这是一篇来自已证抗体库的有关人类 STAT5的综述,是根据159篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合STAT5 抗体。
STAT5 同义词: MGF; STAT5

赛默飞世尔
小鼠 单克隆(SRBCZX)
  • 流式细胞仪; 人类; 图 2g
赛默飞世尔 STAT5抗体(eBioscience, SRBCZX)被用于被用于流式细胞仪在人类样本上 (图 2g). Aging Cell (2021) ncbi
小鼠 单克隆(SRBCZX)
  • 流式细胞仪; 小鼠; 图 s16b
赛默飞世尔 STAT5抗体(eBioscience, SRBCZX)被用于被用于流式细胞仪在小鼠样本上 (图 s16b). Science (2018) ncbi
小鼠 单克隆(ST5a-2H2)
  • 免疫印迹; 人类; 1:1000; 图 s8
赛默飞世尔 STAT5抗体(Zymed, 13-3600)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8). Nat Commun (2018) ncbi
小鼠 单克隆(SRBCZX)
  • 流式细胞仪; 小鼠; 图 7l
赛默飞世尔 STAT5抗体(eBiosciences, 17-9010-41)被用于被用于流式细胞仪在小鼠样本上 (图 7l). Cell (2018) ncbi
小鼠 单克隆(SRBCZX)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 STAT5抗体(Thermo Fisher, SRBCZX)被用于被用于流式细胞仪在人类样本上 (图 2). AIDS Res Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4g
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛默飞世尔 STAT5抗体(Invitrogen, 71-6900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Breast Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛默飞世尔 STAT5抗体(Invitrogen, 71-6900)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛默飞世尔 STAT5抗体(Invitrogen, 71-6900)被用于被用于免疫印迹在人类样本上 (图 2c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 1
  • 免疫印迹; 人类; 1:500; 图 1
赛默飞世尔 STAT5抗体(生活技术, 44-390G)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1). Endocrinology (2016) ncbi
小鼠 单克隆(ST5a-2H2)
  • 免疫组化-自由浮动切片; 大鼠; 1:100
赛默飞世尔 STAT5抗体(Invitrogen, 13-3600)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:100. J Neurosci Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:100
赛默飞世尔 STAT5抗体(Invitrogen, 71-6900)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:100. J Neurosci Res (2016) ncbi
小鼠 单克隆(ST5a-2H2)
  • EMSA; 牛; 图 6
赛默飞世尔 STAT5抗体(Invitrogen, 13-3600)被用于被用于EMSA在牛样本上 (图 6). PLoS ONE (2014) ncbi
小鼠 单克隆(ST5a-2H2)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 STAT5抗体(Ambion, 13-3600)被用于被用于免疫印迹在人类样本上 (图 5). J Cell Sci (2013) ncbi
小鼠 单克隆(ST5a-2H2)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔 STAT5抗体(Invitrogen, 13-3600)被用于被用于免疫印迹在小鼠样本上 (图 5). Bone (2013) ncbi
小鼠 单克隆(ST5a-2H2)
  • 免疫组化-自由浮动切片; 小鼠; 1:3000; 图 3
  • 免疫印迹; 小鼠; 1:500; 图 4
赛默飞世尔 STAT5抗体(Zymed, 13-3600)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:3000 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). J Neuroendocrinol (2012) ncbi
小鼠 单克隆(ST5a-2H2)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 STAT5抗体(Invitrogen, 13-3600)被用于被用于免疫印迹在人类样本上 (图 2). Nucleic Acids Res (2012) ncbi
小鼠 单克隆(ST5a-2H2)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛默飞世尔 STAT5抗体(Invitrogen, 13-3600)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Endocrinology (2012) ncbi
小鼠 单克隆(ST5a-2H2)
  • 染色质免疫沉淀 ; 人类; 图 6
赛默飞世尔 STAT5抗体(Zymed, 13-3600)被用于被用于染色质免疫沉淀 在人类样本上 (图 6). Mol Endocrinol (2006) ncbi
小鼠 单克隆(ST5-8F7)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 STAT5抗体(Zymed, ST5-8F7)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2004) ncbi
小鼠 单克隆(ST5-8F7)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 STAT5抗体(Zymed, 33-5900)被用于被用于免疫印迹在小鼠样本上 (图 4). Leuk Res (2004) ncbi
domestic rabbit 多克隆
赛默飞世尔 STAT5抗体(Zymed, 71?C6900)被用于. J Cell Biol (2003) ncbi
小鼠 单克隆(ST5a-2H2)
  • 免疫沉淀; African green monkey; 图 4
  • 免疫印迹; African green monkey; 图 4
赛默飞世尔 STAT5抗体(Zymed, 13-3600)被用于被用于免疫沉淀在African green monkey样本上 (图 4) 和 被用于免疫印迹在African green monkey样本上 (图 4). J Immunol (2000) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(E208)
  • 免疫印迹; 人类; 图 5f
艾博抗(上海)贸易有限公司 STAT5抗体(Abcam, Ab32364)被用于被用于免疫印迹在人类样本上 (图 5f). J Immunother Cancer (2022) ncbi
domestic rabbit 单克隆(EPR16671-40)
  • 免疫印迹; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 STAT5抗体(Abcam, ab194898)被用于被用于免疫印迹在小鼠样本上 (图 5c). Clin Transl Med (2022) ncbi
domestic rabbit 单克隆(E208)
  • 免疫组化; 小鼠; 1:100; 图 1c
艾博抗(上海)贸易有限公司 STAT5抗体(Abcam, ab32364)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1c). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR16671-40)
  • 免疫印迹; 人类; 1:1000; 图 1a, 1b
艾博抗(上海)贸易有限公司 STAT5抗体(Abcam, ab194898)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a, 1b). Oncogenesis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a, 1b
艾博抗(上海)贸易有限公司 STAT5抗体(Abcam, ab30648)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a, 1b). Oncogenesis (2021) ncbi
domestic rabbit 单克隆(EPR16671-40)
  • 免疫印迹; 小鼠; 1:2000; 图 3b
艾博抗(上海)贸易有限公司 STAT5抗体(Abcam, ab194898)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3b). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EPR16671-40)
  • 免疫组化; 大鼠; 1:250; 图 3d
  • 免疫印迹; 大鼠; 1:1000; 图 3f
艾博抗(上海)贸易有限公司 STAT5抗体(Abcam, ab194898)被用于被用于免疫组化在大鼠样本上浓度为1:250 (图 3d) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3f). PLoS Genet (2019) ncbi
domestic rabbit 单克隆(E208)
  • 免疫印迹; 小鼠; 1:1000; 图 s1c
艾博抗(上海)贸易有限公司 STAT5抗体(Abcam, ab32364)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(E289)
  • 其他; 人类; 图 4c
艾博抗(上海)贸易有限公司 STAT5抗体(Abcam, ab32043)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司 STAT5抗体(Abcam, ab30648)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(EPR1914(2))
  • 免疫印迹; 人类; 图 s1
艾博抗(上海)贸易有限公司 STAT5抗体(Epitomics, 5734?C1)被用于被用于免疫印迹在人类样本上 (图 s1). Mol Cancer (2014) ncbi
单克隆
  • 流式细胞仪; 仓鼠; 图 5
艾博抗(上海)贸易有限公司 STAT5抗体(Abcam, ab106095)被用于被用于流式细胞仪在仓鼠样本上 (图 5). Cytotechnology (2015) ncbi
domestic rabbit 单克隆(E208)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司 STAT5抗体(Abcam, E208)被用于被用于免疫组化-石蜡切片在小鼠样本上. Cell Death Differ (2014) ncbi
domestic rabbit 单克隆(E208)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 STAT5抗体(Abcam, ab32364)被用于被用于免疫印迹在小鼠样本上. Mol Genet Metab (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-9)
  • 免疫印迹; 人类; 图 5f
圣克鲁斯生物技术 STAT5抗体(Santa Cruz, SC-74442)被用于被用于免疫印迹在人类样本上 (图 5f). J Immunother Cancer (2022) ncbi
小鼠 单克隆(A-9)
  • 免疫印迹; 人类; 1:500; 图 1g
圣克鲁斯生物技术 STAT5抗体(Santa Cruz Biotechnology, sc-74442)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1g). Nat Commun (2021) ncbi
小鼠 单克隆(A-9)
  • ChIP-Seq; 小鼠; 图 3c, 7b
圣克鲁斯生物技术 STAT5抗体(Santa Cruz, sc-74442)被用于被用于ChIP-Seq在小鼠样本上 (图 3c, 7b). Nucleic Acids Res (2018) ncbi
小鼠 单克隆(A-9)
  • 免疫沉淀; 人类; 图 5b
圣克鲁斯生物技术 STAT5抗体(Santa-Cruz, sc-74442)被用于被用于免疫沉淀在人类样本上 (图 5b). Nat Commun (2018) ncbi
小鼠 单克隆(51)
  • 免疫印迹; 小鼠; 1:200; 图 4
圣克鲁斯生物技术 STAT5抗体(Santa Cruz, sc-136081)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(A-9)
  • 染色质免疫沉淀 ; 小鼠; 图 7
圣克鲁斯生物技术 STAT5抗体(Santa Cruz, sc-74442 X)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(A-9)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 STAT5抗体(Santa Cruz Biotechnology, A-9)被用于被用于免疫印迹在人类样本上 (图 4). PLoS Genet (2016) ncbi
BioLegend
小鼠 重组(A17016B.Rec)
  • 流式细胞仪; 人类
BioLegend STAT5抗体(Biolegend, 936904)被用于被用于流式细胞仪在人类样本上. J Immunother Cancer (2022) ncbi
Active Motif
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 3a
Active Motif STAT5抗体(ActiveMotif, 39617)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3a). Oncotarget (2017) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(4H1)
  • 免疫印迹; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司 STAT5抗体(CST, 4807)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3c). Blood Cancer J (2022) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technology, 4322S)被用于被用于免疫细胞化学在小鼠样本上. Clin Transl Med (2022) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technology, 4322S)被用于被用于免疫印迹在人类样本上 (图 2c). Clin Transl Med (2022) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 4322)被用于被用于免疫印迹在小鼠样本上 (图 2b). Signal Transduct Target Ther (2022) ncbi
domestic rabbit 单克隆(D3N2B)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, D3N2B)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Sci Transl Med (2021) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technology, 4322)被用于被用于免疫印迹在人类样本上 (图 3b). Cell Rep (2021) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9359S)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(D3N2B)
  • 免疫印迹; 人类; 图 s1a
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technology, 25656)被用于被用于免疫印迹在人类样本上 (图 s1a). BMC Cancer (2021) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 图 s1a
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technology, 9359)被用于被用于免疫印迹在人类样本上 (图 s1a). BMC Cancer (2021) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 3f
  • 免疫印迹; 小鼠; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 STAT5抗体(CST, 9359)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 3f) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 STAT5抗体(CST, 9351)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Commun (2021) ncbi
domestic rabbit 单克隆(C11C5)
  • 流式细胞仪; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 STAT5抗体(CST, 9359)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 6g
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9351)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6g). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9363)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6g). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technology, 4322)被用于被用于免疫印迹在小鼠样本上 (图 2f). elife (2021) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 1:1000; 图 2j
赛信通(上海)生物试剂有限公司 STAT5抗体(CST, 9359)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2j). PLoS Biol (2021) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 1:1000; 图 7d
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell signalling, 9359)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7d). EBioMedicine (2021) ncbi
domestic rabbit 单克隆(D3N2B)
  • 免疫印迹; 小鼠; 1:1000; 图 7d
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell signalling, 25656)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7d). EBioMedicine (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technology, 9351)被用于被用于免疫印迹在人类样本上浓度为1:1000. Theranostics (2021) ncbi
domestic rabbit 单克隆(D3N2B)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technology, 25656)被用于被用于免疫印迹在人类样本上浓度为1:1000. Theranostics (2021) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 STAT5抗体(CST, C11C5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Antimicrob Agents Chemother (2020) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 4322)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Cancer Immunol Immunother (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9363)被用于被用于免疫印迹在人类样本上 (图 5e). Science (2020) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9359)被用于被用于免疫印迹在人类样本上 (图 5e). Science (2020) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫组化-冰冻切片; 小鼠; 图 1g
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9359)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1g) 和 被用于免疫印迹在小鼠样本上 (图 1b). Cell Stem Cell (2019) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 图 1h
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technology, 9359)被用于被用于免疫印迹在小鼠样本上 (图 1h) 和 被用于免疫印迹在人类样本上 (图 1a). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(D3N2B)
  • 免疫印迹; 人类; 1:500; 图 4e
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technology, 25656)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4e). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9359)被用于被用于免疫印迹在小鼠样本上 (图 1c). Cell (2018) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 4322)被用于被用于免疫印迹在小鼠样本上 (图 5b). Blood (2018) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9359)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9363)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9363)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 小鼠; 1:1000; 图 s1h
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 4322T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1h). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2h
  • 免疫印迹; 人类; 图 1b, s1b
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9363)被用于被用于免疫印迹在小鼠样本上 (图 2h) 和 被用于免疫印迹在人类样本上 (图 1b, s1b). Genes Dev (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b, s1b
  • 免疫印迹; 小鼠; 图 2h
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9351)被用于被用于免疫印迹在人类样本上 (图 1b, s1b) 和 被用于免疫印迹在小鼠样本上 (图 2h). Genes Dev (2018) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technologies, 9359)被用于被用于免疫印迹在人类样本上 (图 2a). Oncoimmunology (2018) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technologies, 4322)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D3N2B)
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technologies, 25656)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signalling Technologies, 4322)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signalling Technologies, 9363)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9363)被用于被用于免疫印迹在人类样本上 (图 5c). PLoS ONE (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9351)被用于被用于免疫印迹在人类样本上 (图 2c). PLoS ONE (2018) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 1:1000; 图 s8
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9359)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8). Nat Commun (2018) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 图 s2d
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9359P)被用于被用于免疫印迹在小鼠样本上 (图 s2d). Nature (2018) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 人类; 图 3h, 3i
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 4322P)被用于被用于免疫印迹在人类样本上 (图 3h, 3i). J Exp Med (2018) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell signaling, 4322)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9359)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Clin Invest (2018) ncbi
小鼠 单克隆(14H2)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technologies, 9356)被用于被用于免疫印迹在人类样本上 (图 4b). Oncoimmunology (2017) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 小鼠; 图 s9c
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, D47E7)被用于被用于免疫印迹在小鼠样本上 (图 s9c). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 STAT5抗体(cell signalling, 9363)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell signaling, 9359)被用于被用于免疫印迹在人类样本上 (图 5d). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell signaling, 9359)被用于被用于免疫印迹在小鼠样本上 (图 7a). Skelet Muscle (2017) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 图 5c
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9359)被用于被用于免疫印迹在人类样本上 (图 5c) 和 被用于免疫印迹在小鼠样本上 (图 5c). Leukemia (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell signaling, 9363)被用于被用于免疫印迹在小鼠样本上 (图 4b). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell signaling, 9351)被用于被用于免疫印迹在小鼠样本上 (图 4b). Mol Biol Cell (2017) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 小鼠; 1:400; 图 3c
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technology, D47E7)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 3c). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, D47E7)被用于被用于免疫印迹在小鼠样本上. elife (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 5b
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9363S)被用于被用于染色质免疫沉淀 在人类样本上 (图 5b). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9363)被用于被用于免疫印迹在人类样本上 (图 1e). Cell Death Dis (2016) ncbi
小鼠 单克隆(14H2)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9356)被用于被用于免疫印迹在人类样本上 (图 1e). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9351)被用于被用于免疫沉淀在人类样本上 和 被用于免疫细胞化学在人类样本上. Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 STAT5抗体(cell signalling, 9351)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS Med (2016) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 牛; 1:1000; 表 2
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9359)被用于被用于免疫印迹在牛样本上浓度为1:1000 (表 2). Mol Cell Endocrinol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9351)被用于被用于免疫印迹在人类样本上 (图 2d). Leukemia (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9363)被用于被用于免疫印迹在人类样本上 (图 2d). Leukemia (2017) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫组化-石蜡切片; 人类
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signalling, 9359)被用于被用于免疫组化-石蜡切片在人类样本上. Respir Res (2016) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technology, D47E7)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell signaling, 9359)被用于被用于免疫印迹在人类样本上 (图 2). Lipids Health Dis (2016) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell signaling, C11C5)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Clin Endocrinol Metab (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9351S)被用于被用于免疫印迹在小鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 人类; 图 s4b
  • 免疫印迹; 小鼠; 图 3h
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 4322S)被用于被用于免疫印迹在人类样本上 (图 s4b) 和 被用于免疫印迹在小鼠样本上 (图 3h). Sci Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9351)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 4322)被用于被用于免疫印迹在人类样本上 (图 s3a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9363)被用于被用于免疫印迹在人类样本上 (图 s3a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signalling, 9363)被用于被用于免疫印迹在小鼠样本上 (图 1). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signalling, 4322)被用于被用于免疫印迹在小鼠样本上 (图 1). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 7
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technology, 9351)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 1:500; 图 7c
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technologies, C11C5)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technology, 9351)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). BMC Mol Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9351)被用于被用于免疫印迹在小鼠样本上 (图 1). J Cell Physiol (2016) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9359)被用于被用于免疫印迹在小鼠样本上. Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9363)被用于被用于免疫印迹在小鼠样本上. Science (2016) ncbi
小鼠 单克隆(14H2)
  • 免疫印迹; 人类; 图 s7
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9356)被用于被用于免疫印迹在人类样本上 (图 s7). Clin Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9363)被用于被用于免疫印迹在人类样本上 (图 s3). Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9359L)被用于被用于免疫印迹在小鼠样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 STAT5抗体(Ozyme, 9363)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 STAT5抗体(Ozyme, 4322)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 1:200; 图 4a
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, C11C5)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 4a). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫组化; 人类; 1:50; 表 2
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9359)被用于被用于免疫组化在人类样本上浓度为1:50 (表 2). Hematol Oncol (2017) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 4322)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 STAT5抗体(cell Signaling Tech, 4322)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 STAT5抗体(cell Signaling Tech, 9363)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell signaling, 4322)被用于被用于免疫印迹在小鼠样本上 (图 6). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell signaling, 9363)被用于被用于免疫印迹在小鼠样本上 (图 6). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 牛; 图 1
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technology, 9359)被用于被用于免疫印迹在牛样本上 (图 1). Int J Mol Sci (2015) ncbi
小鼠 单克隆(4H1)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 4807)被用于被用于免疫印迹在人类样本上 (图 2d). Sci Adv (2015) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9359)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 2). Nat Med (2015) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 2
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9351)被用于被用于流式细胞仪在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9359)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9359)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 图 s5d
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell signaling, 9359)被用于被用于免疫印迹在人类样本上 (图 s5d). Nat Genet (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9351 S)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9359)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 4322)被用于被用于免疫印迹在小鼠样本上 (图 4). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 4322)被用于被用于免疫印迹在人类样本上 (图 5d). Blood (2015) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫组化; 小鼠; 1:300; 表 2
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, 9359)被用于被用于免疫组化在小鼠样本上浓度为1:300 (表 2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell signaling, 4322)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Front Microbiol (2015) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, C11C5)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell signaling, 9359)被用于被用于免疫印迹在人类样本上 (图 4b). Int J Cancer (2015) ncbi
domestic rabbit 单克隆(D47E7)
  • 流式细胞仪; 小鼠; 图 s11a
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Sig Tech, 4322)被用于被用于流式细胞仪在小鼠样本上 (图 s11a). Exp Hematol (2015) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technology, 9359S)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell signaling, 4322)被用于被用于免疫印迹在人类样本上 (图 4b). Nat Med (2015) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, C11C5)被用于被用于免疫印迹在人类样本上 (图 6b). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(C11C5)
  • 流式细胞仪; 大鼠; 图 8
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling, C11C5)被用于被用于流式细胞仪在大鼠样本上 (图 8). Eur J Immunol (2015) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technology, 9359)被用于被用于免疫印迹在小鼠样本上. Am J Pathol (2014) ncbi
domestic rabbit 单克隆(D47E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technology, 4322)被用于被用于免疫印迹在小鼠样本上. Am J Pathol (2014) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technology, 9359)被用于被用于免疫印迹在人类样本上. Toxicol In Vitro (2014) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 图 s16a
赛信通(上海)生物试剂有限公司 STAT5抗体(Cell Signaling Technology, 9359)被用于被用于免疫印迹在小鼠样本上 (图 s16a). Int J Oncol (2013) ncbi
碧迪BD
小鼠 单克隆(47/Stat5)
  • 流式细胞仪; 小鼠; 1:100; 图 5a
碧迪BD STAT5抗体(BD, 612599)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5a). elife (2021) ncbi
小鼠 单克隆(47/Stat5)
  • 流式细胞仪; 小鼠; 图 5g
碧迪BD STAT5抗体(BD Biosciences, 612599)被用于被用于流式细胞仪在小鼠样本上 (图 5g). Cell Rep (2019) ncbi
小鼠 单克隆(47/Stat5)
  • 流式细胞仪; 人类; 图 2b
碧迪BD STAT5抗体(BD, 612599)被用于被用于流式细胞仪在人类样本上 (图 2b). J Exp Med (2019) ncbi
小鼠 单克隆(47/Stat5)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD STAT5抗体(BD Biosciences, 47/Stat5)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Nat Commun (2018) ncbi
小鼠 单克隆(47/Stat5)
  • 流式细胞仪; 小鼠; 1:50; 图 4e
碧迪BD STAT5抗体(BD Biosciences, 612599)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4e). Nat Commun (2018) ncbi
小鼠 单克隆(89/Stat5)
  • 免疫印迹; 人类; 图 s5a
碧迪BD STAT5抗体(BD Biosciences, 610191)被用于被用于免疫印迹在人类样本上 (图 s5a). Science (2018) ncbi
小鼠 单克隆(47/Stat5)
  • 流式细胞仪; 人类; 图 s2i
碧迪BD STAT5抗体(BD Biosciences, 562077)被用于被用于流式细胞仪在人类样本上 (图 s2i). J Clin Invest (2018) ncbi
小鼠 单克隆(47/Stat5)
  • 流式细胞仪; 小鼠; 图 5b
碧迪BD STAT5抗体(BD Biosciences, 562077)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Nat Immunol (2018) ncbi
小鼠 单克隆(89/Stat5)
  • 免疫印迹; 小鼠; 1:500; 图 4c
碧迪BD STAT5抗体(BD Transduction, 89/Stat5)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4c). Heliyon (2018) ncbi
小鼠 单克隆(47/Stat5)
  • 流式细胞仪; 人类; 图 4c
碧迪BD STAT5抗体(BD Biosciences, 47/STAT5)被用于被用于流式细胞仪在人类样本上 (图 4c). J Immunol (2017) ncbi
小鼠 单克隆(47/Stat5)
  • 流式细胞仪; 小鼠; 表 s1
碧迪BD STAT5抗体(BD Bioscience, 612599)被用于被用于流式细胞仪在小鼠样本上 (表 s1). J Clin Invest (2017) ncbi
小鼠 单克隆(47/Stat5)
  • 流式细胞仪; 人类; 1:20; 图 2a
碧迪BD STAT5抗体(BD Biosciences, 612599)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 2a). Integr Biol (Camb) (2017) ncbi
小鼠 单克隆(47/Stat5)
  • 流式细胞仪; 人类; 图 s18a
碧迪BD STAT5抗体(BD Biosciences, 47/Stat5)被用于被用于流式细胞仪在人类样本上 (图 s18a). J Clin Invest (2016) ncbi
小鼠 单克隆(47/Stat5)
  • 流式细胞仪; 人类
碧迪BD STAT5抗体(BD Biosciences, 612599)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(47/Stat5)
  • 流式细胞仪; 小鼠; 图 s4
碧迪BD STAT5抗体(BD Biosciences, 47)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Sci Rep (2016) ncbi
小鼠 单克隆(47/Stat5)
  • 流式细胞仪; 小鼠; 图 6e
碧迪BD STAT5抗体(BD, 612599)被用于被用于流式细胞仪在小鼠样本上 (图 6e). J Exp Med (2016) ncbi
小鼠 单克隆(47/Stat5)
  • 免疫印迹; 人类; 1:500; 图 1
碧迪BD STAT5抗体(BD Bioscience, 47)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(47/Stat5)
  • 流式细胞仪; 小鼠; 图 7
碧迪BD STAT5抗体(BD Bioscience, 612599)被用于被用于流式细胞仪在小鼠样本上 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(89/Stat5)
  • 免疫印迹; 人类; 图 3b
碧迪BD STAT5抗体(BD Biosciences, 610191)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(47/Stat5)
  • 免疫印迹; 小鼠; 1:5000
碧迪BD STAT5抗体(BD Biosciences, 611964)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Nat Commun (2016) ncbi
小鼠 单克隆(47/Stat5)
  • 免疫印迹; 人类; 图 s7
碧迪BD STAT5抗体(BD Biosciences, 611964)被用于被用于免疫印迹在人类样本上 (图 s7). Oncogene (2016) ncbi
小鼠 单克隆(47/Stat5)
  • 免疫印迹; 小鼠; 图 6c
碧迪BD STAT5抗体(BD, 47/Stat5pY694)被用于被用于免疫印迹在小鼠样本上 (图 6c). Exp Hematol (2015) ncbi
小鼠 单克隆(47/Stat5)
  • 流式细胞仪; 人类
碧迪BD STAT5抗体(BD Biosciences, 47/Stat5)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(47/Stat5)
  • 免疫印迹; 小鼠; 图 1
碧迪BD STAT5抗体(BD Biosciences, 611964)被用于被用于免疫印迹在小鼠样本上 (图 1). Nat Immunol (2014) ncbi
小鼠 单克隆(89/Stat5)
  • 免疫印迹; 小鼠
碧迪BD STAT5抗体(BD Biosciences, 610191)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(47/Stat5)
  • 免疫印迹; 人类; 0.25 ug/ml
碧迪BD STAT5抗体(BD Biosciences, 611965)被用于被用于免疫印迹在人类样本上浓度为0.25 ug/ml. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(47/Stat5)
  • 免疫印迹; 小鼠; 图 2
碧迪BD STAT5抗体(BD Pharmingen, 611964)被用于被用于免疫印迹在小鼠样本上 (图 2). Nat Immunol (2012) ncbi
小鼠 单克隆(47/Stat5)
  • 免疫印迹; 人类; 图 5
碧迪BD STAT5抗体(BD Biosciences, 611964)被用于被用于免疫印迹在人类样本上 (图 5). Leukemia (2011) ncbi
文章列表
  1. Geng X, Wang C, Gao X, Chowdhury P, Weiss J, Villegas J, et al. GATA-3 is a proto-oncogene in T-cell lymphoproliferative neoplasms. Blood Cancer J. 2022;12:149 pubmed 出版商
  2. Kaminski M, Bendzick L, Hopps R, Kauffman M, Kodal B, Soignier Y, et al. TEM8 Tri-specific Killer Engager binds both tumor and tumor stroma to specifically engage natural killer cell anti-tumor activity. J Immunother Cancer. 2022;10: pubmed 出版商
  3. Ni H, Zhang H, Li L, Huang H, Guo H, Zhang L, et al. T cell-intrinsic STING signaling promotes regulatory T cell induction and immunosuppression by upregulating FOXP3 transcription in cervical cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  4. Zhu Y, Gu H, Yang L, Li N, Chen Q, Kang D, et al. Involvement of MST1/mTORC1/STAT1 activity in the regulation of B-cell receptor signalling by chemokine receptor 2. Clin Transl Med. 2022;12:e887 pubmed 出版商
  5. Verreault M, Segoviano Vilchis I, Rosenberg S, Lemaire N, Schmitt C, Guehennec J, et al. Identification of growth hormone receptor as a relevant target for precision medicine in low-EGFR expressing glioblastoma. Clin Transl Med. 2022;12:e939 pubmed 出版商
  6. Feng L, Li C, Zeng L, Gao D, Sun Y, Zhong L, et al. MARCH3 negatively regulates IL-3-triggered inflammatory response by mediating K48-linked polyubiquitination and degradation of IL-3Rα. Signal Transduct Target Ther. 2022;7:21 pubmed 出版商
  7. Zhang Q, Hresko M, Picton L, Su L, Hollander M, Nunez Cruz S, et al. A human orthogonal IL-2 and IL-2Rβ system enhances CAR T cell expansion and antitumor activity in a murine model of leukemia. Sci Transl Med. 2021;13:eabg6986 pubmed 出版商
  8. Chesnokova V, Zonis S, Apostolou A, Estrada H, Knott S, Wawrowsky K, et al. Local non-pituitary growth hormone is induced with aging and facilitates epithelial damage. Cell Rep. 2021;37:110068 pubmed 出版商
  9. Hsu H, Chen H, Tsai C, Liao P, Chan Y, Lee Y, et al. Aryl Hydrocarbon Receptor Defect Attenuates Mitogen-Activated Signaling through Leucine-Rich Repeats and Immunoglobulin-like Domains 1 (LRIG1)-Dependent EGFR Degradation. Int J Mol Sci. 2021;22: pubmed 出版商
  10. Moon S, Lee H, Kim S, Hong J, Chun S, Lee H, et al. Inhibition of STAT3 enhances sensitivity to tamoxifen in tamoxifen-resistant breast cancer cells. BMC Cancer. 2021;21:931 pubmed 出版商
  11. Shao C, Lou P, Liu R, Bi X, Li G, Yang X, et al. Hormone-Responsive BMP Signaling Expands Myoepithelial Cell Lineages and Prevents Alveolar Precocity in Mammary Gland. Front Cell Dev Biol. 2021;9:691050 pubmed 出版商
  12. James O, Vandereyken M, Marchingo J, Singh F, Bray S, Wilson J, et al. IL-15 and PIM kinases direct the metabolic programming of intestinal intraepithelial lymphocytes. Nat Commun. 2021;12:4290 pubmed 出版商
  13. López Gambero A, Rosell Valle C, Medina Vera D, Navarro J, Vargas A, Rivera P, et al. A Negative Energy Balance Is Associated with Metabolic Dysfunctions in the Hypothalamus of a Humanized Preclinical Model of Alzheimer's Disease, the 5XFAD Mouse. Int J Mol Sci. 2021;22: pubmed 出版商
  14. Glassman C, Su L, Majri Morrison S, Winkelmann H, Mo F, Li P, et al. Calibration of cell-intrinsic interleukin-2 response thresholds guides design of a regulatory T cell biased agonist. elife. 2021;10: pubmed 出版商
  15. Geng G, Liu J, Xu C, Pei Y, Chen L, Mu C, et al. Receptor-mediated mitophagy regulates EPO production and protects against renal anemia. elife. 2021;10: pubmed 出版商
  16. Gao H, Liu Y, Zheng M, Zhao F, Wang H, Yu J, et al. Characterization of murine mammary stem/progenitor cells in a D-galactose-induced aging model. Aging (Albany NY). 2021;13:11762-11773 pubmed 出版商
  17. Sripada A, Sirohi K, Michalec L, Guo L, McKay J, Yadav S, et al. Sprouty2 positively regulates T cell function and airway inflammation through regulation of CSK and LCK kinases. PLoS Biol. 2021;19:e3001063 pubmed 出版商
  18. Shams A, Binothman N, Boudreault J, Wang N, Shams F, Hamam D, et al. Prolactin receptor-driven combined luminal and epithelial differentiation in breast cancer restricts plasticity, stemness, tumorigenesis and metastasis. Oncogenesis. 2021;10:10 pubmed 出版商
  19. Lopušná K, Nowialis P, Opavska J, Abraham A, Riva A, Opavsky R. Dnmt3b catalytic activity is critical for its tumour suppressor function in lymphomagenesis and is associated with c-Met oncogenic signalling. EBioMedicine. 2021;63:103191 pubmed 出版商
  20. Lei H, Xu H, Shan H, Liu M, Lu Y, Fang Z, et al. Targeting USP47 overcomes tyrosine kinase inhibitor resistance and eradicates leukemia stem/progenitor cells in chronic myelogenous leukemia. Nat Commun. 2021;12:51 pubmed 出版商
  21. Zheng Q, Dong H, Mo J, Zhang Y, Huang J, Ouyang S, et al. A novel STAT3 inhibitor W2014-S regresses human non-small cell lung cancer xenografts and sensitizes EGFR-TKI acquired resistance. Theranostics. 2021;11:824-840 pubmed 出版商
  22. Webb L, Fra Bido S, Innocentin S, Matheson L, Attaf N, Bignon A, et al. Ageing promotes early T follicular helper cell differentiation by modulating expression of RBPJ. Aging Cell. 2021;20:e13295 pubmed 出版商
  23. Sorensen E, Macedo A, Resop R, Howard J, Nell R, Sarabia I, et al. Structure-Activity Relationship Analysis of Benzotriazine Analogues as HIV-1 Latency-Reversing Agents. Antimicrob Agents Chemother. 2020;64: pubmed 出版商
  24. Costanzo Garvey D, Keeley T, Case A, Watson G, Alsamraae M, Yu Y, et al. Neutrophils are mediators of metastatic prostate cancer progression in bone. Cancer Immunol Immunother. 2020;69:1113-1130 pubmed 出版商
  25. Wilmes S, Hafer M, Vuorio J, Tucker J, Winkelmann H, Löchte S, et al. Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. Science. 2020;367:643-652 pubmed 出版商
  26. Wang L, Shen E, Luo L, Rabe H, Wang Q, Yin J, et al. Control of Germinal Center Localization and Lineage Stability of Follicular Regulatory T Cells by the Blimp1 Transcription Factor. Cell Rep. 2019;29:1848-1861.e6 pubmed 出版商
  27. Fernandez I, Baxter R, Garcia Perez J, Vendrame E, Ranganath T, Kong D, et al. A novel human IL2RB mutation results in T and NK cell-driven immune dysregulation. J Exp Med. 2019;216:1255-1267 pubmed 出版商
  28. You Y, Qin Z, Zhang H, Yuan Z, Yu X. MicroRNA-153 promotes brain-derived neurotrophic factor and hippocampal neuron proliferation to alleviate autism symptoms through inhibition of JAK-STAT pathway by LEPR. Biosci Rep. 2019;: pubmed 出版商
  29. Wang E, Dai Z, Ferrante A, Drake C, Christiano A. A Subset of TREM2+ Dermal Macrophages Secretes Oncostatin M to Maintain Hair Follicle Stem Cell Quiescence and Inhibit Hair Growth. Cell Stem Cell. 2019;: pubmed 出版商
  30. Ding L, Shunkwiler L, Harper N, Zhao Y, Hinohara K, Huh S, et al. Deletion of Cdkn1b in ACI rats leads to increased proliferation and pregnancy-associated changes in the mammary gland due to perturbed systemic endocrine environment. PLoS Genet. 2019;15:e1008002 pubmed 出版商
  31. Stivala S, Codilupi T, Brkic S, Baerenwaldt A, Ghosh N, Hao Shen H, et al. Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms. J Clin Invest. 2019;130:1596-1611 pubmed 出版商
  32. Jia Y, Qi Y, Wang Y, Ma X, Xu Y, Wang J, et al. Overexpression of CD59 inhibits apoptosis of T-acute lymphoblastic leukemia via AKT/Notch1 signaling pathway. Cancer Cell Int. 2019;19:9 pubmed 出版商
  33. Chorro L, Suzuki M, Chin S, Williams T, Snapp E, Odagiu L, et al. Interleukin 2 modulates thymic-derived regulatory T cell epigenetic landscape. Nat Commun. 2018;9:5368 pubmed 出版商
  34. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  35. Wang F, Meng M, Mo B, Yang Y, Ji Y, Huang P, et al. Crosstalks between mTORC1 and mTORC2 variagate cytokine signaling to control NK maturation and effector function. Nat Commun. 2018;9:4874 pubmed 出版商
  36. Bigenzahn J, Collu G, Kartnig F, Pieraks M, Vladimer G, Heinz L, et al. LZTR1 is a regulator of RAS ubiquitination and signaling. Science. 2018;362:1171-1177 pubmed 出版商
  37. Lee H, Willi M, Shin H, Liu C, Hennighausen L. Progressing super-enhancer landscape during mammary differentiation controls tissue-specific gene regulation. Nucleic Acids Res. 2018;46:10796-10809 pubmed 出版商
  38. Chorzalska A, Morgan J, Ahsan N, Treaba D, Olszewski A, Petersen M, et al. Bone marrow-specific loss of ABI1 induces myeloproliferative neoplasm with features resembling human myelofibrosis. Blood. 2018;: pubmed 出版商
  39. Zhu L, Xie X, Zhang L, Wang H, Jie Z, Zhou X, et al. TBK-binding protein 1 regulates IL-15-induced autophagy and NKT cell survival. Nat Commun. 2018;9:2812 pubmed 出版商
  40. Liu Z, Qin Q, Wu C, Li H, Shou J, Yang Y, et al. Downregulated NDR1 protein kinase inhibits innate immune response by initiating an miR146a-STAT1 feedback loop. Nat Commun. 2018;9:2789 pubmed 出版商
  41. Zhang C, Wang C, Jiang M, Gu C, Xiao J, Chen X, et al. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun. 2018;9:2745 pubmed 出版商
  42. D Addio F, Vergani A, Potena L, Maestroni A, Usuelli V, Ben Nasr M, et al. P2X7R mutation disrupts the NLRP3-mediated Th program and predicts poor cardiac allograft outcomes. J Clin Invest. 2018;128:3490-3503 pubmed 出版商
  43. Kim S, Knight D, Jones L, Vervoort S, Ng A, Seymour J, et al. JAK2 is dispensable for maintenance of JAK2 mutant B-cell acute lymphoblastic leukemias. Genes Dev. 2018;32:849-864 pubmed 出版商
  44. Polonsky M, Rimer J, Kern Perets A, Zaretsky I, Miller S, Bornstein C, et al. Induction of CD4 T cell memory by local cellular collectivity. Science. 2018;360: pubmed 出版商
  45. Luo N, Formisano L, Gonzalez Ericsson P, Sanchez V, Dean P, Opalenik S, et al. Melanoma response to anti-PD-L1 immunotherapy requires JAK1 signaling, but not JAK2. Oncoimmunology. 2018;7:e1438106 pubmed 出版商
  46. Ng S, Yoshida N, Christie A, Ghandi M, Dharia N, Dempster J, et al. Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. Nat Commun. 2018;9:2024 pubmed 出版商
  47. Borlido J, Sakuma S, Raices M, Carrette F, Tinoco R, Bradley L, et al. Nuclear pore complex-mediated modulation of TCR signaling is required for naïve CD4+ T cell homeostasis. Nat Immunol. 2018;19:594-605 pubmed 出版商
  48. Hyrenius Wittsten A, Pilheden M, Sturesson H, Hansson J, Walsh M, Song G, et al. De novo activating mutations drive clonal evolution and enhance clonal fitness in KMT2A-rearranged leukemia. Nat Commun. 2018;9:1770 pubmed 出版商
  49. Sevin M, Kubovcakova L, Pernet N, Causse S, Vitte F, Villeval J, et al. HSP27 is a partner of JAK2-STAT5 and a potential therapeutic target in myelofibrosis. Nat Commun. 2018;9:1431 pubmed 出版商
  50. Olesen M, Christiansen J, Petersen S, Jensen P, Paslawski W, Romero Ramos M, et al. CD4 T cells react to local increase of α-synuclein in a pathology-associated variant-dependent manner and modify brain microglia in absence of brain pathology. Heliyon. 2018;4:e00513 pubmed 出版商
  51. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  52. Kulling P, Olson K, Hamele C, Toro M, Tan S, Feith D, et al. Dysregulation of the IFN-?-STAT1 signaling pathway in a cell line model of large granular lymphocyte leukemia. PLoS ONE. 2018;13:e0193429 pubmed 出版商
  53. Hsieh W, Hsu T, Chang Y, Lai M. IL-6 receptor blockade corrects defects of XIAP-deficient regulatory T cells. Nat Commun. 2018;9:463 pubmed 出版商
  54. Shen Q, Zhang Q, Shi Y, Shi Q, Jiang Y, Gu Y, et al. Tet2 promotes pathogen infection-induced myelopoiesis through mRNA oxidation. Nature. 2018;554:123-127 pubmed 出版商
  55. Mitroulis I, Ruppova K, Wang B, Chen L, Grzybek M, Grinenko T, et al. Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell. 2018;172:147-161.e12 pubmed 出版商
  56. Khalil S, Delehanty L, Grado S, Holy M, White Z, Freeman K, et al. Iron modulation of erythropoiesis is associated with Scribble-mediated control of the erythropoietin receptor. J Exp Med. 2018;215:661-679 pubmed 出版商
  57. Kim H, Kim H, Kim K, German M, Kim H. Ectopic serotonin production in β-cell specific transgenic mice. Biochem Biophys Res Commun. 2018;495:1986-1991 pubmed 出版商
  58. Zhao B, Mei Y, Cao L, Zhang J, Sumagin R, Yang J, et al. Loss of pleckstrin-2 reverts lethality and vascular occlusions in JAK2V617F-positive myeloproliferative neoplasms. J Clin Invest. 2018;128:125-140 pubmed 出版商
  59. Gorvel L, Korenfeld D, Tung T, Klechevsky E. Dendritic Cell-Derived IL-32?: A Novel Inhibitory Cytokine of NK Cell Function. J Immunol. 2017;199:1290-1300 pubmed 出版商
  60. Penafuerte C, Feldhammer M, Mills J, Vinette V, Pike K, Hall A, et al. Downregulation of PTP1B and TC-PTP phosphatases potentiate dendritic cell-based immunotherapy through IL-12/IFN? signaling. Oncoimmunology. 2017;6:e1321185 pubmed 出版商
  61. Zhao G, Liu L, Su B, Zhang T, Chen P, Li W, et al. The dynamic changes of interferon lambdas related genes and proteins in JAK/STAT pathway in both acute and chronic HIV-1 infected patients. AIDS Res Ther. 2017;14:31 pubmed 出版商
  62. Mendoza A, Fang V, Chen C, Serasinghe M, Verma A, Muller J, et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature. 2017;546:158-161 pubmed 出版商
  63. Kraakman M, Lee M, Al Sharea A, Dragoljevic D, Barrett T, Montenont E, et al. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes. J Clin Invest. 2017;127:2133-2147 pubmed 出版商
  64. Basu R, Wu S, Kopchick J. Targeting growth hormone receptor in human melanoma cells attenuates tumor progression and epithelial mesenchymal transition via suppression of multiple oncogenic pathways. Oncotarget. 2017;8:21579-21598 pubmed 出版商
  65. Yang Y, Hu S, Liu J, Cui Y, Fan Y, Lv T, et al. CD8+ T cells promote proliferation of benign prostatic hyperplasia epithelial cells under low androgen level via modulation of CCL5/STAT5/CCND1 signaling pathway. Sci Rep. 2017;7:42893 pubmed 出版商
  66. Cayrol F, Praditsuktavorn P, Fernando T, Kwiatkowski N, Marullo R, Calvo Vidal M, et al. THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nat Commun. 2017;8:14290 pubmed 出版商
  67. Gopinath S. Inhibition of Stat3 signaling ameliorates atrophy of the soleus muscles in mice lacking the vitamin D receptor. Skelet Muscle. 2017;7:2 pubmed 出版商
  68. Reckel S, Hamelin R, Georgeon S, Armand F, Jolliet Q, Chiappe D, et al. Differential signaling networks of Bcr-Abl p210 and p190 kinases in leukemia cells defined by functional proteomics. Leukemia. 2017;31:1502-1512 pubmed 出版商
  69. Barcus C, O Leary K, Brockman J, Rugowski D, Liu Y, Garcia N, et al. Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells. Breast Cancer Res. 2017;19:9 pubmed 出版商
  70. Ertsås H, Nolan G, Labarge M, Lorens J. Microsphere cytometry to interrogate microenvironment-dependent cell signaling. Integr Biol (Camb). 2017;9:123-134 pubmed 出版商
  71. Chaudhari A, Gupta R, Patel S, Velingkaar N, Kondratov R. Cryptochromes regulate IGF-1 production and signaling through control of JAK2-dependent STAT5B phosphorylation. Mol Biol Cell. 2017;28:834-842 pubmed 出版商
  72. Hirai M, Arita Y, McGlade C, Lee K, Chen J, Evans S. Adaptor proteins NUMB and NUMBL promote cell cycle withdrawal by targeting ERBB2 for degradation. J Clin Invest. 2017;127:569-582 pubmed 出版商
  73. Araujo L, Khim P, Mkhikian H, Mortales C, Demetriou M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. elife. 2017;6: pubmed 出版商
  74. Schauwecker S, Kim J, Licht J, Clevenger C. Histone H1 and Chromosomal Protein HMGN2 Regulate Prolactin-induced STAT5 Transcription Factor Recruitment and Function in Breast Cancer Cells. J Biol Chem. 2017;292:2237-2254 pubmed 出版商
  75. Ren Z, Aerts J, Vandenplas H, Wang J, Gorbenko O, Chen J, et al. Phosphorylated STAT5 regulates p53 expression via BRCA1/BARD1-NPM1 and MDM2. Cell Death Dis. 2016;7:e2560 pubmed 出版商
  76. Li Y, Buijs Gladdines J, Cant Barrett K, Stubbs A, Vroegindeweij E, Smits W, et al. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study. PLoS Med. 2016;13:e1002200 pubmed 出版商
  77. Ontsouka C, Huang X, Aliyev E, Albrecht C. In vitro characterization and endocrine regulation of cholesterol and phospholipid transport in the mammary gland. Mol Cell Endocrinol. 2017;439:35-45 pubmed 出版商
  78. Wu M, Hamaker M, Li L, Small D, Duffield A. DOCK2 interacts with FLT3 and modulates the survival of FLT3-expressing leukemia cells. Leukemia. 2017;31:688-696 pubmed 出版商
  79. Southworth T, Plumb J, Gupta V, Pearson J, Ramis I, Lehner M, et al. Anti-inflammatory potential of PI3K? and JAK inhibitors in asthma patients. Respir Res. 2016;17:124 pubmed
  80. Ma Y, Chen L, Xie G, Zhou Y, Yue C, Yuan X, et al. Elevated level of interleukin-35 in colorectal cancer induces conversion of T cells into iTr35 by activating STAT1/STAT3. Oncotarget. 2016;7:73003-73015 pubmed 出版商
  81. Christensen B, Nellemann B, Jørgensen J, Pedersen S, Jessen N. Erythropoietin does not activate erythropoietin receptor signaling or lipolytic pathways in human subcutaneous white adipose tissue in vivo. Lipids Health Dis. 2016;15:160 pubmed 出版商
  82. Chakhtoura Z, Laki F, Bernadet M, Cherifi I, Chiche A, Pigat N, et al. Gain-of-function Prolactin Receptor Variants Are Not Associated With Breast Cancer and Multiple Fibroadenoma Risk. J Clin Endocrinol Metab. 2016;101:4449-4460 pubmed
  83. Guo L, Costanzo Garvey D, Smith D, Zavorka M, Venable Kang M, MacDonald R, et al. Cell non-autonomous regulation of hepatic IGF-1 and neonatal growth by Kinase Suppressor of Ras 2 (KSR2). Sci Rep. 2016;6:32093 pubmed 出版商
  84. Kagoya Y, Nakatsugawa M, Yamashita Y, Ochi T, Guo T, Anczurowski M, et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest. 2016;126:3479-94 pubmed 出版商
  85. Gusscott S, Jenkins C, Lam S, Giambra V, Pollak M, Weng A. IGF1R Derived PI3K/AKT Signaling Maintains Growth in a Subset of Human T-Cell Acute Lymphoblastic Leukemias. PLoS ONE. 2016;11:e0161158 pubmed 出版商
  86. Kritikou J, Dahlberg C, Baptista M, Wagner A, Banerjee P, Gwalani L, et al. IL-2 in the tumor microenvironment is necessary for Wiskott-Aldrich syndrome protein deficient NK cells to respond to tumors in vivo. Sci Rep. 2016;6:30636 pubmed 出版商
  87. Weiss J, Chen W, Nyuydzefe M, Trzeciak A, Flynn R, Tonra J, et al. ROCK2 signaling is required to induce a subset of T follicular helper cells through opposing effects on STATs in autoimmune settings. Sci Signal. 2016;9:ra73 pubmed 出版商
  88. Sashida G, Wang C, Tomioka T, Oshima M, Aoyama K, Kanai A, et al. The loss of Ezh2 drives the pathogenesis of myelofibrosis and sensitizes tumor-initiating cells to bromodomain inhibition. J Exp Med. 2016;213:1459-77 pubmed 出版商
  89. Zea A, Stewart T, Ascani J, Tate D, Finkel Jimenez B, Wilk A, et al. Activation of the IL-2 Receptor in Podocytes: A Potential Mechanism for Podocyte Injury in Idiopathic Nephrotic Syndrome?. PLoS ONE. 2016;11:e0157907 pubmed 出版商
  90. Barcus C, Keely P, Eliceiri K, Schuler L. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells. Oncotarget. 2016;7:48093-48106 pubmed 出版商
  91. Marzesco A, Flötenmeyer M, Bühler A, Obermüller U, Staufenbiel M, Jucker M, et al. Highly potent intracellular membrane-associated A? seeds. Sci Rep. 2016;6:28125 pubmed 出版商
  92. Michl C, Vivarelli F, Weigl J, De Nicola G, Canistro D, Paolini M, et al. The Chemopreventive Phytochemical Moringin Isolated from Moringa oleifera Seeds Inhibits JAK/STAT Signaling. PLoS ONE. 2016;11:e0157430 pubmed 出版商
  93. Chesnokova V, Zonis S, Zhou C, Recouvreux M, Ben Shlomo A, Araki T, et al. Growth hormone is permissive for neoplastic colon growth. Proc Natl Acad Sci U S A. 2016;113:E3250-9 pubmed 出版商
  94. Kobayashi K, Tsugami Y, Matsunaga K, Oyama S, Kuki C, Kumura H. Prolactin and glucocorticoid signaling induces lactation-specific tight junctions concurrent with ?-casein expression in mammary epithelial cells. Biochim Biophys Acta. 2016;1863:2006-16 pubmed 出版商
  95. Swamy M, Pathak S, Grzes K, Damerow S, Sinclair L, van Aalten D, et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat Immunol. 2016;17:712-20 pubmed 出版商
  96. O Leary C, Riling C, Spruce L, Ding H, Kumar S, Deng G, et al. Ndfip-mediated degradation of Jak1 tunes cytokine signalling to limit expansion of CD4+ effector T cells. Nat Commun. 2016;7:11226 pubmed 出版商
  97. Pinz S, Unser S, Rascle A. Signal transducer and activator of transcription STAT5 is recruited to c-Myc super-enhancer. BMC Mol Biol. 2016;17:10 pubmed 出版商
  98. Rooney N, Wang P, Brennan K, Gilmore A, Streuli C. The Integrin-Mediated ILK-Parvin-?Pix Signaling Axis Controls Differentiation in Mammary Epithelial Cells. J Cell Physiol. 2016;231:2408-17 pubmed 出版商
  99. Tosiek M, Fiette L, El Daker S, Eberl G, Freitas A. IL-15-dependent balance between Foxp3 and RORγt expression impacts inflammatory bowel disease. Nat Commun. 2016;7:10888 pubmed 出版商
  100. Gomez Rodriguez J, Meylan F, Handon R, Hayes E, Anderson S, Kirby M, et al. Itk is required for Th9 differentiation via TCR-mediated induction of IL-2 and IRF4. Nat Commun. 2016;7:10857 pubmed 出版商
  101. Bigenzahn J, Fauster A, Rebsamen M, Kandasamy R, Scorzoni S, Vladimer G, et al. An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client. Mol Cell Proteomics. 2016;15:1139-50 pubmed
  102. Schwarzer M, Makki K, Storelli G, Machuca Gayet I, Srůtková D, Hermanova P, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science. 2016;351:854-7 pubmed 出版商
  103. Kim J, He X, Orr B, Wutz G, Hill V, Peters J, et al. Intact Cohesion, Anaphase, and Chromosome Segregation in Human Cells Harboring Tumor-Derived Mutations in STAG2. PLoS Genet. 2016;12:e1005865 pubmed 出版商
  104. Vieyra Garcia P, Wei T, Naym D, Fredholm S, Fink Puches R, Cerroni L, et al. STAT3/5-Dependent IL9 Overexpression Contributes to Neoplastic Cell Survival in Mycosis Fungoides. Clin Cancer Res. 2016;22:3328-39 pubmed 出版商
  105. Chen K, Yang J, Li J, Wang X, Chen Y, Huang S, et al. eIF4B is a convergent target and critical effector of oncogenic Pim and PI3K/Akt/mTOR signaling pathways in Abl transformants. Oncotarget. 2016;7:10073-89 pubmed 出版商
  106. Derangère V, Fumet J, Boidot R, Bengrine L, Limagne E, Chevriaux A, et al. Does bevacizumab impact anti-EGFR therapy efficacy in metastatic colorectal cancer?. Oncotarget. 2016;7:9309-21 pubmed 出版商
  107. Bothur E, Raifer H, Haftmann C, Stittrich A, Brüstle A, Brenner D, et al. Antigen receptor-mediated depletion of FOXP3 in induced regulatory T-lymphocytes via PTPN2 and FOXO1. Nat Commun. 2015;6:8576 pubmed 出版商
  108. Menter T, Dickenmann M, Juskevicius D, Steiger J, Dirnhofer S, Tzankov A. Comprehensive phenotypic characterization of PTLD reveals potential reliance on EBV or NF-κB signalling instead of B-cell receptor signalling. Hematol Oncol. 2017;35:187-197 pubmed 出版商
  109. Ikeda S, Kitadate A, Ito M, Abe F, Nara M, Watanabe A, et al. Disruption of CCL20-CCR6 interaction inhibits metastasis of advanced cutaneous T-cell lymphoma. Oncotarget. 2016;7:13563-74 pubmed 出版商
  110. Watari K, Shibata T, Nabeshima H, Shinoda A, Fukunaga Y, Kawahara A, et al. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice. Sci Rep. 2016;6:19470 pubmed 出版商
  111. Kitayama M, Mizutani K, Maruoka M, Mandai K, Sakakibara S, Ueda Y, et al. A Novel Nectin-mediated Cell Adhesion Apparatus That Is Implicated in Prolactin Receptor Signaling for Mammary Gland Development. J Biol Chem. 2016;291:5817-31 pubmed 出版商
  112. McDonald P, Read K, Baker C, Anderson A, Powell M, Ballesteros Tato A, et al. IL-7 signalling represses Bcl-6 and the TFH gene program. Nat Commun. 2016;7:10285 pubmed 出版商
  113. Ao J, Wei C, Si Y, Luo C, Lv W, Lin Y, et al. Tudor-SN Regulates Milk Synthesis and Proliferation of Bovine Mammary Epithelial Cells. Int J Mol Sci. 2015;16:29936-47 pubmed 出版商
  114. Liao S, Vickers M, Stanley J, Ponnampalam A, Baker P, Perry J. The Placental Variant of Human Growth Hormone Reduces Maternal Insulin Sensitivity in a Dose-Dependent Manner in C57BL/6J Mice. Endocrinology. 2016;157:1175-86 pubmed 出版商
  115. Green A, Maciel T, Hospital M, Yin C, Mazed F, Townsend E, et al. Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia. Sci Adv. 2015;1:e1500221 pubmed 出版商
  116. Wen Q, Yang Q, Goldenson B, Malinge S, Lasho T, Schneider R, et al. Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nat Med. 2015;21:1473-80 pubmed 出版商
  117. Ksionda O, Melton A, Bache J, Tenhagen M, Bakker J, Harvey R, et al. RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines. Oncogene. 2016;35:3658-68 pubmed 出版商
  118. Ko T, Chin H, Chuah C, Huang J, Ng K, Khaw S, et al. The BIM deletion polymorphism: A paradigm of a permissive interaction between germline and acquired TKI resistance factors in chronic myeloid leukemia. Oncotarget. 2016;7:2721-33 pubmed 出版商
  119. Moravcová S, ÄŒervená K, Pačesová D, Bendová Z. Identification of STAT3 and STAT5 proteins in the rat suprachiasmatic nucleus and the Day/Night difference in astrocytic STAT3 phosphorylation in response to lipopolysaccharide. J Neurosci Res. 2016;94:99-108 pubmed 出版商
  120. Xiao X, Shi X, Fan Y, Zhang X, Wu M, Lan P, et al. GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation. Nat Commun. 2015;6:8266 pubmed 出版商
  121. Saliba J, Saint Martin C, Di Stefano A, Lenglet G, Marty C, Keren B, et al. Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies. Nat Genet. 2015;47:1131-40 pubmed 出版商
  122. Ahn J, Li J, Chen E, Kent D, Park H, Green A. JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation. Oncogene. 2016;35:2235-46 pubmed 出版商
  123. He C, Medley S, Hu T, Hinsdale M, Lupu F, Virmani R, et al. PDGFRβ signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis. Nat Commun. 2015;6:7770 pubmed 出版商
  124. Goodman C, Sato T, Peck A, Girondo M, Yang N, Liu C, et al. Steroid induction of therapy-resistant cytokeratin-5-positive cells in estrogen receptor-positive breast cancer through a BCL6-dependent mechanism. Oncogene. 2016;35:1373-85 pubmed 出版商
  125. Seto D, Kandarian S, Jackman R. A Key Role for Leukemia Inhibitory Factor in C26 Cancer Cachexia. J Biol Chem. 2015;290:19976-86 pubmed 出版商
  126. McGirt L, Jia P, Baerenwald D, Duszynski R, Dahlman K, Zic J, et al. Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides. Blood. 2015;126:508-19 pubmed 出版商
  127. Bernichtein S, Pigat N, Capiod T, Boutillon F, Verkarre V, Camparo P, et al. High milk consumption does not affect prostate tumor progression in two mouse models of benign and neoplastic lesions. PLoS ONE. 2015;10:e0125423 pubmed 出版商
  128. Suzuki M, Takeda T, Nakagawa H, Iwata S, Watanabe T, Siddiquey M, et al. The heat shock protein 90 inhibitor BIIB021 suppresses the growth of T and natural killer cell lymphomas. Front Microbiol. 2015;6:280 pubmed 出版商
  129. Zhang C, Nygaard M, Haxholm G, Boutillon F, Bernadet M, Hoos S, et al. A Residue Quartet in the Extracellular Domain of the Prolactin Receptor Selectively Controls Mitogen-activated Protein Kinase Signaling. J Biol Chem. 2015;290:11890-904 pubmed 出版商
  130. Nasr R, Hmadi R, El Eit R, Iskandarani A, Jabbour M, Zaatari G, et al. ST1926, an orally active synthetic retinoid, induces apoptosis in chronic myeloid leukemia cells and prolongs survival in a murine model. Int J Cancer. 2015;137:698-709 pubmed 出版商
  131. Krysiak K, Tibbitts J, Shao J, Liu T, Ndonwi M, Walter M. Reduced levels of Hspa9 attenuate Stat5 activation in mouse B cells. Exp Hematol. 2015;43:319-30.e10 pubmed 出版商
  132. Machado Neto J, Lazarini M, Favaro P, de Melo Campos P, Scopim Ribeiro R, Franchi Junior G, et al. ANKHD1 silencing inhibits Stathmin 1 activity, cell proliferation and migration of leukemia cells. Biochim Biophys Acta. 2015;1853:583-93 pubmed 出版商
  133. Yoda A, Adelmant G, Tamburini J, Chapuy B, Shindoh N, Yoda Y, et al. Mutations in G protein β subunits promote transformation and kinase inhibitor resistance. Nat Med. 2015;21:71-5 pubmed 出版商
  134. Nguyen M, Boutinaud M, Pétridou B, Gabory A, Pannetier M, Chat S, et al. DNA methylation and transcription in a distal region upstream from the bovine AlphaS1 casein gene after once or twice daily milking. PLoS ONE. 2014;9:e111556 pubmed 出版商
  135. Jay J, Hammer A, Nestor Kalinoski A, Diakonova M. JAK2 tyrosine kinase phosphorylates and is negatively regulated by centrosomal protein Ninein. Mol Cell Biol. 2015;35:111-31 pubmed 出版商
  136. Xie L, Choudhury G, Winters A, Yang S, Jin K. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. Eur J Immunol. 2015;45:180-91 pubmed 出版商
  137. Sackmann Sala L, Chiche A, Mosquera Garrote N, Boutillon F, Cordier C, Pourmir I, et al. Prolactin-induced prostate tumorigenesis links sustained Stat5 signaling with the amplification of basal/stem cells and emergence of putative luminal progenitors. Am J Pathol. 2014;184:3105-19 pubmed 出版商
  138. Côté Maurais G, Bernier J. Silver and fullerene nanoparticles' effect on interleukin-2-dependent proliferation of CD4 (+) T cells. Toxicol In Vitro. 2014;28:1474-81 pubmed 出版商
  139. Bending D, Pesenacker A, Ursu S, Wu Q, Lom H, Thirugnanabalan B, et al. Hypomethylation at the regulatory T cell-specific demethylated region in CD25hi T cells is decoupled from FOXP3 expression at the inflamed site in childhood arthritis. J Immunol. 2014;193:2699-708 pubmed 出版商
  140. Chou C, Pinto A, Curtis J, Persaud S, Cella M, Lin C, et al. c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells. Nat Immunol. 2014;15:884-93 pubmed 出版商
  141. Bachmann S, Frommel S, Camicia R, Winkler H, Santoro R, Hassa P. DTX3L and ARTD9 inhibit IRF1 expression and mediate in cooperation with ARTD8 survival and proliferation of metastatic prostate cancer cells. Mol Cancer. 2014;13:125 pubmed 出版商
  142. Hashimoto M, Nasser H, Chihara T, Suzu S. Macropinocytosis and TAK1 mediate anti-inflammatory to pro-inflammatory macrophage differentiation by HIV-1 Nef. Cell Death Dis. 2014;5:e1267 pubmed 出版商
  143. Gu L, Talati P, Vogiatzi P, Romero Weaver A, Abdulghani J, Liao Z, et al. Pharmacologic suppression of JAK1/2 by JAK1/2 inhibitor AZD1480 potently inhibits IL-6-induced experimental prostate cancer metastases formation. Mol Cancer Ther. 2014;13:1246-58 pubmed 出版商
  144. Datta P, Yang B, Linhardt R, Sharfstein S. Modulation of heparan sulfate biosynthesis by sodium butyrate in recombinant CHO cells. Cytotechnology. 2015;67:223-35 pubmed 出版商
  145. Chan S, Rickert C, Vermi W, Sheehan K, Arthur C, Allen J, et al. Dysregulated STAT1-SOCS1 control of JAK2 promotes mammary luminal progenitor cell survival and drives ER?(+) tumorigenesis. Cell Death Differ. 2014;21:234-46 pubmed 出版商
  146. Brooks E, Little D, Arumugam R, Sun B, Curtis S, Demaster A, et al. Pathogenesis of growth failure and partial reversal with gene therapy in murine and canine Glycogen Storage Disease type Ia. Mol Genet Metab. 2013;109:161-70 pubmed 出版商
  147. Elsarraj H, Hong Y, Valdez K, Carletti M, Salah S, Raimo M, et al. A novel role of microRNA146b in promoting mammary alveolar progenitor cell maintenance. J Cell Sci. 2013;126:2446-58 pubmed 出版商
  148. Hoff P, Rakow A, Gaber T, Hahne M, Sentürk U, Strehl C, et al. Preoperative irradiation for the prevention of heterotopic ossification induces local inflammation in humans. Bone. 2013;55:93-101 pubmed 出版商
  149. Wu N, Kurosu T, Oshikawa G, Nagao T, Miura O. PECAM-1 is involved in BCR/ABL signaling and may downregulate imatinib-induced apoptosis of Philadelphia chromosome-positive leukemia cells. Int J Oncol. 2013;42:419-28 pubmed 出版商
  150. Yip S, Eguchi R, Grattan D, Bunn S. Prolactin signalling in the mouse hypothalamus is primarily mediated by signal transducer and activator of transcription factor 5b but not 5a. J Neuroendocrinol. 2012;24:1484-91 pubmed 出版商
  151. Barros P, Lam E, Jordan P, Matos P. Rac1 signalling modulates a STAT5/BCL-6 transcriptional switch on cell-cycle-associated target gene promoters. Nucleic Acids Res. 2012;40:7776-87 pubmed 出版商
  152. Zhao H, Pearson E, Brooks D, Coon J, Chen D, Demura M, et al. A humanized pattern of aromatase expression is associated with mammary hyperplasia in mice. Endocrinology. 2012;153:2701-13 pubmed 出版商
  153. Oestreich K, Mohn S, Weinmann A. Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. Nat Immunol. 2012;13:405-11 pubmed 出版商
  154. Modi H, Li L, Chu S, Rossi J, Yee J, Bhatia R. Inhibition of Grb2 expression demonstrates an important role in BCR-ABL-mediated MAPK activation and transformation of primary human hematopoietic cells. Leukemia. 2011;25:305-12 pubmed 出版商
  155. Kabotyanski E, Huetter M, Xian W, Rijnkels M, Rosen J. Integration of prolactin and glucocorticoid signaling at the beta-casein promoter and enhancer by ordered recruitment of specific transcription factors and chromatin modifiers. Mol Endocrinol. 2006;20:2355-68 pubmed
  156. Duensing A, Medeiros F, McConarty B, Joseph N, Panigrahy D, Singer S, et al. Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene. 2004;23:3999-4006 pubmed
  157. Fisher R, Slayton W, Chien C, Guthrie S, Bray C, Scott E. PU.1 supports proliferation of immature erythroid progenitors. Leuk Res. 2004;28:83-9 pubmed
  158. Wang R, Vadlamudi R, Bagheri Yarmand R, Beuvink I, Hynes N, Kumar R. Essential functions of p21-activated kinase 1 in morphogenesis and differentiation of mammary glands. J Cell Biol. 2003;161:583-92 pubmed
  159. Aittomaki S, Pesu M, Groner B, Janne O, Palvimo J, Silvennoinen O. Cooperation among Stat1, glucocorticoid receptor, and PU.1 in transcriptional activation of the high-affinity Fc gamma receptor I in monocytes. J Immunol. 2000;164:5689-97 pubmed