本上 (图 4b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2s1a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 9172)被用于被用于免疫印迹在人类样本上 (图 2s1a). elife (2019) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 小鼠; 图 s4f
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 14994S)被用于被用于免疫印迹在小鼠样本上 (图 s4f). Science (2019) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 s4f
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167S)被用于被用于免疫印迹在小鼠样本上 (图 s4f). Science (2019) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 1:1000; 图 3s1e
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 9167)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3s1e). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3s1e
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 9172)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3s1e). elife (2019) ncbi
domestic rabbit 单克隆(42H3)
  • proximity ligation assay; 人类; 图 4a
  • 免疫细胞化学; 人类; 图 1b
  • 免疫印迹; 人类; 图 2c
  • 免疫组化; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9175)被用于被用于proximity ligation assay在人类样本上 (图 4a), 被用于免疫细胞化学在人类样本上 (图 1b), 被用于免疫印迹在人类样本上 (图 2c) 和 被用于免疫组化在小鼠样本上 (图 1a). PLoS Pathog (2019) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 图 s3b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在人类样本上 (图 s3b). PLoS Pathog (2019) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(42H3)
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9175)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 小鼠; 图 2s2g
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 7649)被用于被用于免疫印迹在小鼠样本上 (图 2s2g). elife (2019) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, D1K9Y)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3c). Nature (2019) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫细胞化学; 人类; 图 1c
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, D4A7)被用于被用于免疫细胞化学在人类样本上 (图 1c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫组化-石蜡切片; 小鼠; 图 4f
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 58D6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4f). J Exp Med (2019) ncbi
domestic rabbit 单克隆(42H3)
  • 免疫印迹; 人类; 1:1000; 图 ex6e
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(cell signaling, 9175)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 ex6e). Nature (2019) ncbi
domestic rabbit 单克隆(58D6)
  • mass cytometry; 人类; 图 s1
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 58D6)被用于被用于mass cytometry在人类样本上 (图 s1). J Exp Med (2019) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫组化-冰冻切片; 小鼠; 图 s1a
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1a) 和 被用于免疫印迹在小鼠样本上 (图 1b). Cell Stem Cell (2019) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 小鼠; 图 3d
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 14994)被用于被用于免疫印迹在小鼠样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 6b). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9172S)被用于被用于免疫印迹在人类样本上 (图 4d). Cell (2019) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 人类; 1:3000
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 7649)被用于被用于免疫印迹在人类样本上浓度为1:3000. elife (2019) ncbi
domestic rabbit 单克隆(D3B7)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, D3B7)被用于被用于免疫印迹在人类样本上 (图 4c). Cancer Sci (2019) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 58D6)被用于被用于免疫印迹在人类样本上 (图 4c). Cancer Sci (2019) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹基因敲除验证; 人类; 图 s11c
  • 免疫组化-石蜡切片; 人类; 1:300; 图 4d
  • 免疫组化基因敲除验证; 小鼠; 1:300; 图 3b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, D1K9Y)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 s11c), 被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 4d) 和 被用于免疫组化基因敲除验证在小鼠样本上浓度为1:300 (图 3b). Cancer Sci (2019) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 58D6)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Br J Cancer (2019) ncbi
domestic rabbit 单克隆(D3B7)
  • 免疫印迹; 人类; 1:1000; 图 e3b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 8826)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 e3b). Nat Med (2019) ncbi
小鼠 单克隆(9H2)
  • 免疫印迹; 人类; 1:1000; 图 e3b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9176)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 e3b). Nat Med (2019) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 s5c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9167)被用于被用于免疫印迹在小鼠样本上 (图 s5c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signalling, 7649)被用于被用于免疫印迹在小鼠样本上 (图 4a). Oncogene (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4d
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signalling, 9172)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4d) 和 被用于免疫印迹在小鼠样本上 (图 4a). Oncogene (2019) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 人类; 1:500; 图 7
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 7649S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7). J Virol (2019) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 人类; 1:500; 图 7
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 14994T)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7). J Virol (2019) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Anat Rec (Hoboken) (2018) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 14994)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Anat Rec (Hoboken) (2018) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫组化-石蜡切片; 小鼠; 图 4g
  • 免疫印迹; 小鼠; 图 1c, 4f
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4g), 被用于免疫印迹在小鼠样本上 (图 1c, 4f) 和 被用于免疫印迹在人类样本上 (图 1d). Cell (2018) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 58D6)被用于被用于免疫印迹在小鼠样本上 (图 3e). Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫印迹在小鼠样本上 (图 3d). Cancer Discov (2019) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在小鼠样本上 (图 3d). Cancer Discov (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9177s)被用于被用于免疫印迹在小鼠样本上 (图 1f). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫印迹在小鼠样本上 (图 1f). Cell (2018) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫印迹在人类样本上 (图 2d). J Autoimmun (2018) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫组化-石蜡切片; 人类; 图 1d
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1d) 和 被用于免疫印迹在人类样本上 (图 4a). Ann Rheum Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫印迹在人类样本上 (图 4a). Ann Rheum Dis (2018) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 1:1000; 图 s1g
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1g). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s4c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9172)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 7649)被用于被用于免疫印迹在小鼠样本上 (图 1h). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 人类; 图 1b, s1b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 7649S)被用于被用于免疫印迹在人类样本上 (图 1b, s1b). Genes Dev (2018) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technologies, 7649)被用于被用于免疫印迹在人类样本上 (图 2a). Oncoimmunology (2018) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 s11a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167S)被用于被用于免疫印迹在小鼠样本上 (图 s11a). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s11a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫印迹在小鼠样本上 (图 s11a). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 58D6)被用于被用于免疫印迹在小鼠样本上 (图 6d). Oncogene (2018) ncbi
domestic rabbit 单克隆(42H3)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9175)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS ONE (2018) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 7649)被用于被用于免疫印迹在人类样本上 (图 2c). PLoS ONE (2018) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 人类; 图 s1b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 7649)被用于被用于免疫印迹在人类样本上 (图 s1b). J Cell Biol (2018) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 58D6)被用于被用于免疫印迹在人类样本上 (图 4a). J Leukoc Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s7a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s7a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 1:1000; 图 s7a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 1d
  • 免疫组化; 人类; 1:750; 图 3c
  • 免疫印迹; 人类; 图 1h
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signalling, 9172S)被用于被用于免疫沉淀在人类样本上 (图 1d), 被用于免疫组化在人类样本上浓度为1:750 (图 3c) 和 被用于免疫印迹在人类样本上 (图 1h). Oncogene (2018) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 58D6)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). J Virol (2018) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 1a
  • 免疫印迹; 人类; 图 s8k
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 1a), 被用于免疫印迹在人类样本上 (图 s8k) 和 被用于免疫印迹在小鼠样本上 (图 6a). Hepatology (2018) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 人类; 图 9e
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 7649)被用于被用于免疫印迹在人类样本上 (图 9e). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5g
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technologies, 9172)被用于被用于免疫印迹在人类样本上 (图 5g). Oncoimmunology (2017) ncbi
小鼠 单克隆(9H2)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 9176)被用于被用于免疫印迹在人类样本上 (图 1d). Cancer Metab (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 9172)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 7649)被用于被用于免疫印迹在小鼠样本上 (图 4b). J Exp Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫印迹在小鼠样本上 (图 4b). J Exp Med (2017) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 58D6)被用于被用于免疫印迹在人类样本上 (图 4d). J Immunol (2017) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 人类; 1:100; 图 3a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 7649)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(42H3)
  • 免疫印迹; 人类; 1:200; 图 3a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 9175)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 9167)被用于被用于免疫印迹在人类样本上 (图 5d). Nat Commun (2017) ncbi
domestic rabbit 单克隆(42H3)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 9175)被用于被用于免疫印迹在人类样本上 (图 5d). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 小鼠; 图 9e
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technologies, 14994)被用于被用于免疫印迹在小鼠样本上 (图 9e). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(D3B7)
  • 免疫印迹; 小鼠; 图 9e
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technologies, 8826)被用于被用于免疫印迹在小鼠样本上 (图 9e). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 14994)被用于被用于免疫印迹在小鼠样本上 (图 3b). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D3B7)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 8826)被用于被用于免疫印迹在小鼠样本上 (图 3b). Sci Rep (2017) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在小鼠样本上 (图 3b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s5c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D4A7)
  • 其他; 人类; 图 7
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 7649)被用于被用于其他在人类样本上 (图 7). Sci Rep (2016) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 9167)被用于被用于免疫印迹在人类样本上 (图 5d). Front Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 9172)被用于被用于免疫印迹在人类样本上 (图 5d). Front Immunol (2016) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 14994)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2017) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9167)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2017) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 s9a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 9167)被用于被用于免疫印迹在小鼠样本上 (图 s9a). Autophagy (2016) ncbi
domestic rabbit 单克隆(42H3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1g
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 9175)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1g). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 小鼠; 图 s3b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 14994)被用于被用于免疫印迹在小鼠样本上 (图 s3b). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 s3b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在小鼠样本上 (图 s3b). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫组化-石蜡切片; 人类
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signalling, 9167)被用于被用于免疫组化-石蜡切片在人类样本上. Respir Res (2016) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 3j
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在小鼠样本上 (图 3j). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 58D6)被用于被用于免疫印迹在小鼠样本上 (图 6c). J Exp Med (2016) ncbi
小鼠 单克隆(9H2)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9H2)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 58D6)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(42H3)
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9175)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 7649S)被用于被用于免疫印迹在小鼠样本上 (图 8). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(42H3)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9175)被用于被用于免疫印迹在小鼠样本上 (图 4c). BMC Complement Altern Med (2016) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在小鼠样本上 (图 4c). BMC Complement Altern Med (2016) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 7649)被用于被用于免疫印迹在人类样本上 (图 2). elife (2016) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹基因敲除验证; 人类; 图 1
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Signaling Technology, 9167)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1). J Cell Mol Med (2016) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫组化; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). Front Neurosci (2016) ncbi
domestic rabbit 单克隆(D3B7)
  • 免疫沉淀; 人类; 1:1000; 图 s4
  • 免疫印迹; 人类; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 8826)被用于被用于免疫沉淀在人类样本上浓度为1:1000 (图 s4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫沉淀; 人类; 图 2
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 9167)被用于被用于免疫沉淀在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 2
  • 免疫印迹; 人类; 1:2000; 图 2
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 9172)被用于被用于免疫沉淀在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 2). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 7649)被用于被用于免疫印迹在小鼠样本上 (图 1b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 5h, i
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5h, i). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9177)被用于被用于免疫印迹在人类样本上 (图 5). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Primary Cell Signaling, 9172)被用于被用于免疫印迹在人类样本上. Retrovirology (2016) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 9172)被用于被用于免疫印迹在小鼠样本上 (图 3a). Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 9167)被用于被用于免疫印迹在小鼠样本上 (图 3a). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 9172)被用于被用于免疫印迹在小鼠样本上 (图 6b). Open Biol (2016) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在小鼠样本上 (图 1e). Leukemia (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 3g
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3g). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:400; 图 3
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Tech, 9172S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Tech, D4A7)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D3B7)
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 8826S)被用于被用于免疫印迹在大鼠样本上 (图 3). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫印迹在小鼠样本上 (图 3c). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 58D6)被用于被用于免疫印迹在小鼠样本上 (图 1d). Science (2016) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在小鼠样本上 (图 1a). J Virol (2016) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 图 s1c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9167S)被用于被用于免疫印迹在人类样本上 (图 s1c). J Immunol (2016) ncbi
domestic rabbit 单克隆(D1K9Y)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 14994)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫组化; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫组化在小鼠样本上 (图 5c). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫印迹在小鼠样本上 (图 5b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s9
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 9172)被用于被用于免疫印迹在人类样本上 (图 s9). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9172)被用于被用于免疫印迹在小鼠样本上. Sci Rep (2016) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 人类; 1:5000; 图 2
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 7649)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫组化; 人类; 1:50; 表 2
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167S)被用于被用于免疫组化在人类样本上浓度为1:50 (表 2). Hematol Oncol (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 小鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于reverse phase protein lysate microarray在小鼠样本上浓度为1:500 (图 4). Sci Data (2016) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 7649)被用于被用于免疫印迹在小鼠样本上 (图 2). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(D3B7)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 8826)被用于被用于免疫印迹在小鼠样本上 (图 2). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 7649P)被用于被用于免疫印迹在小鼠样本上 (图 2). Nature (2015) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(cellsignalling, 9167)被用于被用于免疫印迹在小鼠样本上 (图 5). Oncotarget (2015) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 9167)被用于被用于免疫印迹在小鼠样本上 (图 8). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D3B7)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 8826)被用于被用于免疫印迹在人类样本上 (图 6). Nat Chem Biol (2015) ncbi
domestic rabbit 单克隆(58D6)
  • 流式细胞仪; 人类; 表 1
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signalling, 91740)被用于被用于流式细胞仪在人类样本上 (表 1). PLoS ONE (2015) ncbi
  • 免疫印迹; 人类; 图 s2d
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9170)被用于被用于免疫印迹在人类样本上 (图 s2d). Nature (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9172)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Mol Cell Biochem (2016) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 7649)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Mol Cell Biochem (2016) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 7649)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 9e
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 58D6)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 9e). J Exp Med (2015) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(CST, 9167)被用于被用于免疫印迹在人类样本上 (图 5). J Cell Mol Med (2015) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 7649)被用于被用于免疫印迹在小鼠样本上 (图 4). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 7649)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cancer Res (2015) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 7649S)被用于被用于免疫印迹在小鼠样本上 (图 4). Mol Med (2015) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9167)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D3B7)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 8826)被用于被用于免疫印迹在人类样本上 (图 5a). Cancer Gene Ther (2015) ncbi
小鼠 单克隆(9H2)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9176)被用于被用于免疫印迹在人类样本上 (图 4). J Proteome Res (2015) ncbi
domestic rabbit 单克隆(58D6)
  • 染色质免疫沉淀 ; 人类; 1:80; 图 8a
  • 流式细胞仪; 人类; 1:200; 图 6a
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9167)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:80 (图 8a), 被用于流式细胞仪在人类样本上浓度为1:200 (图 6a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Nat Commun (2015) ncbi
domestic rabbit 单克隆(42H3)
  • 免疫印迹; 人类; 1:1000; 图 S6b
  • proximity ligation assay; 小鼠; 1:100; 图 6i
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9175)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 S6b) 和 被用于proximity ligation assay在小鼠样本上浓度为1:100 (图 6i). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 小鼠; 图 s1i
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signalling, D4A7)被用于被用于免疫印迹在小鼠样本上 (图 s1i). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(42H3)
  • 免疫印迹; 小鼠; 图 s1i
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signalling, 42H3)被用于被用于免疫印迹在小鼠样本上 (图 s1i). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D3B7)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 8826)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在小鼠样本上 (图 4). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 58D6)被用于被用于免疫印迹在人类样本上 (图 6b). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, D4A7)被用于被用于免疫印迹在人类样本上 (图 6b). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(细胞, D4A7)被用于被用于免疫印迹在小鼠样本上. Nat Immunol (2014) ncbi
domestic rabbit 单克隆(D3B7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(细胞, D3B7)被用于被用于免疫印迹在小鼠样本上. Nat Immunol (2014) ncbi
domestic rabbit 单克隆(42H3)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(细胞, 42H3)被用于被用于免疫印迹在小鼠样本上. Nat Immunol (2014) ncbi
domestic rabbit 单克隆(D4A7)
  • 免疫印迹; African green monkey; 1:1000; 图 3
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 7649P)被用于被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 3). Nat Struct Mol Biol (2014) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9167)被用于被用于免疫印迹在人类样本上. Viral Immunol (2014) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9167)被用于被用于免疫印迹在人类样本上. Cell Cycle (2014) ncbi
domestic rabbit 单克隆(42H3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, 9175)被用于被用于免疫印迹在人类样本上. Cell Cycle (2014) ncbi
domestic rabbit 单克隆(42H3)
  • 免疫组化-石蜡切片; 人类; 1:250
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 42H3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(58D6)
  • 流式细胞仪; 人类; 图 2b
  • 流式细胞仪; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell signaling, 58D6)被用于被用于流式细胞仪在人类样本上 (图 2b) 和 被用于流式细胞仪在小鼠样本上 (图 5a). PLoS Pathog (2014) ncbi
domestic rabbit 单克隆(58D6)
  • 流式细胞仪; 小鼠
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 58D6)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠; 1:3000
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在小鼠样本上浓度为1:3000. J Virol (2014) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在小鼠样本上. J Immunol (2013) ncbi
小鼠 单克隆(9H2)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling Technology, #9176)被用于被用于免疫印迹在人类样本上 (图 4). Liver Int (2014) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫组化-石蜡切片; 人类; 1:400
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 和 被用于免疫印迹在人类样本上 (图 1a). Mol Med (2012) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫印迹在人类样本上浓度为1:2000. PLoS ONE (2012) ncbi
domestic rabbit 单克隆(58D6)
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司信号传导子及转录激活子1抗体(Cell Signaling, 9167)被用于被用于免疫组化在小鼠样本上. Am J Pathol (2012) ncbi
碧迪BD
小鼠 单克隆(4a)
  • 流式细胞仪; 人类; 图 6
碧迪BD信号传导子及转录激活子1抗体(BD Biosciences, 612597)被用于被用于流式细胞仪在人类样本上 (图 6). ACS Biomater Sci Eng (2022) ncbi
小鼠 单克隆(14/P-STAT1)
  • 免疫印迹; 小鼠; 图 2b
碧迪BD信号传导子及转录激活子1抗体(BD Bioscience, 612132)被用于被用于免疫印迹在小鼠样本上 (图 2b). Sci Rep (2021) ncbi
小鼠 单克隆(42/Stat1)
  • 免疫印迹; 人类; 1:1000; 图 2a
碧迪BD信号传导子及转录激活子1抗体(BD, 610185)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Cancers (Basel) (2021) ncbi
小鼠 单克隆(6/ISGF3)
  • 免疫印迹; 人类; 图 3c
碧迪BD信号传导子及转录激活子1抗体(BD Transduction Laboratories, 610285)被用于被用于免疫印迹在人类样本上 (图 3c). PLoS Pathog (2020) ncbi
小鼠 单克隆(1/Stat1)
  • 免疫组化; 人类; 1:100; 图 4b
碧迪BD信号传导子及转录激活子1抗体(Transduction laboratories, 610115)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4b). Nat Commun (2019) ncbi
小鼠 单克隆(4a)
  • 流式细胞仪; 人类; 图 s2f
碧迪BD信号传导子及转录激活子1抗体(BD, 612596)被用于被用于流式细胞仪在人类样本上 (图 s2f). J Exp Med (2019) ncbi
小鼠 单克隆(4a)
  • 流式细胞仪; 人类; 图 5
碧迪BD信号传导子及转录激活子1抗体(BD, 4a)被用于被用于流式细胞仪在人类样本上 (图 5). Front Immunol (2019) ncbi
小鼠 单克隆(14/P-STAT1)
  • 免疫印迹; 人类; 图 6b
  • 免疫印迹; 小鼠; 图 3d
碧迪BD信号传导子及转录激活子1抗体(BD, 612132)被用于被用于免疫印迹在人类样本上 (图 6b) 和 被用于免疫印迹在小鼠样本上 (图 3d). Cell (2019) ncbi
小鼠 单克隆(42/Stat1)
  • 免疫印迹; 小鼠; 图 1c
碧迪BD信号传导子及转录激活子1抗体(BD, 610186)被用于被用于免疫印迹在小鼠样本上 (图 1c). MBio (2019) ncbi
小鼠 单克隆(4a)
  • 免疫印迹; 人类; 图 4d
碧迪BD信号传导子及转录激活子1抗体(BD Biosciences, 612233)被用于被用于免疫印迹在人类样本上 (图 4d). Cell (2019) ncbi
小鼠 单克隆(42/Stat1)
  • 免疫印迹; 人类; 图 s1b
碧迪BD信号传导子及转录激活子1抗体(BD, 610185)被用于被用于免疫印迹在人类样本上 (图 s1b). Genes Dev (2018) ncbi
小鼠 单克隆(1/Stat1)
  • 免疫印迹; 人类; 图 3d
碧迪BD信号传导子及转录激活子1抗体(BD, 610115)被用于被用于免疫印迹在人类样本上 (图 3d). Nat Microbiol (2017) ncbi
小鼠 单克隆(4a)
  • 流式细胞仪; 人类; 图 1
碧迪BD信号传导子及转录激活子1抗体(BD Biosciences, 612596)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2017) ncbi
小鼠 单克隆(6/ISGF3)
  • 免疫印迹基因敲除验证; 人类; 图 1b
碧迪BD信号传导子及转录激活子1抗体(BD Biosciences, 610285)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1b). J Virol (2017) ncbi
小鼠 单克隆(4a)
  • 流式细胞仪; 人类; 图 2a
碧迪BD信号传导子及转录激活子1抗体(BD, 612597)被用于被用于流式细胞仪在人类样本上 (图 2a). Eur J Immunol (2016) ncbi
小鼠 单克隆(4a)
  • 其他; 仓鼠; 图 4b
碧迪BD信号传导子及转录激活子1抗体(BD Biosciences, 612233)被用于被用于其他在仓鼠样本上 (图 4b). Cell Commun Signal (2016) ncbi
小鼠 单克隆(1/Stat1)
  • 免疫细胞化学; 人类; 图 1
碧迪BD信号传导子及转录激活子1抗体(BD Biosciences, 558560)被用于被用于免疫细胞化学在人类样本上 (图 1). J Cell Mol Med (2016) ncbi
小鼠 单克隆(14/P-STAT1)
  • 免疫印迹; 人类
碧迪BD信号传导子及转录激活子1抗体(BD Biosciences, 612132)被用于被用于免疫印迹在人类样本上. Retrovirology (2016) ncbi
小鼠 单克隆(4a)
  • 流式细胞仪; 小鼠; 图 5c
碧迪BD信号传导子及转录激活子1抗体(BD PharMingen, 4a)被用于被用于流式细胞仪在小鼠样本上 (图 5c). J Leukoc Biol (2016) ncbi
小鼠 单克隆(4a)
  • 流式细胞仪; 人类; 图 s6
碧迪BD信号传导子及转录激活子1抗体(BD Biosciences, 4a)被用于被用于流式细胞仪在人类样本上 (图 s6). Nat Immunol (2016) ncbi
小鼠 单克隆(4a)
  • 流式细胞仪; 人类; 图 5b
碧迪BD信号传导子及转录激活子1抗体(BD Biosciences, 4a)被用于被用于流式细胞仪在人类样本上 (图 5b). J Immunol (2016) ncbi
小鼠 单克隆(4a)
  • 流式细胞仪; 人类; 1:10; 图 2
碧迪BD信号传导子及转录激活子1抗体(BD Phosflow, 4A)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(1/Stat1)
  • 免疫印迹; 人类; 图 s5
碧迪BD信号传导子及转录激活子1抗体(BD Biosciences, 610116)被用于被用于免疫印迹在人类样本上 (图 s5). Mediators Inflamm (2015) ncbi
小鼠 单克隆(4a)
  • 免疫印迹; 人类; 图 s5
碧迪BD信号传导子及转录激活子1抗体(BD Biosciences, 612233)被用于被用于免疫印迹在人类样本上 (图 s5). Mediators Inflamm (2015) ncbi
小鼠 单克隆(14/P-STAT1)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD信号传导子及转录激活子1抗体(Phamingen, 560310)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nature (2015) ncbi
小鼠 单克隆(4a)
  • 免疫印迹; 人类; 图 6
  • 免疫印迹; 小鼠; 图 6
碧迪BD信号传导子及转录激活子1抗体(BD Biosciences, 4a)被用于被用于免疫印迹在人类样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 6). Nat Immunol (2015) ncbi
小鼠 单克隆(14/P-STAT1)
  • 流式细胞仪; 小鼠; 1:5; 图 s7
碧迪BD信号传导子及转录激活子1抗体(BD, 560310)被用于被用于流式细胞仪在小鼠样本上浓度为1:5 (图 s7). Nat Commun (2015) ncbi
小鼠 单克隆(14/P-STAT1)
  • 免疫印迹; 人类; 图 2
碧迪BD信号传导子及转录激活子1抗体(BD Biosciences, 612133)被用于被用于免疫印迹在人类样本上 (图 2). Cancer Immunol Res (2015) ncbi
小鼠 单克隆(42/Stat1)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
碧迪BD信号传导子及转录激活子1抗体(BD Biosciences, 610185)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Mol Cell Biol (2015) ncbi
小鼠 单克隆(4a)
  • 流式细胞仪; 人类
碧迪BD信号传导子及转录激活子1抗体(BD Bioscience, 4a)被用于被用于流式细胞仪在人类样本上. J Neuroimmunol (2014) ncbi
小鼠 单克隆(1/Stat1)
  • 免疫印迹; 小鼠; 图 1a
  • 免疫印迹; 人类; 图 1h
碧迪BD信号传导子及转录激活子1抗体(BD, 610115)被用于被用于免疫印迹在小鼠样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1h). Nat Immunol (2014) ncbi
小鼠 单克隆(14/P-STAT1)
  • 免疫印迹; 小鼠; 图 1a
  • 免疫印迹; 人类; 图 1h
碧迪BD信号传导子及转录激活子1抗体(BD, 612132)被用于被用于免疫印迹在小鼠样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1h). Nat Immunol (2014) ncbi
小鼠 单克隆(42/Stat1)
  • 免疫印迹; African green monkey; 1:1000; 图 3
碧迪BD信号传导子及转录激活子1抗体(BD Biosciences, 610185)被用于被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 3). Nat Struct Mol Biol (2014) ncbi
小鼠 单克隆(42/Stat1)
  • 免疫印迹; 小鼠
碧迪BD信号传导子及转录激活子1抗体(BD Biosciences, 610185)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(1/Stat1)
  • 流式细胞仪; 人类; 图 1a
  • 流式细胞仪; 小鼠; 图 5a
碧迪BD信号传导子及转录激活子1抗体(BD Biosciences, 1/Stat1)被用于被用于流式细胞仪在人类样本上 (图 1a) 和 被用于流式细胞仪在小鼠样本上 (图 5a). PLoS Pathog (2014) ncbi
小鼠 单克隆(14/P-STAT1)
  • 免疫印迹; 人类
碧迪BD信号传导子及转录激活子1抗体(BD, 612132)被用于被用于免疫印迹在人类样本上. Cell (2014) ncbi
小鼠 单克隆(6/ISGF3)
  • EMSA; 大鼠; 1 ug
碧迪BD信号传导子及转录激活子1抗体(BD Transduction Laboratories, 610285)被用于被用于EMSA在大鼠样本上浓度为1 ug. Mol Cancer Ther (2013) ncbi
小鼠 单克隆(1/Stat1)
  • EMSA; 人类; 1:20
碧迪BD信号传导子及转录激活子1抗体(BD Biosciences, 610115)被用于被用于EMSA在人类样本上浓度为1:20. Arch Biochem Biophys (2013) ncbi
小鼠 单克隆(1/Stat1)
  • 免疫细胞化学; 人类
碧迪BD信号传导子及转录激活子1抗体(BD Bioscience, 610115)被用于被用于免疫细胞化学在人类样本上. Int J Nanomedicine (2012) ncbi
小鼠 单克隆(42/Stat1)
  • 免疫组化-石蜡切片; 小鼠; 1:100
碧迪BD信号传导子及转录激活子1抗体(BD, 610186)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. J Clin Invest (2012) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 鸡; 图 2
西格玛奥德里奇信号传导子及转录激活子1抗体(Sigma, av38933)被用于被用于免疫印迹在鸡样本上 (图 2). Dev Comp Immunol (2017) ncbi
文章列表
  1. Zimmerli D, Brambillasca C, Talens F, Bhin J, Linstra R, Romanens L, et al. MYC promotes immune-suppression in triple-negative breast cancer via inhibition of interferon signaling. Nat Commun. 2022;13:6579 pubmed 出版商
  2. Kaya T, Mattugini N, Liu L, Ji H, Cantuti Castelvetri L, Wu J, et al. CD8+ T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging. Nat Neurosci. 2022;25:1446-1457 pubmed 出版商
  3. Zhang Q, Xiu B, Zhang L, Chen M, Chi W, Li L, et al. Immunosuppressive lncRNA LINC00624 promotes tumor progression and therapy resistance through ADAR1 stabilization. J Immunother Cancer. 2022;10: pubmed 出版商
  4. Lin J, Lv J, Yu S, Chen Y, Wang H, Chen J. Transcript Engineered Extracellular Vesicles Alleviate Alloreactive Dynamics in Renal Transplantation. Adv Sci (Weinh). 2022;9:e2202633 pubmed 出版商
  5. Deng S, Wang C, Wang Y, Xu Y, Li X, Johnson N, et al. Ectopic JAK-STAT activation enables the transition to a stem-like and multilineage state conferring AR-targeted therapy resistance. Nat Cancer. 2022;3:1071-1087 pubmed 出版商
  6. Zhu Y, Gu H, Yang L, Li N, Chen Q, Kang D, et al. Involvement of MST1/mTORC1/STAT1 activity in the regulation of B-cell receptor signalling by chemokine receptor 2. Clin Transl Med. 2022;12:e887 pubmed 出版商
  7. Wu B, Song M, Dong Q, Xiang G, Li J, Ma X, et al. UBR5 promotes tumor immune evasion through enhancing IFN-γ-induced PDL1 transcription in triple negative breast cancer. Theranostics. 2022;12:5086-5102 pubmed 出版商
  8. Shu W, Zhu X, Wang K, Cherepanoff S, Conway R, Madigan M, et al. The multi-kinase inhibitor afatinib serves as a novel candidate for the treatment of human uveal melanoma. Cell Oncol (Dordr). 2022;45:601-619 pubmed 出版商
  9. Liu H, He J, Bagheri Yarmand R, Li Z, Liu R, Wang Z, et al. Osteocyte CIITA aggravates osteolytic bone lesions in myeloma. Nat Commun. 2022;13:3684 pubmed 出版商
  10. Huang J, Wang X, Li B, Shen S, Wang R, Tao H, et al. L-5-hydroxytryptophan promotes antitumor immunity by inhibiting PD-L1 inducible expression. J Immunother Cancer. 2022;10: pubmed 出版商
  11. Tan H, Yong Y, Xue Y, Liu H, Furihata T, Shankar E, et al. cGAS and DDX41-STING mediated intrinsic immunity spreads intercellularly to promote neuroinflammation in SOD1 ALS model. iScience. 2022;25:104404 pubmed 出版商
  12. Li C, Marton I, Harari D, Shemesh M, Kalchenko V, Pardo M, et al. Gelatin Stabilizes Nebulized Proteins in Pulmonary Drug Delivery against COVID-19. ACS Biomater Sci Eng. 2022;8:2553-2563 pubmed 出版商
  13. Taniguchi H, Caeser R, Chavan S, Zhan Y, Chow A, Manoj P, et al. WEE1 inhibition enhances the antitumor immune response to PD-L1 blockade by the concomitant activation of STING and STAT1 pathways in SCLC. Cell Rep. 2022;39:110814 pubmed 出版商
  14. Muralimanoharan S, Shamby R, Stansbury N, Schenken R, de la Peña Avalos B, Javanmardi S, et al. Aberrant R-loop-induced replication stress in MED12-mutant uterine fibroids. Sci Rep. 2022;12:6169 pubmed 出版商
  15. Chou P, Luo C, Wali N, Lin W, Ng S, Wang C, et al. A chemical probe inhibitor targeting STAT1 restricts cancer stem cell traits and angiogenesis in colorectal cancer. J Biomed Sci. 2022;29:20 pubmed 出版商
  16. Ploeger C, Schreck J, Huth T, Fraas A, Albrecht T, Charbel A, et al. STAT1 and STAT3 Exhibit a Crosstalk and Are Associated with Increased Inflammation in Hepatocellular Carcinoma. Cancers (Basel). 2022;14: pubmed 出版商
  17. Wolpaw A, Grossmann L, Dessau J, Dong M, Aaron B, Brafford P, et al. Epigenetic state determines inflammatory sensing in neuroblastoma. Proc Natl Acad Sci U S A. 2022;119: pubmed 出版商
  18. Groelly F, Porru M, Zimmer J, Benainous H, De Visser Y, Kosova A, et al. Anti-tumoural activity of the G-quadruplex ligand pyridostatin against BRCA1/2-deficient tumours. EMBO Mol Med. 2022;14:e14501 pubmed 出版商
  19. Abt E, Le T, Dann A, Capri J, Poddar S, Lok V, et al. Reprogramming of nucleotide metabolism by interferon confers dependence on the replication stress response pathway in pancreatic cancer cells. Cell Rep. 2022;38:110236 pubmed 出版商
  20. Xu E, Boddu R, Abdelmotilib H, Sokratian A, Kelly K, Liu Z, et al. Pathological α-synuclein recruits LRRK2 expressing pro-inflammatory monocytes to the brain. Mol Neurodegener. 2022;17:7 pubmed 出版商
  21. Han J, Chen X, Xu J, Chu L, Li R, Sun N, et al. Simultaneous silencing Aurora-A and UHRF1 inhibits colorectal cancer cell growth through regulating expression of DNMT1 and STAT1. Int J Med Sci. 2021;18:3437-3451 pubmed 出版商
  22. Li E, Huang X, Zhang G, Liang T. Combinational blockade of MET and PD-L1 improves pancreatic cancer immunotherapeutic efficacy. J Exp Clin Cancer Res. 2021;40:279 pubmed 出版商
  23. Xu P, Xiong W, Lin Y, Fan L, Pan H, Li Y. Histone deacetylase 2 knockout suppresses immune escape of triple-negative breast cancer cells via downregulating PD-L1 expression. Cell Death Dis. 2021;12:779 pubmed 出版商
  24. Bruand M, Barras D, Mina M, Ghisoni E, Morotti M, Lanitis E, et al. Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Rep. 2021;36:109412 pubmed 出版商
  25. Lu J, Wang W, Li P, Wang X, Gao C, Zhang B, et al. MiR-146a regulates regulatory T cells to suppress heart transplant rejection in mice. Cell Death Discov. 2021;7:165 pubmed 出版商
  26. Hering L, Katkeviciute E, Schwarzfischer M, Niechcial A, Riggs J, Wawrzyniak M, et al. Macrophages Compensate for Loss of Protein Tyrosine Phosphatase N2 in Dendritic Cells to Protect from Elevated Colitis. Int J Mol Sci. 2021;22: pubmed 出版商
  27. Xie C, Ye F, Zhang N, Huang Y, Pan Y, Xie X. CCL7 contributes to angiotensin II-induced abdominal aortic aneurysm by promoting macrophage infiltration and pro-inflammatory phenotype. J Cell Mol Med. 2021;25:7280-7293 pubmed 出版商
  28. Zhou J, Lu Y, Wu W, Feng Y. Taurine promotes the production of CD4+CD25+FOXP3+ Treg cells through regulating IL-35/STAT1 pathway in a mouse allergic rhinitis model. Allergy Asthma Clin Immunol. 2021;17:59 pubmed 出版商
  29. Stolzer I, Dressel A, Chiriac M, Neurath M, Günther C. An IFN-STAT Axis Augments Tissue Damage and Inflammation in a Mouse Model of Crohn's Disease. Front Med (Lausanne). 2021;8:644244 pubmed 出版商
  30. Ostriker A, Xie Y, Chakraborty R, Sizer A, Bai Y, Ding M, et al. TET2 Protects Against Vascular Smooth Muscle Cell Apoptosis and Intimal Thickening in Transplant Vasculopathy. Circulation. 2021;144:455-470 pubmed 出版商
  31. Liu Y, Zienkiewicz J, Boyd K, Smith T, Xu Z, Hawiger J. Hyperlipidemic hypersensitivity to lethal microbial inflammation and its reversal by selective targeting of nuclear transport shuttles. Sci Rep. 2021;11:11907 pubmed 出版商
  32. Atcha H, Jairaman A, Holt J, Meli V, Nagalla R, Veerasubramanian P, et al. Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing. Nat Commun. 2021;12:3256 pubmed 出版商
  33. Liu M, Rao H, Liu J, Li X, Feng W, Gui L, et al. The histone methyltransferase SETD2 modulates oxidative stress to attenuate experimental colitis. Redox Biol. 2021;43:102004 pubmed 出版商
  34. Gusyatiner O, Bady P, Pham M, Lei Y, Park J, Daniel R, et al. BET inhibitors repress expression of interferon-stimulated genes and synergize with HDAC inhibitors in glioblastoma. Neuro Oncol. 2021;23:1680-1692 pubmed 出版商
  35. Shang L, Ren H, Wang S, Liu H, Hu A, Gou P, et al. SS-31 Protects Liver from Ischemia-Reperfusion Injury via Modulating Macrophage Polarization. Oxid Med Cell Longev. 2021;2021:6662156 pubmed 出版商
  36. McElrath C, Espinosa V, Lin J, Peng J, Sridhar R, Dutta O, et al. Critical role of interferons in gastrointestinal injury repair. Nat Commun. 2021;12:2624 pubmed 出版商
  37. Gangoso E, Southgate B, Bradley L, Rus S, Gálvez Cancino F, McGivern N, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell. 2021;184:2454-2470.e26 pubmed 出版商
  38. Huo S, Shi W, Ma H, Yan D, Luo P, Guo J, et al. Alleviation of Inflammation and Oxidative Stress in Pressure Overload-Induced Cardiac Remodeling and Heart Failure via IL-6/STAT3 Inhibition by Raloxifene. Oxid Med Cell Longev. 2021;2021:6699054 pubmed 出版商
  39. Shang M, Yang H, Yang R, Chen T, Fu Y, Li Y, et al. The folate cycle enzyme MTHFD2 induces cancer immune evasion through PD-L1 up-regulation. Nat Commun. 2021;12:1940 pubmed 出版商
  40. Sun Y, Jing J, Xu H, Xu L, Hu H, Tang C, et al. N-cadherin inhibitor creates a microenvironment that protect TILs from immune checkpoints and Treg cells. J Immunother Cancer. 2021;9: pubmed 出版商
  41. Fang Y, Jiang Q, Li S, Zhu H, Xu R, Song N, et al. Opposing functions of β-arrestin 1 and 2 in Parkinson's disease via microglia inflammation and Nprl3. Cell Death Differ. 2021;28:1822-1836 pubmed 出版商
  42. Zan J, Zhao X, Deng X, Ding H, Wang B, Lu M, et al. Paraspeckle Promotes Hepatocellular Carcinoma Immune Escape by Sequestering IFNGR1 mRNA. Cell Mol Gastroenterol Hepatol. 2021;12:465-487 pubmed 出版商
  43. Arenas E, Martínez Sabadell A, Rius Ruiz I, Román Alonso M, Escorihuela M, Luque A, et al. Acquired cancer cell resistance to T cell bispecific antibodies and CAR T targeting HER2 through JAK2 down-modulation. Nat Commun. 2021;12:1237 pubmed 出版商
  44. Yue R, Wei X, Zhao J, Zhou Z, Zhong W. Essential Role of IFN-γ in Regulating Gut Antimicrobial Peptides and Microbiota to Protect Against Alcohol-Induced Bacterial Translocation and Hepatic Inflammation in Mice. Front Physiol. 2020;11:629141 pubmed 出版商
  45. Burgess S, Gibbs H, Toomes C, Coletta P, Bell S. The Role of Csmd1 during Mammary Gland Development. Genes (Basel). 2021;12: pubmed 出版商
  46. McGuire J, Frieling J, Lo C, Li T, Muhammad A, Lawrence H, et al. Mesenchymal stem cell-derived interleukin-28 drives the selection of apoptosis resistant bone metastatic prostate cancer. Nat Commun. 2021;12:723 pubmed 出版商
  47. Wang Y, Mohseni M, Grauel A, Diez J, Guan W, Liang S, et al. SHP2 blockade enhances anti-tumor immunity via tumor cell intrinsic and extrinsic mechanisms. Sci Rep. 2021;11:1399 pubmed 出版商
  48. Break T, Oikonomou V, Dutzan N, Desai J, Swidergall M, Freiwald T, et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science. 2021;371: pubmed 出版商
  49. Roliński M, Montaldo N, Aksu M, Fordyce Martin S, Brambilla A, Kunath N, et al. Loss of Mediator complex subunit 13 (MED13) promotes resistance to alkylation through cyclin D1 upregulation. Nucleic Acids Res. 2021;: pubmed 出版商
  50. Brunn D, Turkowski K, G xfc nther S, Weigert A, Muley T, Kriegsmann M, et al. Interferon Regulatory Factor 9 Promotes Lung Cancer Progression via Regulation of Versican. Cancers (Basel). 2021;13: pubmed 出版商
  51. Zheng Q, Dong H, Mo J, Zhang Y, Huang J, Ouyang S, et al. A novel STAT3 inhibitor W2014-S regresses human non-small cell lung cancer xenografts and sensitizes EGFR-TKI acquired resistance. Theranostics. 2021;11:824-840 pubmed 出版商
  52. Antony A, Lian Z, Perrard X, Perrard J, Liu H, Cox A, et al. Deficiency of Stat1 in CD11c+ Cells Alters Adipose Tissue Inflammation and Improves Metabolic Dysfunctions in Mice Fed a High-Fat Diet. Diabetes. 2021;70:720-732 pubmed 出版商
  53. Robichon K, Maiwald T, Schilling M, Schneider A, Willemsen J, Salopiata F, et al. Identification of Interleukin1β as an Amplifier of Interferon alpha-induced Antiviral Responses. PLoS Pathog. 2020;16:e1008461 pubmed 出版商
  54. Krishn S, Salem I, Quaglia F, Naranjo N, Agarwal E, Liu Q, et al. The αvβ6 integrin in cancer cell-derived small extracellular vesicles enhances angiogenesis. J Extracell Vesicles. 2020;9:1763594 pubmed 出版商
  55. Liao T, Lin C, Jiang J, Yang S, Teng H, Yang M. Harnessing stemness and PD-L1 expression by AT-rich interaction domain-containing protein 3B in colorectal cancer. Theranostics. 2020;10:6095-6112 pubmed 出版商
  56. Deng M, Tam J, Wang L, Liang K, Li S, Zhang L, et al. TRAF3IP3 negatively regulates cytosolic RNA induced anti-viral signaling by promoting TBK1 K48 ubiquitination. Nat Commun. 2020;11:2193 pubmed 出版商
  57. Liu X, Kong W, Peterson C, McGrail D, Hoang A, Zhang X, et al. PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat Commun. 2020;11:2135 pubmed 出版商
  58. Wang Bishop L, Wehbe M, Shae D, James J, Hacker B, Garland K, et al. Potent STING activation stimulates immunogenic cell death to enhance antitumor immunity in neuroblastoma. J Immunother Cancer. 2020;8: pubmed 出版商
  59. Weindel C, Bell S, Vail K, West K, Patrick K, Watson R. LRRK2 maintains mitochondrial homeostasis and regulates innate immune responses to Mycobacterium tuberculosis. elife. 2020;9: pubmed 出版商
  60. Xiang S, Chen K, Xu L, Wang T, Guo C. Bergenin Exerts Hepatoprotective Effects by Inhibiting the Release of Inflammatory Factors, Apoptosis and Autophagy via the PPAR-γ Pathway. Drug Des Devel Ther. 2020;14:129-143 pubmed 出版商
  61. Mosaheb M, Dobrikova E, Brown M, Yang Y, Cable J, Okada H, et al. Genetically stable poliovirus vectors activate dendritic cells and prime antitumor CD8 T cell immunity. Nat Commun. 2020;11:524 pubmed 出版商
  62. Lohard S, Bourgeois N, Maillet L, Gautier F, Fétiveau A, Lasla H, et al. STING-dependent paracriny shapes apoptotic priming of breast tumors in response to anti-mitotic treatment. Nat Commun. 2020;11:259 pubmed 出版商
  63. Kim J, Gupta R, Blanco L, Yang S, Shteinfer Kuzmine A, Wang K, et al. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science. 2019;366:1531-1536 pubmed 出版商
  64. Martínez Fábregas J, Wilmes S, Wang L, Hafer M, Pohler E, Lokau J, et al. Kinetics of cytokine receptor trafficking determine signaling and functional selectivity. elife. 2019;8: pubmed 出版商
  65. Jiao W, Ji J, Xu W, Bu W, Zheng Y, Ma A, et al. Distinct downstream signaling and the roles of VEGF and PlGF in high glucose-mediated injuries of human retinal endothelial cells in culture. Sci Rep. 2019;9:15339 pubmed 出版商
  66. Delgobo M, Mendes D, Kozlova E, Rocha E, Rodrigues Luiz G, Mascarin L, et al. An evolutionary recent IFN/IL-6/CEBP axis is linked to monocyte expansion and tuberculosis severity in humans. elife. 2019;8: pubmed 出版商
  67. Lang X, Green M, Wang W, Yu J, Choi J, Jiang L, et al. Radiotherapy and Immunotherapy Promote Tumoral Lipid Oxidation and Ferroptosis via Synergistic Repression of SLC7A11. Cancer Discov. 2019;9:1673-1685 pubmed 出版商
  68. Thiem A, Hesbacher S, Kneitz H, di Primio T, Heppt M, Hermanns H, et al. IFN-gamma-induced PD-L1 expression in melanoma depends on p53 expression. J Exp Clin Cancer Res. 2019;38:397 pubmed 出版商
  69. Pech M, Fong L, Villalta J, Chan L, Kharbanda S, O Brien J, et al. Systematic identification of cancer cell vulnerabilities to natural killer cell-mediated immune surveillance. elife. 2019;8: pubmed 出版商
  70. Liu Y, You Y, Lu Z, Yang J, Li P, Liu L, et al. N6-methyladenosine RNA modification-mediated cellular metabolism rewiring inhibits viral replication. Science. 2019;365:1171-1176 pubmed 出版商
  71. Park M, Kim A, Manandhar S, Oh S, Jang G, Kang L, et al. CCN1 interlinks integrin and hippo pathway to autoregulate tip cell activity. elife. 2019;8: pubmed 出版商
  72. Joyce M, Berry Wynne K, Dos Santos T, Addison W, McFarlane N, Hobman T, et al. HCV and flaviviruses hijack cellular mechanisms for nuclear STAT2 degradation: Up-regulation of PDLIM2 suppresses the innate immune response. PLoS Pathog. 2019;15:e1007949 pubmed 出版商
  73. Segal J, Kent D, Wesche D, Ng S, Serra M, Oulès B, et al. Single cell analysis of human foetal liver captures the transcriptional profile of hepatobiliary hybrid progenitors. Nat Commun. 2019;10:3350 pubmed 出版商
  74. Wang H, Shen L, Sun X, Liu F, Feng W, Jiang C, et al. Adipose group 1 innate lymphoid cells promote adipose tissue fibrosis and diabetes in obesity. Nat Commun. 2019;10:3254 pubmed 出版商
  75. Reisländer T, Lombardi E, Groelly F, Miar A, Porru M, Di Vito S, et al. BRCA2 abrogation triggers innate immune responses potentiated by treatment with PARP inhibitors. Nat Commun. 2019;10:3143 pubmed 出版商
  76. Lim J, Park H, Heisler J, Maculins T, Roose Girma M, Xu M, et al. Autophagy regulates inflammatory programmed cell death via turnover of RHIM-domain proteins. elife. 2019;8: pubmed 出版商
  77. Dulken B, Buckley M, Navarro Negredo P, Saligrama N, Cayrol R, Leeman D, et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature. 2019;571:205-210 pubmed 出版商
  78. Ying W, Li X, Rangarajan S, Feng W, Curtis L, Sanders P. Immunoglobulin light chains generate proinflammatory and profibrotic kidney injury. J Clin Invest. 2019;129:2792-2806 pubmed 出版商
  79. von Gamm M, Schaub A, Jones A, Wolf C, Behrens G, Lichti J, et al. Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3. J Exp Med. 2019;: pubmed 出版商
  80. Wang W, Green M, Choi J, Gijon M, Kennedy P, Johnson J, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569:270-274 pubmed 出版商
  81. Fernandez I, Baxter R, Garcia Perez J, Vendrame E, Ranganath T, Kong D, et al. A novel human IL2RB mutation results in T and NK cell-driven immune dysregulation. J Exp Med. 2019;216:1255-1267 pubmed 出版商
  82. Oda H, Beck D, Kuehn H, Sampaio Moura N, Hoffmann P, Ibarra M, et al. Second Case of HOIP Deficiency Expands Clinical Features and Defines Inflammatory Transcriptome Regulated by LUBAC. Front Immunol. 2019;10:479 pubmed 出版商
  83. Wang E, Dai Z, Ferrante A, Drake C, Christiano A. A Subset of TREM2+ Dermal Macrophages Secretes Oncostatin M to Maintain Hair Follicle Stem Cell Quiescence and Inhibit Hair Growth. Cell Stem Cell. 2019;: pubmed 出版商
  84. Tan Y, Kagan J. Innate Immune Signaling Organelles Display Natural and Programmable Signaling Flexibility. Cell. 2019;: pubmed 出版商
  85. Cabrera J, Manivanh R, North B, Leib D. The ESCRT-Related ATPase Vps4 Is Modulated by Interferon during Herpes Simplex Virus 1 Infection. MBio. 2019;10: pubmed 出版商
  86. Barnett K, Coronas Serna J, Zhou W, Ernandes M, Cao A, Kranzusch P, et al. Phosphoinositide Interactions Position cGAS at the Plasma Membrane to Ensure Efficient Distinction between Self- and Viral DNA. Cell. 2019;: pubmed 出版商
  87. Xu H, Xu S, Xie S, Zhang Y, Yang J, Zhang W, et al. MicroRNA-122 supports robust innate immunity in hepatocytes by targeting the RTKs/STAT3 signaling pathway. elife. 2019;8: pubmed 出版商
  88. Sakahara M, Okamoto T, Oyanagi J, Takano H, Natsume Y, Yamanaka H, et al. IFN/STAT signaling controls tumorigenesis and the drug response in colorectal cancer. Cancer Sci. 2019;110:1293-1305 pubmed 出版商
  89. Martin V, Chiriaco C, Modica C, Acquadro A, Cortese M, Galimi F, et al. Met inhibition revokes IFNγ-induction of PD-1 ligands in MET-amplified tumours. Br J Cancer. 2019;120:527-536 pubmed 出版商
  90. Sharifnia T, Wawer M, Chen T, Huang Q, Weir B, Sizemore A, et al. Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nat Med. 2019;25:292-300 pubmed 出版商
  91. Izumi T, Imai J, Yamamoto J, Kawana Y, Endo A, Sugawara H, et al. Vagus-macrophage-hepatocyte link promotes post-injury liver regeneration and whole-body survival through hepatic FoxM1 activation. Nat Commun. 2018;9:5300 pubmed 出版商
  92. Flood B, Manils J, Nulty C, Flis E, Kenealy S, Barber G, et al. Caspase-11 regulates the tumour suppressor function of STAT1 in a murine model of colitis-associated carcinogenesis. Oncogene. 2019;38:2658-2674 pubmed 出版商
  93. Bressy C, Droby G, Maldonado B, Steuerwald N, Grdzelishvili V. Cell Cycle Arrest in G2/M Phase Enhances Replication of Interferon-Sensitive Cytoplasmic RNA Viruses via Inhibition of Antiviral Gene Expression. J Virol. 2019;93: pubmed 出版商
  94. Qin L, Min W, Xin S. AIP1 suppresses transplant arteriosclerosis through inhibition of vascular smooth muscle cell inflammatory response to IFNγ. Anat Rec (Hoboken). 2018;: pubmed 出版商
  95. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  96. Mastroianni J, Stickel N, Andrlova H, Hanke K, Melchinger W, Duquesne S, et al. miR-146a Controls Immune Response in the Melanoma Microenvironment. Cancer Res. 2019;79:183-195 pubmed 出版商
  97. Yin D, Li Y, Fu C, Feng Y. Pro-Angiogenic Role of LncRNA HULC in Microvascular Endothelial Cells via Sequestrating miR-124. Cell Physiol Biochem. 2018;50:2188-2202 pubmed 出版商
  98. Biffi G, Oni T, Spielman B, Hao Y, Elyada E, Park Y, et al. IL1-Induced JAK/STAT Signaling Is Antagonized by TGFβ to Shape CAF Heterogeneity in Pancreatic Ductal Adenocarcinoma. Cancer Discov. 2019;9:282-301 pubmed 出版商
  99. Xu X, Xu J, Wu J, Hu Y, Han Y, Gu Y, et al. Phosphorylation-Mediated IFN-γR2 Membrane Translocation Is Required to Activate Macrophage Innate Response. Cell. 2018;175:1336-1351.e17 pubmed 出版商
  100. Lee E, Ouzounova M, Piranlioglu R, Ma M, Guzel M, Marasco D, et al. The pleiotropic effects of TNFα in breast cancer subtypes is regulated by TNFAIP3/A20. Oncogene. 2019;38:469-482 pubmed 出版商
  101. Lu D, Song J, Sun Y, Qi F, Liu L, Jin Y, et al. Mutations of deubiquitinase OTUD1 are associated with autoimmune disorders. J Autoimmun. 2018;94:156-165 pubmed 出版商
  102. Sarkar M, Hile G, Tsoi L, Xing X, Liu J, Liang Y, et al. Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Ann Rheum Dis. 2018;77:1653-1664 pubmed 出版商
  103. Zhang C, Wang C, Jiang M, Gu C, Xiao J, Chen X, et al. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun. 2018;9:2745 pubmed 出版商
  104. Cho S, Lee H, Yu I, Choi Y, Huang H, Hashemifar S, et al. Differential cell-intrinsic regulations of germinal center B and T cells by miR-146a and miR-146b. Nat Commun. 2018;9:2757 pubmed 出版商
  105. Göertz G, McNally K, Robertson S, Best S, Pijlman G, Fros J. The Methyltransferase-Like Domain of Chikungunya Virus nsP2 Inhibits the Interferon Response by Promoting the Nuclear Export of STAT1. J Virol. 2018;92: pubmed 出版商
  106. Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest. 2018;128:4148-4162 pubmed 出版商
  107. Kim S, Knight D, Jones L, Vervoort S, Ng A, Seymour J, et al. JAK2 is dispensable for maintenance of JAK2 mutant B-cell acute lymphoblastic leukemias. Genes Dev. 2018;32:849-864 pubmed 出版商
  108. Luo N, Formisano L, Gonzalez Ericsson P, Sanchez V, Dean P, Opalenik S, et al. Melanoma response to anti-PD-L1 immunotherapy requires JAK1 signaling, but not JAK2. Oncoimmunology. 2018;7:e1438106 pubmed 出版商
  109. Ubil E, Caskey L, Holtzhausen A, Hunter D, Story C, Earp H. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J Clin Invest. 2018;128:2356-2369 pubmed 出版商
  110. Xi J, Huang Q, Wang L, Ma X, Deng Q, Kumar M, et al. miR-21 depletion in macrophages promotes tumoricidal polarization and enhances PD-1 immunotherapy. Oncogene. 2018;37:3151-3165 pubmed 出版商
  111. Kulling P, Olson K, Hamele C, Toro M, Tan S, Feith D, et al. Dysregulation of the IFN-?-STAT1 signaling pathway in a cell line model of large granular lymphocyte leukemia. PLoS ONE. 2018;13:e0193429 pubmed 出版商
  112. Yurchenko M, Skjesol A, Ryan L, Richard G, Kandasamy R, Wang N, et al. SLAMF1 is required for TLR4-mediated TRAM-TRIF-dependent signaling in human macrophages. J Cell Biol. 2018;217:1411-1429 pubmed 出版商
  113. Taylor J, Cash M, Santostefano K, Nakanishi M, Terada N, Wallet M. CRISPR/Cas9 knockout of USP18 enhances type I IFN responsiveness and restricts HIV-1 infection in macrophages. J Leukoc Biol. 2018;: pubmed 出版商
  114. Chung H, Calis J, Wu X, Sun T, Yu Y, Sarbanes S, et al. Human ADAR1 Prevents Endogenous RNA from Triggering Translational Shutdown. Cell. 2018;172:811-824.e14 pubmed 出版商
  115. Hsieh W, Hsu T, Chang Y, Lai M. IL-6 receptor blockade corrects defects of XIAP-deficient regulatory T cells. Nat Commun. 2018;9:463 pubmed 出版商
  116. Browne A, Charmsaz S, Varešlija D, Fagan A, Cosgrove N, Cocchiglia S, et al. Network analysis of SRC-1 reveals a novel transcription factor hub which regulates endocrine resistant breast cancer. Oncogene. 2018;37:2008-2021 pubmed 出版商
  117. Batta G, Soltész L, Kovacs T, Bozó T, Mészár Z, Kellermayer M, et al. Alterations in the properties of the cell membrane due to glycosphingolipid accumulation in a model of Gaucher disease. Sci Rep. 2018;8:157 pubmed 出版商
  118. Chiang C, Pauli E, Biryukov J, Feister K, Meng M, White E, et al. The Human Papillomavirus E6 Oncoprotein Targets USP15 and TRIM25 To Suppress RIG-I-Mediated Innate Immune Signaling. J Virol. 2018;92: pubmed 出版商
  119. Wang W, Wang Y, Qu C, Wang S, Zhou J, Cao W, et al. The RNA genome of hepatitis E virus robustly triggers an antiviral interferon response. Hepatology. 2018;67:2096-2112 pubmed 出版商
  120. Ouwendijk W, van Veen S, Mahalingam R, Verjans G. Simian varicella virus inhibits the interferon gamma signalling pathway. J Gen Virol. 2017;: pubmed 出版商
  121. Goel S, Decristo M, Watt A, BrinJones H, Sceneay J, Li B, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548:471-475 pubmed 出版商
  122. Patel S, Sanjana N, Kishton R, Eidizadeh A, Vodnala S, Cam M, et al. Identification of essential genes for cancer immunotherapy. Nature. 2017;548:537-542 pubmed 出版商
  123. Penafuerte C, Feldhammer M, Mills J, Vinette V, Pike K, Hall A, et al. Downregulation of PTP1B and TC-PTP phosphatases potentiate dendritic cell-based immunotherapy through IL-12/IFN? signaling. Oncoimmunology. 2017;6:e1321185 pubmed 出版商
  124. Miikkulainen P, Högel H, Rantanen K, Suomi T, Kouvonen P, Elo L, et al. HIF prolyl hydroxylase PHD3 regulates translational machinery and glucose metabolism in clear cell renal cell carcinoma. Cancer Metab. 2017;5:5 pubmed 出版商
  125. Aguado L, Schmid S, May J, Sabin L, Panis M, Blanco Melo D, et al. RNase III nucleases from diverse kingdoms serve as antiviral effectors. Nature. 2017;547:114-117 pubmed 出版商
  126. Zhao G, Liu L, Su B, Zhang T, Chen P, Li W, et al. The dynamic changes of interferon lambdas related genes and proteins in JAK/STAT pathway in both acute and chronic HIV-1 infected patients. AIDS Res Ther. 2017;14:31 pubmed 出版商
  127. Almeida L, Neto M, Sousa L, Tannous M, Curti C, Leopoldino A. SET oncoprotein accumulation regulates transcription through DNA demethylation and histone hypoacetylation. Oncotarget. 2017;8:26802-26818 pubmed 出版商
  128. Weng Y, Shi Y, Xia X, Zhou W, Wang H, Wang C. A multi-shRNA vector enhances the silencing efficiency of exogenous and endogenous genes in human cells. Oncol Lett. 2017;13:1553-1562 pubmed 出版商
  129. Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, et al. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med. 2017;214:1471-1491 pubmed 出版商
  130. Truong A, Hong Y, Hoang C, Lee J, Hong Y. Chicken IL-26 regulates immune responses through the JAK/STAT and NF-κB signaling pathways. Dev Comp Immunol. 2017;73:10-20 pubmed 出版商
  131. Stav Noraas T, Edelmann R, Poulsen L, Sundnes O, Phung D, Küchler A, et al. Endothelial IL-33 Expression Is Augmented by Adenoviral Activation of the DNA Damage Machinery. J Immunol. 2017;198:3318-3325 pubmed 出版商
  132. Soonthornvacharin S, Rodriguez Frandsen A, Zhou Y, Galvez F, Huffmaster N, Tripathi S, et al. Systems-based analysis of RIG-I-dependent signalling identifies KHSRP as an inhibitor of RIG-I receptor activation. Nat Microbiol. 2017;2:17022 pubmed 出版商
  133. Basu R, Wu S, Kopchick J. Targeting growth hormone receptor in human melanoma cells attenuates tumor progression and epithelial mesenchymal transition via suppression of multiple oncogenic pathways. Oncotarget. 2017;8:21579-21598 pubmed 出版商
  134. Wu J, Sun L, Li H, Shen H, Zhai W, Yu Z, et al. Roles of programmed death protein 1/programmed death-ligand 1 in secondary brain injury after intracerebral hemorrhage in rats: selective modulation of microglia polarization to anti-inflammatory phenotype. J Neuroinflammation. 2017;14:36 pubmed 出版商
  135. Meisenberg C, Ashour M, El Shafie L, Liao C, Hodgson A, Pilborough A, et al. Epigenetic changes in histone acetylation underpin resistance to the topoisomerase I inhibitor irinotecan. Nucleic Acids Res. 2017;45:1159-1176 pubmed 出版商
  136. Cayrol F, Praditsuktavorn P, Fernando T, Kwiatkowski N, Marullo R, Calvo Vidal M, et al. THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nat Commun. 2017;8:14290 pubmed 出版商
  137. Hurtado Guerrero I, Pinto Medel M, Urbaneja P, Rodriguez Bada J, Leon A, Guerrero M, et al. Activation of the JAK-STAT Signaling Pathway after In Vitro Stimulation with IFNß in Multiple Sclerosis Patients According to the Therapeutic Response to IFNß. PLoS ONE. 2017;12:e0170031 pubmed 出版商
  138. Fitter S, Matthews M, Martin S, Xie J, Ooi S, Walkley C, et al. mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation. Mol Cell Biol. 2017;37: pubmed 出版商
  139. Xue N, Zhou Q, Ji M, Jin J, Lai F, Chen J, et al. Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype. Sci Rep. 2017;7:39011 pubmed 出版商
  140. Eletto D, Burns S, Angulo I, Plagnol V, Gilmour K, Henriquez F, et al. Biallelic JAK1 mutations in immunodeficient patient with mycobacterial infection. Nat Commun. 2016;7:13992 pubmed 出版商
  141. Aguilera T, Rafat M, Castellini L, Shehade H, Kariolis M, Hui A, et al. Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat Commun. 2016;7:13898 pubmed 出版商
  142. Van Puyenbroeck V, Claeys E, Schols D, Bell T, Vermeire K. A Proteomic Survey Indicates Sortilin as a Secondary Substrate of the ER Translocation Inhibitor Cyclotriazadisulfonamide (CADA). Mol Cell Proteomics. 2017;16:157-167 pubmed 出版商
  143. Balinsky C, Schmeisser H, Wells A, Ganesan S, Jin T, Singh K, et al. IRAV (FLJ11286), an Interferon-Stimulated Gene with Antiviral Activity against Dengue Virus, Interacts with MOV10. J Virol. 2017;91: pubmed 出版商
  144. Yamauchi S, Takeuchi K, Chihara K, Honjoh C, Kato Y, Yoshiki H, et al. STAT1 is essential for the inhibition of hepatitis C virus replication by interferon-λ but not by interferon-α. Sci Rep. 2016;6:38336 pubmed 出版商
  145. Ma W, Tummers B, van Esch E, Goedemans R, Melief C, Meyers C, et al. Human Papillomavirus Downregulates the Expression of IFITM1 and RIPK3 to Escape from IFN?- and TNF?-Mediated Antiproliferative Effects and Necroptosis. Front Immunol. 2016;7:496 pubmed
  146. Jia H, Song L, Cong Q, Wang J, Xu H, Chu Y, et al. The LIM protein AJUBA promotes colorectal cancer cell survival through suppression of JAK1/STAT1/IFIT2 network. Oncogene. 2017;36:2655-2666 pubmed 出版商
  147. Wu X, Wu X, Ma Y, Shao F, Tan Y, Tan T, et al. CUG-binding protein 1 regulates HSC activation and liver fibrogenesis. Nat Commun. 2016;7:13498 pubmed 出版商
  148. Han J, Bae J, Choi C, Choi S, Kang H, Jo E, et al. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy. 2016;12:2326-2343 pubmed
  149. Gujam F, McMillan D, Edwards J. The relationship between total and phosphorylated STAT1 and STAT3 tumour cell expression, components of tumour microenvironment and survival in patients with invasive ductal breast cancer. Oncotarget. 2016;7:77607-77621 pubmed 出版商
  150. Günther C, He G, Kremer A, Murphy J, Petrie E, Amann K, et al. The pseudokinase MLKL mediates programmed hepatocellular necrosis independently of RIPK3 during hepatitis. J Clin Invest. 2016;126:4346-4360 pubmed 出版商
  151. Southworth T, Plumb J, Gupta V, Pearson J, Ramis I, Lehner M, et al. Anti-inflammatory potential of PI3K? and JAK inhibitors in asthma patients. Respir Res. 2016;17:124 pubmed
  152. Huai W, Song H, Yu Z, Wang W, Han L, Sakamoto T, et al. Mint3 potentiates TLR3/4- and RIG-I-induced IFN-? expression and antiviral immune responses. Proc Natl Acad Sci U S A. 2016;113:11925-11930 pubmed
  153. Textor A, Schmidt K, Kloetzel P, Weißbrich B, Perez C, Charo J, et al. Preventing tumor escape by targeting a post-proteasomal trimming independent epitope. J Exp Med. 2016;213:2333-2348 pubmed
  154. Ma Y, Chen L, Xie G, Zhou Y, Yue C, Yuan X, et al. Elevated level of interleukin-35 in colorectal cancer induces conversion of T cells into iTr35 by activating STAT1/STAT3. Oncotarget. 2016;7:73003-73015 pubmed 出版商
  155. Sakamoto K, Wehde B, Rädler P, Triplett A, Wagner K. Generation of Janus kinase 1 (JAK1) conditional knockout mice. Genesis. 2016;54:582-588 pubmed 出版商
  156. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  157. Fuchs S, Kaiser Labusch P, Bank J, Ammann S, Kolb Kokocinski A, Edelbusch C, et al. Tyrosine kinase 2 is not limiting human antiviral type III interferon responses. Eur J Immunol. 2016;46:2639-2649 pubmed 出版商
  158. Kimani S, Kumar S, Davra V, Chang Y, Kasikara C, Geng K, et al. Normalization of TAM post-receptor signaling reveals a cell invasive signature for Axl tyrosine kinase. Cell Commun Signal. 2016;14:19 pubmed 出版商
  159. Meliopoulos V, Van De Velde L, Van De Velde N, Karlsson E, Neale G, Vogel P, et al. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens. PLoS Pathog. 2016;12:e1005804 pubmed 出版商
  160. Kim J, Weeratunga P, Kim M, Nikapitiya C, Lee B, Uddin M, et al. Inhibitory effects of an aqueous extract from Cortex Phellodendri on the growth and replication of broad-spectrum of viruses in vitro and in vivo. BMC Complement Altern Med. 2016;16:265 pubmed 出版商
  161. Sullivan K, Lewis H, Hill A, Pandey A, Jackson L, Cabral J, et al. Trisomy 21 consistently activates the interferon response. elife. 2016;5: pubmed 出版商
  162. Ah Koon L, Lesage D, Lemadre E, Souissi I, Fagard R, Varin Blank N, et al. Cellular response to alkylating agent MNNG is impaired in STAT1-deficients cells. J Cell Mol Med. 2016;20:1956-65 pubmed 出版商
  163. Senzacqua M, Severi I, Perugini J, Acciarini S, Cinti S, Giordano A. Action of Administered Ciliary Neurotrophic Factor on the Mouse Dorsal Vagal Complex. Front Neurosci. 2016;10:289 pubmed 出版商
  164. Ren Y, Zhao P, Liu J, Yuan Y, Cheng Q, Zuo Y, et al. Deubiquitinase USP2a Sustains Interferons Antiviral Activity by Restricting Ubiquitination of Activated STAT1 in the Nucleus. PLoS Pathog. 2016;12:e1005764 pubmed 出版商
  165. Now H, Yoo J. AG490 and PF431396 Sensitive Tyrosine Kinase Control the Population Heterogeneity of Basal STAT1 Activity in Ube1l Deficient Cells. PLoS ONE. 2016;11:e0159453 pubmed 出版商
  166. Kim S, Lim E, Yoon Y, Ahn Y, Park E, Kim H, et al. Liver X receptor and STAT1 cooperate downstream of Gas6/Mer to induce anti-inflammatory arginase 2 expression in macrophages. Sci Rep. 2016;6:29673 pubmed 出版商
  167. Harwardt T, Lukas S, Zenger M, Reitberger T, Danzer D, Übner T, et al. Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response. PLoS Pathog. 2016;12:e1005748 pubmed 出版商
  168. Assetta B, De Cecco M, O Hara B, Atwood W. JC Polyomavirus Infection of Primary Human Renal Epithelial Cells Is Controlled by a Type I IFN-Induced Response. MBio. 2016;7: pubmed 出版商
  169. Rausell A, Muñoz M, Martinez R, Roger T, Telenti A, Ciuffi A. Innate immune defects in HIV permissive cell lines. Retrovirology. 2016;13:43 pubmed 出版商
  170. Sharma N, Kumawat K, Rastogi M, Basu A, Singh S. Japanese Encephalitis Virus exploits the microRNA-432 to regulate the expression of Suppressor of Cytokine Signaling (SOCS) 5. Sci Rep. 2016;6:27685 pubmed 出版商
  171. Shutinoski B, Alturki N, Rijal D, Bertin J, Gough P, Schlossmacher M, et al. K45A mutation of RIPK1 results in poor necroptosis and cytokine signaling in macrophages, which impacts inflammatory responses in vivo. Cell Death Differ. 2016;23:1628-37 pubmed 出版商
  172. Cao G, Wang Q, Li G, Meng Z, Liu H, Tong J, et al. mTOR inhibition potentiates cytotoxicity of V?4 ?? T cells via up-regulating NKG2D and TNF-?. J Leukoc Biol. 2016;100:1181-1189 pubmed
  173. Hu X, Zhou Y, Yang Y, Peng J, Song T, Xu T, et al. Identification of zinc finger protein Bcl6 as a novel regulator of early adipose commitment. Open Biol. 2016;6: pubmed 出版商
  174. Cant Barrett K, Spijkers Hagelstein J, Buijs Gladdines J, Uitdehaag J, Smits W, van der Zwet J, et al. MEK and PI3K-AKT inhibitors synergistically block activated IL7 receptor signaling in T-cell acute lymphoblastic leukemia. Leukemia. 2016;30:1832-43 pubmed 出版商
  175. Rothhammer V, Mascanfroni I, Bunse L, Takenaka M, Kenison J, Mayo L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 2016;22:586-97 pubmed 出版商
  176. Roth S, Spalinger M, Gottier C, Biedermann L, Zeitz J, Lang S, et al. Bilberry-Derived Anthocyanins Modulate Cytokine Expression in the Intestine of Patients with Ulcerative Colitis. PLoS ONE. 2016;11:e0154817 pubmed 出版商
  177. Qvit N, Joshi A, Cunningham A, Ferreira J, Mochly Rosen D. Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Protein-Protein Interaction Inhibitor Reveals a Non-catalytic Role for GAPDH Oligomerization in Cell Death. J Biol Chem. 2016;291:13608-21 pubmed 出版商
  178. Yasuda T, Fukada T, Nishida K, Nakayama M, Matsuda M, Miura I, et al. Hyperactivation of JAK1 tyrosine kinase induces stepwise, progressive pruritic dermatitis. J Clin Invest. 2016;126:2064-76 pubmed 出版商
  179. Zanoni I, Tan Y, Di Gioia M, Broggi A, Ruan J, Shi J, et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science. 2016;352:1232-6 pubmed 出版商
  180. Anghelina D, Lam E, Falck Pedersen E. Diminished Innate Antiviral Response to Adenovirus Vectors in cGAS/STING-Deficient Mice Minimally Impacts Adaptive Immunity. J Virol. 2016;90:5915-27 pubmed 出版商
  181. Wang Z, Ji J, Peng D, Ma F, Cheng G, Qin F. Complex Regulation Pattern of IRF3 Activation Revealed by a Novel Dimerization Reporter System. J Immunol. 2016;196:4322-30 pubmed 出版商
  182. Slørdahl T, Abdollahi P, Vandsemb E, Rampa C, Misund K, Baranowska K, et al. The phosphatase of regenerating liver-3 (PRL-3) is important for IL-6-mediated survival of myeloma cells. Oncotarget. 2016;7:27295-306 pubmed 出版商
  183. Li J, Chen K, Li S, Liu T, Wang F, Xia Y, et al. Pretreatment with Fucoidan from Fucus vesiculosus Protected against ConA-Induced Acute Liver Injury by Inhibiting Both Intrinsic and Extrinsic Apoptosis. PLoS ONE. 2016;11:e0152570 pubmed 出版商
  184. Chan Y, Gack M. A phosphomimetic-based mechanism of dengue virus to antagonize innate immunity. Nat Immunol. 2016;17:523-30 pubmed 出版商
  185. Oh S, Onomoto K, Wakimoto M, Onoguchi K, Ishidate F, Fujiwara T, et al. Leader-Containing Uncapped Viral Transcript Activates RIG-I in Antiviral Stress Granules. PLoS Pathog. 2016;12:e1005444 pubmed 出版商
  186. Qiu X, Fu Q, Meng C, Yu S, Zhan Y, Dong L, et al. Newcastle Disease Virus V Protein Targets Phosphorylated STAT1 to Block IFN-I Signaling. PLoS ONE. 2016;11:e0148560 pubmed 出版商
  187. Däbritz J, Judd L, Chalinor H, Menheniott T, Giraud A. Altered gp130 signalling ameliorates experimental colitis via myeloid cell-specific STAT3 activation and myeloid-derived suppressor cells. Sci Rep. 2016;6:20584 pubmed 出版商
  188. Roan F, Stoklasek T, Whalen E, Molitor J, Bluestone J, Buckner J, et al. CD4+ Group 1 Innate Lymphoid Cells (ILC) Form a Functionally Distinct ILC Subset That Is Increased in Systemic Sclerosis. J Immunol. 2016;196:2051-2062 pubmed 出版商
  189. Johnson D, Estrada M, Salgado R, Sanchez V, Doxie D, Opalenik S, et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun. 2016;7:10582 pubmed 出版商
  190. Menter T, Dickenmann M, Juskevicius D, Steiger J, Dirnhofer S, Tzankov A. Comprehensive phenotypic characterization of PTLD reveals potential reliance on EBV or NF-κB signalling instead of B-cell receptor signalling. Hematol Oncol. 2017;35:187-197 pubmed 出版商
  191. Teijaro J, Studer S, Leaf N, Kiosses W, Nguyen N, Matsuki K, et al. S1PR1-mediated IFNAR1 degradation modulates plasmacytoid dendritic cell interferon-α autoamplification. Proc Natl Acad Sci U S A. 2016;113:1351-6 pubmed 出版商
  192. Ansari S, Baumer K, Boué S, Dijon S, Dulize R, Ekroos K, et al. Comprehensive systems biology analysis of a 7-month cigarette smoke inhalation study in C57BL/6 mice. Sci Data. 2016;3:150077 pubmed 出版商
  193. Gao Q, Liu Y, Wu Y, Zhao Q, Wang L, Gao S, et al. IL-17 intensifies IFN-γ-induced NOS2 upregulation in RAW 264.7 cells by further activating STAT1 and NF-κB. Int J Mol Med. 2016;37:347-58 pubmed 出版商
  194. Dorosz S, Ginolhac A, Kähne T, Naumann M, Sauter T, Salsmann A, et al. Role of Calprotectin as a Modulator of the IL27-Mediated Proinflammatory Effect on Endothelial Cells. Mediators Inflamm. 2015;2015:737310 pubmed 出版商
  195. Lindemans C, Calafiore M, Mertelsmann A, O Connor M, Dudakov J, Jenq R, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 2015;528:560-564 pubmed 出版商
  196. Wang J, De Veirman K, De Beule N, Maes K, De Bruyne E, Van Valckenborgh E, et al. The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells. Oncotarget. 2015;6:43992-4004 pubmed 出版商
  197. Kraut B, Maier H, Kókai E, Fiedler K, Boettger T, Illing A, et al. Cardiac-Specific Activation of IKK2 Leads to Defects in Heart Development and Embryonic Lethality. PLoS ONE. 2015;10:e0141591 pubmed 出版商
  198. Dale T, Clarke P, Esdar C, Waalboer D, Adeniji Popoola O, Ortiz Ruiz M, et al. A selective chemical probe for exploring the role of CDK8 and CDK19 in human disease. Nat Chem Biol. 2015;11:973-980 pubmed 出版商
  199. Zomerman W, Plasschaert S, Diks S, Lourens H, Meeuwsen de Boer T, Hoving E, et al. Exogenous HGF Bypasses the Effects of ErbB Inhibition on Tumor Cell Viability in Medulloblastoma Cell Lines. PLoS ONE. 2015;10:e0141381 pubmed 出版商
  200. Pelish H, Liau B, Nitulescu I, Tangpeerachaikul A, Poss Z, Da Silva D, et al. Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature. 2015;526:273-276 pubmed 出版商
  201. Kint J, Dickhout A, Kutter J, Maier H, Britton P, Koumans J, et al. Infectious Bronchitis Coronavirus Inhibits STAT1 Signaling and Requires Accessory Proteins for Resistance to Type I Interferon Activity. J Virol. 2015;89:12047-57 pubmed 出版商
  202. Qiu H, Liu B, Liu W, Liu S. Interleukin-27 enhances TNF-α-mediated activation of human coronary artery endothelial cells. Mol Cell Biochem. 2016;411:1-10 pubmed 出版商
  203. Shi Y, Yuan B, Qi N, Zhu W, Su J, Li X, et al. An autoinhibitory mechanism modulates MAVS activity in antiviral innate immune response. Nat Commun. 2015;6:7811 pubmed 出版商
  204. He C, Medley S, Hu T, Hinsdale M, Lupu F, Virmani R, et al. PDGFRβ signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis. Nat Commun. 2015;6:7770 pubmed 出版商
  205. Herz J, Johnson K, McGavern D. Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells. J Exp Med. 2015;212:1153-69 pubmed 出版商
  206. Wang S, Zheng G, Zhao L, Xu F, Qian J. Shp-2 contributes to anti-RSV activity in human pulmonary alveolar epithelial cells by interfering with the IFN-α-induced Jak/Stat1 pathway. J Cell Mol Med. 2015;19:2432-40 pubmed 出版商
  207. Seto D, Kandarian S, Jackman R. A Key Role for Leukemia Inhibitory Factor in C26 Cancer Cachexia. J Biol Chem. 2015;290:19976-86 pubmed 出版商
  208. Miranda A, Funes J, Sánchez N, Limia C, Mesa M, Quezada S, et al. Oncogenic Transformation Can Orchestrate Immune Evasion and Inflammation in Human Mesenchymal Stem Cells Independently of Extrinsic Immune-Selective Pressure. Cancer Res. 2015;75:3032-42 pubmed 出版商
  209. Li W, Zhu S, Li J, D Amore J, D Angelo J, Yang H, et al. Serum Amyloid A Stimulates PKR Expression and HMGB1 Release Possibly through TLR4/RAGE Receptors. Mol Med. 2015;21:515-25 pubmed 出版商
  210. Shoemaker J, Fukuyama S, Eisfeld A, Zhao D, Kawakami E, Sakabe S, et al. An Ultrasensitive Mechanism Regulates Influenza Virus-Induced Inflammation. PLoS Pathog. 2015;11:e1004856 pubmed 出版商
  211. Hernández P, Mahlakõiv T, Yang I, Schwierzeck V, Nguyen N, Guendel F, et al. Interferon-λ and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection. Nat Immunol. 2015;16:698-707 pubmed 出版商
  212. Cabanski M, Fields B, Boue S, Boukharov N, Deleon H, Dror N, et al. Transcriptional profiling and targeted proteomics reveals common molecular changes associated with cigarette smoke-induced lung emphysema development in five susceptible mouse strains. Inflamm Res. 2015;64:471-86 pubmed 出版商
  213. Campia I, Buondonno I, Castella B, Rolando B, Kopecka J, Gazzano E, et al. An Autocrine Cytokine/JAK/STAT-Signaling Induces Kynurenine Synthesis in Multidrug Resistant Human Cancer Cells. PLoS ONE. 2015;10:e0126159 pubmed 出版商
  214. Marozin S, Altomonte J, Muñoz Álvarez K, Rizzani A, De Toni E, Thasler W, et al. STAT3 inhibition reduces toxicity of oncolytic VSV and provides a potentially synergistic combination therapy for hepatocellular carcinoma. Cancer Gene Ther. 2015;22:317-25 pubmed 出版商
  215. Berard A, Coombs K, Severini A. Quantification of the host response proteome after herpes simplex virus type 1 infection. J Proteome Res. 2015;14:2121-42 pubmed 出版商
  216. Ainsua Enrich E, Serrano Candelas E, Álvarez Errico D, Picado C, Sayós J, Rivera J, et al. The adaptor 3BP2 is required for KIT receptor expression and human mast cell survival. J Immunol. 2015;194:4309-18 pubmed 出版商
  217. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  218. Van Den Ham K, Shio M, Rainone A, Fournier S, Krawczyk C, Olivier M. Iron prevents the development of experimental cerebral malaria by attenuating CXCR3-mediated T cell chemotaxis. PLoS ONE. 2015;10:e0118451 pubmed 出版商
  219. Gao J, Wang F, Liu Y, Cai M, Xu H, Jiang J, et al. Revealing the cellular localization of STAT1 during the cell cycle by super-resolution imaging. Sci Rep. 2015;5:9045 pubmed 出版商
  220. Pratama A, Srivastava M, Williams N, Papa I, Lee S, Dinh X, et al. MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres. Nat Commun. 2015;6:6436 pubmed 出版商
  221. Bardhan K, Paschall A, Yang D, Chen M, Simon P, Bhutia Y, et al. IFNγ Induces DNA Methylation-Silenced GPR109A Expression via pSTAT1/p300 and H3K18 Acetylation in Colon Cancer. Cancer Immunol Res. 2015;3:795-805 pubmed 出版商
  222. Kodigepalli K, Nanjundan M. Induction of PLSCR1 in a STING/IRF3-dependent manner upon vector transfection in ovarian epithelial cells. PLoS ONE. 2015;10:e0117464 pubmed 出版商
  223. Radhakrishnan V, Kojs P, Ramalingam R, Midura Kiela M, Angeli P, Kiela P, et al. Experimental colitis is associated with transcriptional inhibition of Na+/Ca2+ exchanger isoform 1 (NCX1) expression by interferon γ in the renal distal convoluted tubules. J Biol Chem. 2015;290:8964-74 pubmed 出版商
  224. Wiesauer I, Gaumannmüller C, Steinparzer I, Strobl B, Kovarik P. Promoter occupancy of STAT1 in interferon responses is regulated by processive transcription. Mol Cell Biol. 2015;35:716-27 pubmed 出版商
  225. Kong L, Wei J, Haider A, Liebelt B, Ling X, Conrad C, et al. Therapeutic targets in subependymoma. J Neuroimmunol. 2014;277:168-75 pubmed 出版商
  226. Jay J, Hammer A, Nestor Kalinoski A, Diakonova M. JAK2 tyrosine kinase phosphorylates and is negatively regulated by centrosomal protein Ninein. Mol Cell Biol. 2015;35:111-31 pubmed 出版商
  227. Vogelsang P, Karlsen M, Brun J, Jonsson R, Appel S. Altered phenotype and Stat1 expression in Toll-like receptor 7/8 stimulated monocyte-derived dendritic cells from patients with primary Sjögren's syndrome. Arthritis Res Ther. 2014;16:R166 pubmed 出版商
  228. Kanagavelu S, Flores C, Termini J, Riveron R, Romero L, Chung K, et al. TIR-domain-containing adapter-inducing interferon-? (TRIF) regulates Th17-mediated intestinal immunopathology in colitis. Mucosal Immunol. 2015;8:296-306 pubmed 出版商
  229. Vegran F, Berger H, Boidot R, Mignot G, Bruchard M, Dosset M, et al. The transcription factor IRF1 dictates the IL-21-dependent anticancer functions of TH9 cells. Nat Immunol. 2014;15:758-66 pubmed 出版商
  230. Odendall C, Dixit E, Stavru F, Bierne H, Franz K, Durbin A, et al. Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat Immunol. 2014;15:717-26 pubmed 出版商
  231. Shan Y, Gnanasambandan K, Ungureanu D, Kim E, Hammaren H, Yamashita K, et al. Molecular basis for pseudokinase-dependent autoinhibition of JAK2 tyrosine kinase. Nat Struct Mol Biol. 2014;21:579-84 pubmed 出版商
  232. Liu Y, Zhang Z, Zhao X, Yu R, Zhang X, Wu S, et al. Enterovirus 71 inhibits cellular type I interferon signaling by downregulating JAK1 protein expression. Viral Immunol. 2014;27:267-76 pubmed 出版商
  233. Hashimoto M, Nasser H, Chihara T, Suzu S. Macropinocytosis and TAK1 mediate anti-inflammatory to pro-inflammatory macrophage differentiation by HIV-1 Nef. Cell Death Dis. 2014;5:e1267 pubmed 出版商
  234. Bao Y, Cao X, Luo D, Sun R, Peng L, Wang L, et al. Urokinase-type plasminogen activator receptor signaling is critical in nasopharyngeal carcinoma cell growth and metastasis. Cell Cycle. 2014;13:1958-69 pubmed 出版商
  235. Tymoszuk P, Charoentong P, Hackl H, Spilka R, Muller Holzner E, Trajanoski Z, et al. High STAT1 mRNA levels but not its tyrosine phosphorylation are associated with macrophage infiltration and bad prognosis in breast cancer. BMC Cancer. 2014;14:257 pubmed 出版商
  236. Le Saout C, Hasley R, Imamichi H, Tcheung L, Hu Z, Luckey M, et al. Chronic exposure to type-I IFN under lymphopenic conditions alters CD4 T cell homeostasis. PLoS Pathog. 2014;10:e1003976 pubmed 出版商
  237. Brubaker S, Gauthier A, Mills E, Ingolia N, Kagan J. A bicistronic MAVS transcript highlights a class of truncated variants in antiviral immunity. Cell. 2014;156:800-11 pubmed 出版商
  238. Xiang M, Birkbak N, Vafaizadeh V, Walker S, Yeh J, Liu S, et al. STAT3 induction of miR-146b forms a feedback loop to inhibit the NF-?B to IL-6 signaling axis and STAT3-driven cancer phenotypes. Sci Signal. 2014;7:ra11 pubmed 出版商
  239. McGuire D, Rowse A, Li H, Peng B, Sestero C, Cashman K, et al. CD5 enhances Th17-cell differentiation by regulating IFN-? response and ROR?t localization. Eur J Immunol. 2014;44:1137-42 pubmed 出版商
  240. Lam E, Stein S, Falck Pedersen E. Adenovirus detection by the cGAS/STING/TBK1 DNA sensing cascade. J Virol. 2014;88:974-81 pubmed 出版商
  241. Kearney S, Delgado C, Eshleman E, Hill K, O Connor B, Lenz L. Type I IFNs downregulate myeloid cell IFN-? receptor by inducing recruitment of an early growth response 3/NGFI-A binding protein 1 complex that silences ifngr1 transcription. J Immunol. 2013;191:3384-92 pubmed 出版商
  242. Hou Z, Han Q, Zhang C, Tian Z, Zhang J. miR146a impairs the IFN-induced anti-HBV immune response by downregulating STAT1 in hepatocytes. Liver Int. 2014;34:58-68 pubmed 出版商
  243. Amalraj J, Cutler S, Ghazawi I, Boyle G, Ralph S. REST negatively and ISGF3 positively regulate the human STAT1 gene in melanoma. Mol Cancer Ther. 2013;12:1288-98 pubmed 出版商
  244. McGuckin C, Jurga M, Miller A, Sarnowska A, Wiedner M, Boyle N, et al. Ischemic brain injury: a consortium analysis of key factors involved in mesenchymal stem cell-mediated inflammatory reduction. Arch Biochem Biophys. 2013;534:88-97 pubmed 出版商
  245. Li Y, Deuring J, Peppelenbosch M, Kuipers E, de Haar C, van der Woude C. STAT1, STAT6 and adenosine 3',5'-cyclic monophosphate (cAMP) signaling drive SOCS3 expression in inactive ulcerative colitis. Mol Med. 2012;18:1412-9 pubmed 出版商
  246. Chen Y, Wu K, Chen C. Methamphetamine reduces human influenza A virus replication. PLoS ONE. 2012;7:e48335 pubmed 出版商
  247. Tsai T, Hou C, Wang H, Yang Z, Yeh C, Shieh D, et al. Nucleocytoplasmic transport blockage by SV40 peptide-modified gold nanoparticles induces cellular autophagy. Int J Nanomedicine. 2012;7:5215-34 pubmed 出版商
  248. Syu L, El Zaatari M, Eaton K, Liu Z, Tetarbe M, Keeley T, et al. Transgenic expression of interferon-? in mouse stomach leads to inflammation, metaplasia, and dysplasia. Am J Pathol. 2012;181:2114-25 pubmed 出版商
  249. Carrasco M, Delgado I, Soria B, Martin F, Rojas A. GATA4 and GATA6 control mouse pancreas organogenesis. J Clin Invest. 2012;122:3504-15 pubmed 出版商
  250. Yu J, Li X, Wang Y, Li B, Li H, Li Y, et al. PDlim2 selectively interacts with the PDZ binding motif of highly pathogenic avian H5N1 influenza A virus NS1. PLoS ONE. 2011;6:e19511 pubmed 出版商
  251. de Lang A, Baas T, Teal T, Leijten L, Rain B, Osterhaus A, et al. Functional genomics highlights differential induction of antiviral pathways in the lungs of SARS-CoV-infected macaques. PLoS Pathog. 2007;3:e112 pubmed
  252. Alblas J, Honing H, De Lavalette C, Brown M, Dijkstra C, van den Berg T. Signal regulatory protein alpha ligation induces macrophage nitric oxide production through JAK/STAT- and phosphatidylinositol 3-kinase/Rac1/NAPDH oxidase/H2O2-dependent pathways. Mol Cell Biol. 2005;25:7181-92 pubmed
  253. Aksoy E, Zouain C, Vanhoutte F, Fontaine J, Pavelka N, Thieblemont N, et al. Double-stranded RNAs from the helminth parasite Schistosoma activate TLR3 in dendritic cells. J Biol Chem. 2005;280:277-83 pubmed
  254. Parkinson E, Townsend P, Stephanou A, Latchman D, Eaton S, Pierro A. The protective effect of moderate hypothermia during intestinal ischemia-reperfusion is associated with modification of hepatic transcription factor activation. J Pediatr Surg. 2004;39:696-701 pubmed
  255. Duensing A, Medeiros F, McConarty B, Joseph N, Panigrahy D, Singer S, et al. Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene. 2004;23:3999-4006 pubmed
  256. Nepomuceno R, Balatoni C, Natkunam Y, Snow A, Krams S, Martinez O. Rapamycin inhibits the interleukin 10 signal transduction pathway and the growth of Epstein Barr virus B-cell lymphomas. Cancer Res. 2003;63:4472-80 pubmed
  257. Nepomuceno R, Snow A, Robert Beatty P, Krams S, Martinez O. Constitutive activation of Jak/STAT proteins in Epstein-Barr virus-infected B-cell lines from patients with posttransplant lymphoproliferative disorder. Transplantation. 2002;74:396-402 pubmed