这是一篇来自已证抗体库的有关人类 SUMO-1 (SUMO-1) 的综述,是根据131篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合SUMO-1 抗体。
SUMO-1 同义词: DAP1; GMP1; OFC10; PIC1; SENP2; SMT3; SMT3C; SMT3H3; UBL1

赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5c
赛默飞世尔SUMO-1抗体(ThermoFisher, PA5-11375)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). BMC Biol (2020) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 图 1
赛默飞世尔SUMO-1抗体(Thermofisher, 33-2400)被用于被用于免疫印迹在人类样本上 (图 1). Methods Mol Biol (2017) ncbi
小鼠 单克隆(21C7)
  • 免疫细胞化学; Northern mole vole; 1:250; 图 3
  • 免疫细胞化学; Zaisan mole vole; 1:250; 图 3
赛默飞世尔SUMO-1抗体(Zymed, 33-2400)被用于被用于免疫细胞化学在Northern mole vole样本上浓度为1:250 (图 3) 和 被用于免疫细胞化学在Zaisan mole vole样本上浓度为1:250 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔SUMO-1抗体(Invitrogen, 33-2400)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2016) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 1:500; 图 6
赛默飞世尔SUMO-1抗体(Zymed, 33-2400)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 图 1
赛默飞世尔SUMO-1抗体(Invitrogen, 33-2400)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2016) ncbi
小鼠 单克隆(21C7)
  • 免疫组化-石蜡切片; 人类; 1:500; 表 1
赛默飞世尔SUMO-1抗体(Invitrogen, 21C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (表 1). Neuropathology (2016) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛默飞世尔SUMO-1抗体(Invitrogen, 33-2400)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Nat Commun (2015) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛默飞世尔SUMO-1抗体(Zymed, 33-2400)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Nat Commun (2015) ncbi
小鼠 单克隆(21C7)
  • 酶联免疫吸附测定; 人类
赛默飞世尔SUMO-1抗体(生活技术, 33-2400)被用于被用于酶联免疫吸附测定在人类样本上. Methods Mol Biol (2015) ncbi
小鼠 单克隆(21C7)
  • 免疫细胞化学; 小鼠; 1:100; 图 s6
赛默飞世尔SUMO-1抗体(Invitrogen, 21C7)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s6). PLoS Genet (2015) ncbi
小鼠 单克隆(21C7)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 9
赛默飞世尔SUMO-1抗体(Invitrogen, 33-2400)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 9). Autophagy (2015) ncbi
小鼠 单克隆(21C7)
  • 免疫沉淀; 猕猴; 图 3
赛默飞世尔SUMO-1抗体(生活技术, 33-2400)被用于被用于免疫沉淀在猕猴样本上 (图 3). Mol Endocrinol (2014) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔SUMO-1抗体(生活技术, 33-2400)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 图 3, 4, 5
赛默飞世尔SUMO-1抗体(Invitrogen, 21C7)被用于被用于免疫印迹在人类样本上 (图 3, 4, 5). Oncogene (2015) ncbi
小鼠 单克隆(21C7)
  • 免疫组化-石蜡切片; 人类; 1:500
赛默飞世尔SUMO-1抗体(Invitrogen, 21C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Neuropathology (2014) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 1:500
赛默飞世尔SUMO-1抗体(ZYMED, 21C7)被用于被用于免疫印迹在人类样本上浓度为1:500. Nature (2014) ncbi
小鼠 单克隆(21C7)
  • 免疫沉淀; 人类; 1:1000; 图 2
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫沉淀在人类样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncogene (2014) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类
赛默飞世尔SUMO-1抗体(Invitrogen, 33-2400)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 图 1
赛默飞世尔SUMO-1抗体(Invitrogen, 33-2400)被用于被用于免疫印迹在人类样本上 (图 1). Epigenetics (2013) ncbi
小鼠 单克隆(21C7)
  • 免疫组化; 小鼠; 1:200; 图 1
赛默飞世尔SUMO-1抗体(Invitrogen, 33-2400)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1). Nat Commun (2013) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 图 1
赛默飞世尔SUMO-1抗体(Invitrogen, 33-2400)被用于被用于免疫印迹在人类样本上 (图 1). Mol Endocrinol (2013) ncbi
小鼠 单克隆(21C7)
  • 免疫组化-石蜡切片; 人类; 1:800
赛默飞世尔SUMO-1抗体(Zymed Laboratories, 21C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800. Neuropathology (2013) ncbi
小鼠 单克隆(21C7)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 1
赛默飞世尔SUMO-1抗体(Invitrogen, clone 21C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 1). Pathol Int (2012) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 图 1
赛默飞世尔SUMO-1抗体(Invitrogen, 33-2400)被用于被用于免疫印迹在人类样本上 (图 1). J Virol (2012) ncbi
小鼠 单克隆(21C7)
  • 免疫细胞化学; 大鼠; 1:100; 图 10
赛默飞世尔SUMO-1抗体(Zymed, 33-2400)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 10). Chromosoma (2012) ncbi
小鼠 单克隆(21C7)
  • 免疫沉淀; 人类; 图 4
赛默飞世尔SUMO-1抗体(Zymed, 33-2400)被用于被用于免疫沉淀在人类样本上 (图 4). Methods (2011) ncbi
小鼠 单克隆(21C7)
  • 免疫细胞化学; 人类; 图 6
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫细胞化学在人类样本上 (图 6). Mol Cell Biol (2011) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 图 1
赛默飞世尔SUMO-1抗体(Zymed, 33-2400)被用于被用于免疫印迹在人类样本上 (图 1). Cell Mol Life Sci (2011) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 图 6
  • 免疫组化; 大鼠; 图 7
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫印迹在人类样本上 (图 6) 和 被用于免疫组化在大鼠样本上 (图 7). Biochim Biophys Acta (2011) ncbi
小鼠 单克隆(21C7)
  • 免疫细胞化学; 人类
赛默飞世尔SUMO-1抗体(Zymed, 33-2400)被用于被用于免疫细胞化学在人类样本上. Oncogene (2011) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔SUMO-1抗体(Invitrogen, clone 21C7)被用于被用于免疫印迹在小鼠样本上 (图 4). Cell Death Differ (2011) ncbi
小鼠 单克隆(21C7)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 1
赛默飞世尔SUMO-1抗体(Invitrogen Corp., 21C7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 1). Neuropathology (2011) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 图 5
赛默飞世尔SUMO-1抗体(Zymed, 33-2400)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2010) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 图 6
赛默飞世尔SUMO-1抗体(Zymed Laboratories, 33-2400)被用于被用于免疫印迹在人类样本上 (图 6). J Biol Chem (2010) ncbi
小鼠 单克隆(21C7)
  • 免疫组化; 小鼠; 1:50; 图 1
  • 免疫印迹; 小鼠; 1:500; 图 4
赛默飞世尔SUMO-1抗体(ZYMED, clone 21C7)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Cell Cycle (2010) ncbi
小鼠 单克隆(21C7)
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔SUMO-1抗体(Zymed laboratories, 33-2400)被用于被用于免疫细胞化学在小鼠样本上 (图 2). Int J Cell Biol (2009) ncbi
小鼠 单克隆(21C7)
  • 免疫细胞化学; 鸡; 1:200
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫细胞化学在鸡样本上浓度为1:200. J Immunol (2009) ncbi
小鼠 单克隆(21C7)
  • 免疫细胞化学; 大鼠; 1:50; 图 s3
赛默飞世尔SUMO-1抗体(ZYMED, 33?C2400)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 s3). PLoS Genet (2009) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔SUMO-1抗体(Invitrogen, 33-2400)被用于被用于免疫印迹在小鼠样本上 (图 1). J Biol Chem (2009) ncbi
小鼠 单克隆(21C7)
  • 免疫沉淀; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔SUMO-1抗体(Zymed Laboratories, 21C7)被用于被用于免疫沉淀在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Mol Cell Proteomics (2009) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫印迹在人类样本上. Arthritis Rheum (2009) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 图 4
赛默飞世尔SUMO-1抗体(Zymed, 33-2,400)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Biochem (2009) ncbi
小鼠 单克隆(21C7)
  • 免疫细胞化学; 大鼠; 1:10; 图 2
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫细胞化学在大鼠样本上浓度为1:10 (图 2). J Struct Biol (2008) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类
赛默飞世尔SUMO-1抗体(Zymed Laboratories, 21C7)被用于被用于免疫印迹在人类样本上. Mol Cell Proteomics (2008) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫印迹在人类样本上. Cell Cycle (2008) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 图 1
赛默飞世尔SUMO-1抗体(Zymed Laboratories, 21C7)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cell Biol (2008) ncbi
小鼠 单克隆(21C7)
  • 免疫细胞化学; 人类; 1:50
  • 免疫印迹; 人类
赛默飞世尔SUMO-1抗体(Zymed Laboratories, 21C7)被用于被用于免疫细胞化学在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上. Mol Cell Proteomics (2008) ncbi
小鼠 单克隆(21C7)
  • 免疫细胞化学; 人类
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫细胞化学在人类样本上. Chromosoma (2007) ncbi
小鼠 单克隆(21C7)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔SUMO-1抗体(Zymed, 33-2400)被用于被用于免疫组化在小鼠样本上浓度为1:200. PLoS Genet (2007) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 1:200; 图 1
赛默飞世尔SUMO-1抗体(Invitrogen, 21C7)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1). J Proteome Res (2007) ncbi
小鼠 单克隆(21C7)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔SUMO-1抗体(Zymed, 33-2400)被用于被用于免疫细胞化学在人类样本上 (图 5). Mol Cell Proteomics (2007) ncbi
小鼠 单克隆(21C7)
  • 免疫细胞化学; African green monkey; 图 5
  • 免疫印迹; African green monkey; 图 2
赛默飞世尔SUMO-1抗体(Zymed, 33-2400)被用于被用于免疫细胞化学在African green monkey样本上 (图 5) 和 被用于免疫印迹在African green monkey样本上 (图 2). Mol Cell Biol (2007) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2007) ncbi
小鼠 单克隆(21C7)
  • 免疫细胞化学; 人类; 图 5D
  • 免疫印迹; 人类; 图 5B
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫细胞化学在人类样本上 (图 5D) 和 被用于免疫印迹在人类样本上 (图 5B). Mol Cell (2006) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 大鼠; 图 4
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫印迹在大鼠样本上 (图 4). Toxicol Sci (2006) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 图 1
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cell Proteomics (2006) ncbi
小鼠 单克隆(21C7)
  • 免疫细胞化学; 人类; 图 S7
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫细胞化学在人类样本上 (图 S7). J Cell Sci (2006) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 图 1
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2006) ncbi
小鼠 单克隆(21C7)
  • 免疫细胞化学; African green monkey
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫细胞化学在African green monkey样本上. Neurobiol Dis (2005) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫印迹在人类样本上. Arch Virol (2005) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 图 3A
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫印迹在人类样本上 (图 3A). Cell Cycle (2005) ncbi
小鼠 单克隆(21C7)
  • 免疫沉淀; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫沉淀在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Oncogene (2005) ncbi
小鼠 单克隆(21C7)
  • 免疫沉淀; 人类; 图 2b
  • 免疫沉淀; 大鼠; 图 2c
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫沉淀在人类样本上 (图 2b) 和 被用于免疫沉淀在大鼠样本上 (图 2c). Cancer Res (2004) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫印迹在人类样本上. Genes Cells (2004) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 图 3
赛默飞世尔SUMO-1抗体(Zymed, 33-2400)被用于被用于免疫印迹在人类样本上 (图 3). Cell Signal (2005) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫印迹在人类样本上. J Biol Chem (2004) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 图 2
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫印迹在人类样本上 (图 2). J Virol (2004) ncbi
小鼠 单克隆(21C7)
  • EMSA; 人类; 图 8
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于EMSA在人类样本上 (图 8). Mol Endocrinol (2004) ncbi
小鼠 单克隆(21C7)
  • 免疫沉淀; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫沉淀在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Proc Natl Acad Sci U S A (2004) ncbi
小鼠 单克隆(21C7)
  • 免疫组化; 人类; 1:500; 图 2
  • 免疫印迹; 人类; 图 5
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2) 和 被用于免疫印迹在人类样本上 (图 5). Exp Neurol (2003) ncbi
小鼠 单克隆(21C7)
  • 免疫细胞化学; 人类; 1:400
  • 免疫细胞化学; 小鼠
赛默飞世尔SUMO-1抗体(Zymed, 33-2400)被用于被用于免疫细胞化学在人类样本上浓度为1:400 和 被用于免疫细胞化学在小鼠样本上. Exp Cell Res (2003) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 图 2
  • 免疫细胞化学; 大鼠; 图 5a
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫印迹在人类样本上 (图 2) 和 被用于免疫细胞化学在大鼠样本上 (图 5a). Proc Natl Acad Sci U S A (2001) ncbi
小鼠 单克隆(21C7)
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔SUMO-1抗体(Zymed Laboratories, clone 21C7)被用于被用于免疫细胞化学在人类样本上 (图 4). J Biol Chem (2001) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2001) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫印迹在人类样本上. J Biol Chem (2000) ncbi
小鼠 单克隆(21C7)
  • 免疫沉淀; 人类; 5 ug
  • 免疫印迹; 人类
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫沉淀在人类样本上浓度为5 ug 和 被用于免疫印迹在人类样本上. J Biol Chem (2000) ncbi
小鼠 单克隆(21C7)
  • 免疫细胞化学; African green monkey; 图 5
  • 免疫印迹; African green monkey; 图 2
赛默飞世尔SUMO-1抗体(Zymed Laboratories, clone 21C7)被用于被用于免疫细胞化学在African green monkey样本上 (图 5) 和 被用于免疫印迹在African green monkey样本上 (图 2). J Biol Chem (2000) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫印迹在人类样本上. J Virol (2000) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (1999) ncbi
小鼠 单克隆(21C7)
  • 免疫印迹; 人类; 图 2
赛默飞世尔SUMO-1抗体(Zymed, 21C7)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cell (1998) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-11)
  • 免疫组化; 小鼠; 1:200; 图 7s1a
圣克鲁斯生物技术SUMO-1抗体(Santa Cruz, sc-5308)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7s1a). elife (2022) ncbi
小鼠 单克隆(D-11)
  • 免疫印迹; 小鼠; 图 1d
圣克鲁斯生物技术SUMO-1抗体(SANTA, sc-5308,)被用于被用于免疫印迹在小鼠样本上 (图 1d). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(D-11)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术SUMO-1抗体(SantaCruz, sc-5308)被用于被用于免疫印迹在人类样本上 (图 6a). Cell Res (2018) ncbi
小鼠 单克隆(D-11)
  • 免疫印迹; 大鼠; 图 6
圣克鲁斯生物技术SUMO-1抗体(Santa Cruz, sc-5308)被用于被用于免疫印迹在大鼠样本上 (图 6). FEBS Open Bio (2017) ncbi
小鼠 单克隆(D-11)
  • 免疫沉淀; 小鼠; 1:200
圣克鲁斯生物技术SUMO-1抗体(Santa Cruz biotechnology, sc-5308)被用于被用于免疫沉淀在小鼠样本上浓度为1:200. Nat Commun (2017) ncbi
小鼠 单克隆(D-11)
  • 免疫印迹; 人类; 1:1000; 图 st2
圣克鲁斯生物技术SUMO-1抗体(Santa Cruz, sc-5308)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st2). Transl Res (2016) ncbi
小鼠 单克隆(D-11)
  • 染色质免疫沉淀 ; African green monkey; 图 s5
圣克鲁斯生物技术SUMO-1抗体(Santa Cruz, sc-5308)被用于被用于染色质免疫沉淀 在African green monkey样本上 (图 s5). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(D-11)
  • 免疫印迹; 大鼠; 1:500; 图 1
圣克鲁斯生物技术SUMO-1抗体(Santa Cruz, sc-5308)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(D-11)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术SUMO-1抗体(Santa Cruz Biotechnology, sc-5308)被用于被用于免疫印迹在人类样本上 (图 3b). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(D-11)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术SUMO-1抗体(Santa Cruz Biotechnology, sc-5308)被用于被用于免疫印迹在大鼠样本上. Cell Signal (2014) ncbi
小鼠 单克隆(D-11)
  • 免疫印迹; 人类
圣克鲁斯生物技术SUMO-1抗体(Santa Cruz, sc-5308)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(D-11)
  • 免疫细胞化学; 人类; 1:50
  • 免疫印迹; 人类
圣克鲁斯生物技术SUMO-1抗体(Santa Cruz, sc-5308)被用于被用于免疫细胞化学在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上. J Biol Chem (2009) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 4b
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司SUMO-1抗体(Abcam, ab11672)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Int J Oncol (2020) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司SUMO-1抗体(Abcam, EP298)被用于被用于免疫印迹在人类样本上 (图 1a). PLoS ONE (2019) ncbi
domestic rabbit 单克隆(Y299)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司SUMO-1抗体(Abcam, ab32058)被用于被用于免疫印迹在人类样本上 (图 1a). Cancer Lett (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6d
艾博抗(上海)贸易有限公司SUMO-1抗体(Abcam, ab11672)被用于被用于免疫印迹在人类样本上 (图 6d). J Virol (2017) ncbi
domestic rabbit 单克隆(Y299)
  • 免疫组化-冰冻切片; 小鼠; 图 2c
艾博抗(上海)贸易有限公司SUMO-1抗体(Abcam, Y299)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2c). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(Y299)
  • 免疫细胞化学; 人类; 1:100; 图 3
  • 免疫印迹; 人类; 1:1000; 图 st2
艾博抗(上海)贸易有限公司SUMO-1抗体(Abcam, ab32058)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 st2). Transl Res (2016) ncbi
domestic rabbit 单克隆(Y299)
  • 免疫细胞化学; 小鼠; 1:100; 图 1
艾博抗(上海)贸易有限公司SUMO-1抗体(Abcam, ab32058)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1). Chromosoma (2016) ncbi
domestic rabbit 单克隆(Y299)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司SUMO-1抗体(Abcam, ab32058)被用于被用于免疫印迹在人类样本上 (图 1a). Nat Commun (2015) ncbi
domestic rabbit 单克隆(Y299)
  • 免疫印迹; 人类; 1:1000; 图 5c
艾博抗(上海)贸易有限公司SUMO-1抗体(Abcam, ab32058)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Biomolecules (2015) ncbi
domestic rabbit 单克隆(Y299)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司SUMO-1抗体(Abcam, ab32058)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(Y299)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司SUMO-1抗体(Abcam, ab32058)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(Y299)
  • 免疫印迹; 人类; 1:1000; 图 3e
艾博抗(上海)贸易有限公司SUMO-1抗体(Abcam, ab32058)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Nat Neurosci (2014) ncbi
domestic rabbit 单克隆(Y299)
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司SUMO-1抗体(Abcam, ab32058)被用于被用于染色质免疫沉淀 在人类样本上. BMC Genomics (2013) ncbi
domestic rabbit 单克隆(Y299)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司SUMO-1抗体(Abcam, ab32058)被用于被用于免疫印迹在人类样本上. J Cell Biol (2013) ncbi
domestic rabbit 单克隆(Y299)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司SUMO-1抗体(Abcam, ab32058)被用于被用于免疫细胞化学在人类样本上. J Virol (2013) ncbi
domestic rabbit 单克隆(Y299)
  • 免疫细胞化学; 人类; 1:250
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司SUMO-1抗体(Abcam, ab32058)被用于被用于免疫细胞化学在人类样本上浓度为1:250 和 被用于免疫印迹在人类样本上浓度为1:1000. Hum Reprod (2013) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司SUMO-1抗体(Cell Signaling, 4930S)被用于被用于免疫印迹在人类样本上 (图 5b). Nat Commun (2020) ncbi
domestic rabbit 单克隆(C9H1)
  • 免疫印迹; 小鼠; 1:1000; 图 s9
赛信通(上海)生物试剂有限公司SUMO-1抗体(Cell Signaling Technology, C9H1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司SUMO-1抗体(Cell Signaling Technology, 4930)被用于被用于免疫印迹在人类样本上 (图 3). FASEB J (2019) ncbi
domestic rabbit 单克隆(C9H1)
  • 免疫沉淀; 人类; 1:1000; 图 s6b
  • 免疫印迹; 人类; 1:1000; 图 s6b
赛信通(上海)生物试剂有限公司SUMO-1抗体(Cell Signaling Technology, C9H1)被用于被用于免疫沉淀在人类样本上浓度为1:1000 (图 s6b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s6b). Nucleic Acids Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 4a
赛信通(上海)生物试剂有限公司SUMO-1抗体(Cell Signaling, 4930)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Genes Dev (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司SUMO-1抗体(Cell Signaling, 4930s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4C
赛信通(上海)生物试剂有限公司SUMO-1抗体(Cell Signaling, 4930)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4C). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司SUMO-1抗体(cell signalling, 4930)被用于被用于免疫细胞化学在小鼠样本上 (图 3c). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 s3
赛信通(上海)生物试剂有限公司SUMO-1抗体(Cell Signaling Tech, 4930)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
  • 免疫组化; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司SUMO-1抗体(cell signalling, 4930)被用于被用于免疫印迹在人类样本上 (图 3a) 和 被用于免疫组化在小鼠样本上 (图 6d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; purple urchin; 1:100; 图 2a
赛信通(上海)生物试剂有限公司SUMO-1抗体(Cell Signaling Technology, 4930)被用于被用于免疫细胞化学在purple urchin样本上浓度为1:100 (图 2a). Dev Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司SUMO-1抗体(Cell Signaling Technology, 4930S)被用于被用于免疫印迹在人类样本上 (图 8). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1i
赛信通(上海)生物试剂有限公司SUMO-1抗体(Cell Signaling, 4930)被用于被用于免疫印迹在人类样本上 (图 1i). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 单克隆(C9H1)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司SUMO-1抗体(Cell signaling, 4940S)被用于被用于免疫印迹在人类样本上 (图 6). Expert Rev Mol Med (2016) ncbi
domestic rabbit 单克隆(C9H1)
赛信通(上海)生物试剂有限公司SUMO-1抗体(Cell Signaling, C9H1)被用于. Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(C9H1)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司SUMO-1抗体(Cell Signaling, C9H1)被用于被用于免疫印迹在小鼠样本上 (图 1). Drug Metab Dispos (2015) ncbi
domestic rabbit 单克隆(C9H1)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司SUMO-1抗体(Cell Signaling Technology, 4940)被用于被用于免疫印迹在小鼠样本上. J Cell Mol Med (2015) ncbi
domestic rabbit 单克隆(C9H1)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司SUMO-1抗体(Cell Signaling Technology, 4940)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:200. J Comp Neurol (2014) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(SUMO-1 21C7)
  • 免疫组化; 小鼠; 图 1
  • 免疫印迹; 小鼠; 图 1
Developmental Studies Hybridoma BankSUMO-1抗体(DSHB, 21C7)被用于被用于免疫组化在小鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Neuroscience (2017) ncbi
小鼠 单克隆(SUMO-1 21C7)
  • 免疫印迹; 大鼠; 1:1000; 图 1b
Developmental Studies Hybridoma BankSUMO-1抗体(hybridoma bank, 21C7)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1b). Nat Commun (2016) ncbi
小鼠 单克隆(SUMO-1 21C7)
  • 免疫印迹; 小鼠; 1:1000; 图 1
Developmental Studies Hybridoma BankSUMO-1抗体(DSHB, 21C7)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(SUMO-1 21C7)
  • 免疫细胞化学; 大鼠; 1:250; 图 1
Developmental Studies Hybridoma BankSUMO-1抗体(Developmental Studies Hybridoma Bank, 21C7)被用于被用于免疫细胞化学在大鼠样本上浓度为1:250 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(SUMO-1 21C7)
  • 免疫印迹; 人类; 图 2
Developmental Studies Hybridoma BankSUMO-1抗体(DSHB, 21C7)被用于被用于免疫印迹在人类样本上 (图 2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(SUMO-1 21C7)
  • 免疫印迹; 大鼠
Developmental Studies Hybridoma BankSUMO-1抗体(University of Iowa Hybridoma Bank, 21C7)被用于被用于免疫印迹在大鼠样本上. Cell Signal (2014) ncbi
小鼠 单克隆(SUMO-1 21C7)
  • 免疫印迹; 人类
Developmental Studies Hybridoma BankSUMO-1抗体(Developmental Studies Hybridoma Bank, 21C7)被用于被用于免疫印迹在人类样本上. Biochem J (2013) ncbi
MBL International
小鼠 单克隆(5B12)
  • 免疫印迹; 人类; 图 3a
MBL InternationalSUMO-1抗体(MBL, 5B12)被用于被用于免疫印迹在人类样本上 (图 3a). Toxicol Appl Pharmacol (2018) ncbi
小鼠 单克隆(5B12)
  • 免疫细胞化学; 小鼠; 图 4c
MBL InternationalSUMO-1抗体(MBL, 5B12)被用于被用于免疫细胞化学在小鼠样本上 (图 4c). PLoS Pathog (2016) ncbi
文章列表
  1. Yoshioka N, Kurose M, Yano M, Tran D, Okuda S, Mori Ochiai Y, et al. Isoform-specific mutation in Dystonin-b gene causes late-onset protein aggregate myopathy and cardiomyopathy. elife. 2022;11: pubmed 出版商
  2. Wang H, Xiong W, Hang S, Wang Y, Zhang S, Liu S. Depletion of SENP1-mediated PPARγ SUMOylation exaggerates intermittent hypoxia-induced cognitive decline by aggravating microglia-mediated neuroinflammation. Aging (Albany NY). 2021;13:15240-15254 pubmed 出版商
  3. Jiang Z, Zhang C, Liu X, Ma X, Bian X, Xiao X, et al. Dexamethasone inhibits stemness maintenance and enhances chemosensitivity of hepatocellular carcinoma stem cells by inducing deSUMOylation of HIF‑1α and Oct4. Int J Oncol. 2020;57:780-790 pubmed 出版商
  4. Szymura S, Bernal G, Wu L, Zhang Z, Crawley C, Voce D, et al. DDX39B interacts with the pattern recognition receptor pathway to inhibit NF-κB and sensitize to alkylating chemotherapy. BMC Biol. 2020;18:32 pubmed 出版商
  5. Zhou J, Cui S, He Q, Guo Y, Pan X, Zhang P, et al. SUMOylation inhibitors synergize with FXR agonists in combating liver fibrosis. Nat Commun. 2020;11:240 pubmed 出版商
  6. Bentz G, Lowrey A, Horne D, Nguyen V, Satterfield A, Ross T, et al. Using glycyrrhizic acid to target sumoylation processes during Epstein-Barr virus latency. PLoS ONE. 2019;14:e0217578 pubmed 出版商
  7. He Z, Zhang J, Huang Z, Du Q, Li N, Zhang Q, et al. Sumoylation of RORγt regulates TH17 differentiation and thymocyte development. Nat Commun. 2018;9:4870 pubmed 出版商
  8. Hirano S, Udagawa O, Kobayashi Y, Kato A. Solubility changes of promyelocytic leukemia (PML) and SUMO monomers and dynamics of PML nuclear body proteins in arsenite-treated cells. Toxicol Appl Pharmacol. 2018;360:150-159 pubmed 出版商
  9. Xiao N, Li H, Yu W, Gu C, Fang H, Peng Y, et al. SUMO-specific protease 2 (SENP2) suppresses keratinocyte migration by targeting NDR1 for de-SUMOylation. FASEB J. 2019;33:163-174 pubmed 出版商
  10. LI Y, Du L, Aldana Masangkay G, Wang X, Urak R, Forman S, et al. Regulation of miR-34b/c-targeted gene expression program by SUMOylation. Nucleic Acids Res. 2018;: pubmed 出版商
  11. Yu F, Shi G, Cheng S, Chen J, Wu S, Wang Z, et al. SUMO suppresses and MYC amplifies transcription globally by regulating CDK9 sumoylation. Cell Res. 2018;28:670-685 pubmed 出版商
  12. Liang Z, Yang Y, He Y, Yang P, Wang X, He G, et al. SUMOylation of IQGAP1 promotes the development of colorectal cancer. Cancer Lett. 2017;411:90-99 pubmed 出版商
  13. Yue X, Zhang C, Zhao Y, Liu J, Lin A, Tan V, et al. Gain-of-function mutant p53 activates small GTPase Rac1 through SUMOylation to promote tumor progression. Genes Dev. 2017;31:1641-1654 pubmed 出版商
  14. Chen S, Jeng K, Lai M. Zinc Finger-Containing Cellular Transcription Corepressor ZBTB25 Promotes Influenza Virus RNA Transcription and Is a Target for Zinc Ejector Drugs. J Virol. 2017;91: pubmed 出版商
  15. Qiu C, Wang Y, Zhao H, Qin L, Shi Y, Zhu X, et al. The critical role of SENP1-mediated GATA2 deSUMOylation in promoting endothelial activation in graft arteriosclerosis. Nat Commun. 2017;8:15426 pubmed 出版商
  16. Aukrust I, Rosenberg L, Ankerud M, Bertelsen V, Hollås H, Saraste J, et al. Post-translational modifications of Annexin A2 are linked to its association with perinuclear nonpolysomal mRNP complexes. FEBS Open Bio. 2017;7:160-173 pubmed 出版商
  17. Brügger V, Duman M, Bochud M, Münger E, Heller M, Ruff S, et al. Delaying histone deacetylase response to injury accelerates conversion into repair Schwann cells and nerve regeneration. Nat Commun. 2017;8:14272 pubmed 出版商
  18. Chakraborty K, Raundhal M, Chen B, Morse C, Tyurina Y, Khare A, et al. The mito-DAMP cardiolipin blocks IL-10 production causing persistent inflammation during bacterial pneumonia. Nat Commun. 2017;8:13944 pubmed 出版商
  19. Zhang L, Liu X, Sheng H, Liu S, Li Y, Zhao J, et al. Neuron-specific SUMO knockdown suppresses global gene expression response and worsens functional outcome after transient forebrain ischemia in mice. Neuroscience. 2017;343:190-212 pubmed 出版商
  20. Ghosh H, Auguadri L, Battaglia S, Simone Thirouin Z, Zemoura K, Messner S, et al. Several posttranslational modifications act in concert to regulate gephyrin scaffolding and GABAergic transmission. Nat Commun. 2016;7:13365 pubmed 出版商
  21. Citro S, Chiocca S. Assessing the Role of Paralog-Specific Sumoylation of HDAC1. Methods Mol Biol. 2017;1510:329-337 pubmed
  22. Maroui M, Callé A, Cohen C, Streichenberger N, Texier P, Takissian J, et al. Latency Entry of Herpes Simplex Virus 1 Is Determined by the Interaction of Its Genome with the Nuclear Environment. PLoS Pathog. 2016;12:e1005834 pubmed 出版商
  23. Du L, LI Y, Fakih M, Wiatrek R, Duldulao M, Chen Z, et al. Role of SUMO activating enzyme in cancer stem cell maintenance and self-renewal. Nat Commun. 2016;7:12326 pubmed 出版商
  24. Wu J, Lei H, Zhang J, Chen X, Tang C, Wang W, et al. Momordin Ic, a new natural SENP1 inhibitor, inhibits prostate cancer cell proliferation. Oncotarget. 2016;7:58995-59005 pubmed 出版商
  25. Matveevsky S, Bakloushinskaya I, Kolomiets O. Unique sex chromosome systems in Ellobius: How do male XX chromosomes recombine and undergo pachytene chromatin inactivation?. Sci Rep. 2016;6:29949 pubmed 出版商
  26. Oulhen N, Wessel G. Differential Nanos 2 protein stability results in selective germ cell accumulation in the sea urchin. Dev Biol. 2016;418:146-156 pubmed 出版商
  27. Gunasekharan V, Li Y, Andrade J, Laimins L. Post-Transcriptional Regulation of KLF4 by High-Risk Human Papillomaviruses Is Necessary for the Differentiation-Dependent Viral Life Cycle. PLoS Pathog. 2016;12:e1005747 pubmed 出版商
  28. Mo Z, Zhang Q, Liu Z, Lauer J, Shi Y, Sun L, et al. Neddylation requires glycyl-tRNA synthetase to protect activated E2. Nat Struct Mol Biol. 2016;23:730-7 pubmed 出版商
  29. Wang T, Xu W, Qin M, Yang Y, Bao P, Shen F, et al. Pathogenic Mutations in the Valosin-containing Protein/p97(VCP) N-domain Inhibit the SUMOylation of VCP and Lead to Impaired Stress Response. J Biol Chem. 2016;291:14373-84 pubmed 出版商
  30. Maure J, Moser S, Jaffray E, F Alpi A, Hay R. Loss of ubiquitin E2 Ube2w rescues hypersensitivity of Rnf4 mutant cells to DNA damage. Sci Rep. 2016;6:26178 pubmed 出版商
  31. Meng F, Qian J, Yue H, Li X, Xue K. SUMOylation of Rb enhances its binding with CDK2 and phosphorylation at early G1 phase. Cell Cycle. 2016;15:1724-32 pubmed 出版商
  32. Dai Y, Hung L, Chen R, Lai C, Chang K. ON 01910.Na inhibits growth of diffuse large B-cell lymphoma by cytoplasmic sequestration of sumoylated C-MYB/TRAF6 complex. Transl Res. 2016;175:129-143.e13 pubmed 出版商
  33. Toral Ojeda I, Aldanondo G, Lasa Elgarresta J, Lasa Fernández H, Fernandez Torron R, Lopez de Munain A, et al. Calpain 3 deficiency affects SERCA expression and function in the skeletal muscle. Expert Rev Mol Med. 2016;18:e7 pubmed 出版商
  34. Juárez Vicente F, Luna Pelaez N, Garcia Dominguez M. The Sumo protease Senp7 is required for proper neuronal differentiation. Biochim Biophys Acta. 2016;1863:1490-8 pubmed 出版商
  35. Ito M, Nakamura K, Mori F, Miki Y, Tanji K, Wakabayashi K. Novel eosinophilic neuronal cytoplasmic inclusions in the external cuneate nucleus of humans. Neuropathology. 2016;36:441-447 pubmed 出版商
  36. Cui W, Sun M, Zhang S, Shen X, Galeva N, Williams T, et al. A SUMO-acetyl switch in PXR biology. Biochim Biophys Acta. 2016;1859:1170-1182 pubmed 出版商
  37. Cloutier J, Mahadevaiah S, Elinati E, Tóth A, Turner J. Mammalian meiotic silencing exhibits sexually dimorphic features. Chromosoma. 2016;125:215-26 pubmed 出版商
  38. Hua G, Paulen L, Chambon P. GR SUMOylation and formation of an SUMO-SMRT/NCoR1-HDAC3 repressing complex is mandatory for GC-induced IR nGRE-mediated transrepression. Proc Natl Acad Sci U S A. 2016;113:E626-34 pubmed 出版商
  39. Craig T, Anderson D, Evans A, Girach F, Henley J. SUMOylation of Syntaxin1A regulates presynaptic endocytosis. Sci Rep. 2015;5:17669 pubmed 出版商
  40. Yan Y, Ollila S, Wong I, Vallenius T, Palvimo J, Vaahtomeri K, et al. SUMOylation of AMPKα1 by PIAS4 specifically regulates mTORC1 signalling. Nat Commun. 2015;6:8979 pubmed 出版商
  41. Chen C, Zhu C, Huang J, Zhao X, Deng R, Zhang H, et al. SUMOylation of TARBP2 regulates miRNA/siRNA efficiency. Nat Commun. 2015;6:8899 pubmed 出版商
  42. Mendes A, Grou C, Azevedo J, Pinto M. Evaluation of the activity and substrate specificity of the human SENP family of SUMO proteases. Biochim Biophys Acta. 2016;1863:139-47 pubmed 出版商
  43. Bish R, Cuevas Polo N, Cheng Z, Hambardzumyan D, Munschauer M, Landthaler M, et al. Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins. Biomolecules. 2015;5:1441-66 pubmed 出版商
  44. Hendriks I, D Souza R, Chang J, Mann M, Vertegaal A. System-wide identification of wild-type SUMO-2 conjugation sites. Nat Commun. 2015;6:7289 pubmed 出版商
  45. Cui W, Sun M, Galeva N, Williams T, Azuma Y, Staudinger J. SUMOylation and Ubiquitylation Circuitry Controls Pregnane X Receptor Biology in Hepatocytes. Drug Metab Dispos. 2015;43:1316-25 pubmed 出版商
  46. Sidik S, Salsman J, Dellaire G, Rohde J. Shigella infection interferes with SUMOylation and increases PML-NB number. PLoS ONE. 2015;10:e0122585 pubmed 出版商
  47. Cox E, Uzoma I, Guzzo C, Jeong J, Matunis M, Blackshaw S, et al. Identification of SUMO E3 ligase-specific substrates using the HuProt human proteome microarray. Methods Mol Biol. 2015;1295:455-63 pubmed 出版商
  48. Pacheco S, Marcet Ortega M, Lange J, Jasin M, Keeney S, Roig I. The ATM signaling cascade promotes recombination-dependent pachytene arrest in mouse spermatocytes. PLoS Genet. 2015;11:e1005017 pubmed 出版商
  49. Wu Z, Wang C, Bai M, Li X, Mei Q, Li X, et al. An LRP16-containing preassembly complex contributes to NF-κB activation induced by DNA double-strand breaks. Nucleic Acids Res. 2015;43:3167-79 pubmed 出版商
  50. Gorbunov N, McDaniel D, Zhai M, Liao P, Garrison B, Kiang J. Autophagy and mitochondrial remodelling in mouse mesenchymal stromal cells challenged with Staphylococcus epidermidis. J Cell Mol Med. 2015;19:1133-50 pubmed 出版商
  51. Kalkat M, Chan P, Wasylishen A, Srikumar T, Kim S, Ponzielli R, et al. Identification of c-MYC SUMOylation by mass spectrometry. PLoS ONE. 2014;9:e115337 pubmed 出版商
  52. Cho S, Yun S, Jo C, Lee D, Choi K, Song J, et al. SUMO1 promotes Aβ production via the modulation of autophagy. Autophagy. 2015;11:100-12 pubmed 出版商
  53. Blakeslee W, Wysoczynski C, Fritz K, Nyborg J, Churchill M, McKinsey T. Class I HDAC inhibition stimulates cardiac protein SUMOylation through a post-translational mechanism. Cell Signal. 2014;26:2912-20 pubmed 出版商
  54. Sutinen P, Rahkama V, Rytinki M, Palvimo J. Nuclear mobility and activity of FOXA1 with androgen receptor are regulated by SUMOylation. Mol Endocrinol. 2014;28:1719-28 pubmed 出版商
  55. Weber A, Schuermann D, Schär P. Versatile recombinant SUMOylation system for the production of SUMO-modified protein. PLoS ONE. 2014;9:e102157 pubmed 出版商
  56. Kobayashi T, Masoumi K, Massoumi R. Deubiquitinating activity of CYLD is impaired by SUMOylation in neuroblastoma cells. Oncogene. 2015;34:2251-60 pubmed 出版商
  57. Mori F, Watanabe Y, Miki Y, Tanji K, Odagiri S, Eto K, et al. Ubiquitin-negative, eosinophilic neuronal cytoplasmic inclusions associated with stress granules and autophagy: an immunohistochemical investigation of two cases. Neuropathology. 2014;34:140-7 pubmed
  58. Katyal S, Lee Y, Nitiss K, Downing S, Li Y, Shimada M, et al. Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes. Nat Neurosci. 2014;17:813-21 pubmed 出版商
  59. Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. 2014;510:162-6 pubmed 出版商
  60. Hasegawa Y, Yoshida D, Nakamura Y, Sakakibara S. Spatiotemporal distribution of SUMOylation components during mouse brain development. J Comp Neurol. 2014;522:3020-36 pubmed 出版商
  61. Myatt S, Kongsema M, Man C, Kelly D, Gomes A, Khongkow P, et al. SUMOylation inhibits FOXM1 activity and delays mitotic transition. Oncogene. 2014;33:4316-29 pubmed 出版商
  62. Wang W, Chen Y, Wang S, Hu N, Cao Z, Wang W, et al. PIASx? ligase enhances SUMO1 modification of PTEN protein as a SUMO E3 ligase. J Biol Chem. 2014;289:3217-30 pubmed 出版商
  63. Chang P, Cheng C, Campbell M, Yang Y, Hsu H, Chang T, et al. The chromatin modification by SUMO-2/3 but not SUMO-1 prevents the epigenetic activation of key immune-related genes during Kaposi's sarcoma associated herpesvirus reactivation. BMC Genomics. 2013;14:824 pubmed 出版商
  64. Paakinaho V, Kaikkonen S, Makkonen H, Benes V, Palvimo J. SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor. Nucleic Acids Res. 2014;42:1575-92 pubmed 出版商
  65. Berndt A, Wilkinson K, Heimann M, Bishop P, Henley J. In vivo characterization of the properties of SUMO1-specific monobodies. Biochem J. 2013;456:385-95 pubmed 出版商
  66. Bueno M, Richard S. SUMOylation negatively modulates target gene occupancy of the KDM5B, a histone lysine demethylase. Epigenetics. 2013;8:1162-75 pubmed 出版商
  67. Lu L, Xiong Y, Kuang H, Korakavi G, Yu X. Regulation of the DNA damage response on male meiotic sex chromosomes. Nat Commun. 2013;4:2105 pubmed 出版商
  68. Poulsen S, Hansen R, Wagner S, van Cuijk L, van Belle G, Streicher W, et al. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response. J Cell Biol. 2013;201:797-807 pubmed 出版商
  69. Glass M, Everett R. Components of promyelocytic leukemia nuclear bodies (ND10) act cooperatively to repress herpesvirus infection. J Virol. 2013;87:2174-85 pubmed 出版商
  70. Kaikkonen S, Paakinaho V, Sutinen P, Levonen A, Palvimo J. Prostaglandin 15d-PGJ(2) inhibits androgen receptor signaling in prostate cancer cells. Mol Endocrinol. 2013;27:212-23 pubmed 出版商
  71. Vigodner M, Shrivastava V, Gutstein L, Schneider J, Nieves E, Goldstein M, et al. Localization and identification of sumoylated proteins in human sperm: excessive sumoylation is a marker of defective spermatozoa. Hum Reprod. 2013;28:210-23 pubmed 出版商
  72. Kon T, Mori F, Tanji K, Miki Y, Kimura T, Wakabayashi K. Giant cell polymyositis and myocarditis associated with myasthenia gravis and thymoma. Neuropathology. 2013;33:281-7 pubmed 出版商
  73. Mori F, Tanji K, Odagiri S, Hattori M, Hoshikawa Y, Kono C, et al. Ubiquitin-related proteins in neuronal and glial intranuclear inclusions in intranuclear inclusion body disease. Pathol Int. 2012;62:407-11 pubmed 出版商
  74. Li R, Wang L, Liao G, Guzzo C, Matunis M, Zhu H, et al. SUMO binding by the Epstein-Barr virus protein kinase BGLF4 is crucial for BGLF4 function. J Virol. 2012;86:5412-21 pubmed 出版商
  75. Page J, de la Fuente R, Manterola M, Parra M, Viera A, Berríos S, et al. Inactivation or non-reactivation: what accounts better for the silence of sex chromosomes during mammalian male meiosis?. Chromosoma. 2012;121:307-26 pubmed 出版商
  76. Hwang J, Kalejta R. In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induced Daxx sumoylation. Methods. 2011;55:160-5 pubmed 出版商
  77. Kelley J, Datta S, Snow C, Chatterjee M, Ni L, Spencer A, et al. The defective nuclear lamina in Hutchinson-gilford progeria syndrome disrupts the nucleocytoplasmic Ran gradient and inhibits nuclear localization of Ubc9. Mol Cell Biol. 2011;31:3378-95 pubmed 出版商
  78. Rytinki M, Lakso M, Pehkonen P, Aarnio V, Reisner K, PERAKYLA M, et al. Overexpression of SUMO perturbs the growth and development of Caenorhabditis elegans. Cell Mol Life Sci. 2011;68:3219-32 pubmed 出版商
  79. Palczewska M, Casafont I, Ghimire K, Rojas A, Valencia A, Lafarga M, et al. Sumoylation regulates nuclear localization of repressor DREAM. Biochim Biophys Acta. 2011;1813:1050-8 pubmed 出版商
  80. Latonen L, Moore H, Bai B, Jäämaa S, Laiho M. Proteasome inhibitors induce nucleolar aggregation of proteasome target proteins and polyadenylated RNA by altering ubiquitin availability. Oncogene. 2011;30:790-805 pubmed 出版商
  81. Delfino D, Spinicelli S, Pozzesi N, Pierangeli S, Velardi E, Bruscoli S, et al. Glucocorticoid-induced activation of caspase-8 protects the glucocorticoid-induced protein Gilz from proteasomal degradation and induces its binding to SUMO-1 in murine thymocytes. Cell Death Differ. 2011;18:183-90 pubmed 出版商
  82. Mori F, Miki Y, Tanji K, Ogura E, Yagihashi N, Jensen P, et al. Incipient intranuclear inclusion body disease in a 78-year-old woman. Neuropathology. 2011;31:188-93 pubmed 出版商
  83. Del Rincón S, Rogers J, Widschwendter M, Sun D, Sieburg H, Spruck C. Development and validation of a method for profiling post-translational modification activities using protein microarrays. PLoS ONE. 2010;5:e11332 pubmed 出版商
  84. Du J, McConnell B, Yang V. A small ubiquitin-related modifier-interacting motif functions as the transcriptional activation domain of Krüppel-like factor 4. J Biol Chem. 2010;285:28298-308 pubmed 出版商
  85. Wang Z, Ou X, Tong J, Li S, Wei L, Ouyang Y, et al. The SUMO pathway functions in mouse oocyte maturation. Cell Cycle. 2010;9:2640-6 pubmed
  86. Gillot I, Matthews C, Puel D, Vidal F, Lopez P. Ret Finger Protein: An E3 Ubiquitin Ligase Juxtaposed to the XY Body in Meiosis. Int J Cell Biol. 2009;2009:524858 pubmed 出版商
  87. Ordinario E, Yabuki M, Larson R, Maizels N. Temporal regulation of Ig gene diversification revealed by single-cell imaging. J Immunol. 2009;183:4545-53 pubmed 出版商
  88. Manterola M, Page J, Vasco C, Berríos S, Parra M, Viera A, et al. A high incidence of meiotic silencing of unsynapsed chromatin is not associated with substantial pachytene loss in heterozygous male mice carrying multiple simple robertsonian translocations. PLoS Genet. 2009;5:e1000625 pubmed 出版商
  89. Rytinki M, Palvimo J. SUMOylation attenuates the function of PGC-1alpha. J Biol Chem. 2009;284:26184-93 pubmed 出版商
  90. Matafora V, D Amato A, Mori S, Blasi F, Bachi A. Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition. Mol Cell Proteomics. 2009;8:2243-55 pubmed 出版商
  91. Meinecke I, Pap G, Mendoza H, Drange S, Ender S, Strietholt S, et al. Small ubiquitin-like modifier 1 [corrected] mediates the resistance of prosthesis-loosening fibroblast-like synoviocytes against Fas-induced apoptosis. Arthritis Rheum. 2009;60:2065-70 pubmed 出版商
  92. Spoden G, Morandell D, Ehehalt D, Fiedler M, Jansen Durr P, Hermann M, et al. The SUMO-E3 ligase PIAS3 targets pyruvate kinase M2. J Cell Biochem. 2009;107:293-302 pubmed 出版商
  93. Nayak A, Glöckner Pagel J, Vaeth M, Schumann J, Buttmann M, Bopp T, et al. Sumoylation of the transcription factor NFATc1 leads to its subnuclear relocalization and interleukin-2 repression by histone deacetylase. J Biol Chem. 2009;284:10935-46 pubmed 出版商
  94. Navascues J, Bengoechea R, Tapia O, Casafont I, Berciano M, Lafarga M. SUMO-1 transiently localizes to Cajal bodies in mammalian neurons. J Struct Biol. 2008;163:137-46 pubmed 出版商
  95. Schimmel J, Larsen K, Matic I, van Hagen M, Cox J, Mann M, et al. The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle. Mol Cell Proteomics. 2008;7:2107-22 pubmed 出版商
  96. Muller S, Dobner T. The adenovirus E1B-55K oncoprotein induces SUMO modification of p53. Cell Cycle. 2008;7:754-8 pubmed
  97. Roukens M, Alloul Ramdhani M, Vertegaal A, Anvarian Z, Balog C, Deelder A, et al. Identification of a new site of sumoylation on Tel (ETV6) uncovers a PIAS-dependent mode of regulating Tel function. Mol Cell Biol. 2008;28:2342-57 pubmed 出版商
  98. Matic I, van Hagen M, Schimmel J, Macek B, Ogg S, Tatham M, et al. In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics. 2008;7:132-44 pubmed 出版商
  99. Navascues J, Bengoechea R, Tapia O, Vaque J, Lafarga M, Berciano M. Characterization of a new SUMO-1 nuclear body (SNB) enriched in pCREB, CBP, c-Jun in neuron-like UR61 cells. Chromosoma. 2007;116:441-51 pubmed
  100. Kim S, Namekawa S, Niswander L, Ward J, Lee J, Bardwell V, et al. A mammal-specific Doublesex homolog associates with male sex chromatin and is required for male meiosis. PLoS Genet. 2007;3:e62 pubmed
  101. Ferguson B, Dovey C, Lilley K, Wyllie A, Rich T. Nuclear phospholipase C gamma: punctate distribution and association with the promyelocytic leukemia protein. J Proteome Res. 2007;6:2027-32 pubmed
  102. Zanardi A, Giorgetti L, Botrugno O, Minucci S, Milani P, Pelicci P, et al. Immunocell-array for molecular dissection of multiple signaling pathways in mammalian cells. Mol Cell Proteomics. 2007;6:939-47 pubmed
  103. Stankovic Valentin N, Deltour S, Seeler J, Pinte S, Vergoten G, Guerardel C, et al. An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity. Mol Cell Biol. 2007;27:2661-75 pubmed
  104. Mohan R, Rao A, Gagliardi J, Tini M. SUMO-1-dependent allosteric regulation of thymine DNA glycosylase alters subnuclear localization and CBP/p300 recruitment. Mol Cell Biol. 2007;27:229-43 pubmed
  105. Roscic A, Möller A, Calzado M, Renner F, Wimmer V, Gresko E, et al. Phosphorylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2. Mol Cell. 2006;24:77-89 pubmed
  106. Nelson D, Bhaskaran V, Foster W, Lehman McKeeman L. p53-independent induction of rat hepatic Mdm2 following administration of phenobarbital and pregnenolone 16alpha-carbonitrile. Toxicol Sci. 2006;94:272-80 pubmed
  107. Vertegaal A, Andersen J, Ogg S, Hay R, Mann M, Lamond A. Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol Cell Proteomics. 2006;5:2298-310 pubmed
  108. Dellaire G, Ching R, Dehghani H, Ren Y, Bazett Jones D. The number of PML nuclear bodies increases in early S phase by a fission mechanism. J Cell Sci. 2006;119:1026-33 pubmed
  109. Klenk C, Humrich J, Quitterer U, Lohse M. SUMO-1 controls the protein stability and the biological function of phosducin. J Biol Chem. 2006;281:8357-64 pubmed
  110. Fu L, Gao Y, Sztul E. Transcriptional repression and cell death induced by nuclear aggregates of non-polyglutamine protein. Neurobiol Dis. 2005;20:656-65 pubmed
  111. Sadanari H, Yamada R, Ohnishi K, Matsubara K, Tanaka J. SUMO-1 modification of the major immediate-early (IE) 1 and 2 proteins of human cytomegalovirus is regulated by different mechanisms and modulates the intracellular localization of the IE1, but not IE2, protein. Arch Virol. 2005;150:1763-82 pubmed
  112. Rizos H, Woodruff S, Kefford R. p14ARF interacts with the SUMO-conjugating enzyme Ubc9 and promotes the sumoylation of its binding partners. Cell Cycle. 2005;4:597-603 pubmed
  113. Wasylyk C, Criqui Filipe P, Wasylyk B. Sumoylation of the net inhibitory domain (NID) is stimulated by PIAS1 and has a negative effect on the transcriptional activity of Net. Oncogene. 2005;24:820-8 pubmed
  114. Smolen G, Vassileva M, Wells J, Matunis M, Haber D. SUMO-1 modification of the Wilms' tumor suppressor WT1. Cancer Res. 2004;64:7846-51 pubmed
  115. Yamashita D, Yamaguchi T, Shimizu M, Nakata N, Hirose F, Osumi T. The transactivating function of peroxisome proliferator-activated receptor gamma is negatively regulated by SUMO conjugation in the amino-terminal domain. Genes Cells. 2004;9:1017-29 pubmed
  116. Spengler M, Kennett S, Moorefield K, Simmons S, Brattain M, Horowitz J. Sumoylation of internally initiated Sp3 isoforms regulates transcriptional repression via a Trichostatin A-insensitive mechanism. Cell Signal. 2005;17:153-66 pubmed
  117. Woods Y, Xirodimas D, Prescott A, Sparks A, Lane D, Saville M. p14 Arf promotes small ubiquitin-like modifier conjugation of Werners helicase. J Biol Chem. 2004;279:50157-66 pubmed
  118. Nevels M, Brune W, Shenk T. SUMOylation of the human cytomegalovirus 72-kilodalton IE1 protein facilitates expression of the 86-kilodalton IE2 protein and promotes viral replication. J Virol. 2004;78:7803-12 pubmed
  119. Komatsu T, Mizusaki H, Mukai T, Ogawa H, Baba D, Shirakawa M, et al. Small ubiquitin-like modifier 1 (SUMO-1) modification of the synergy control motif of Ad4 binding protein/steroidogenic factor 1 (Ad4BP/SF-1) regulates synergistic transcription between Ad4BP/SF-1 and Sox9. Mol Endocrinol. 2004;18:2451-62 pubmed
  120. Collavin L, Gostissa M, Avolio F, Secco P, Ronchi A, Santoro C, et al. Modification of the erythroid transcription factor GATA-1 by SUMO-1. Proc Natl Acad Sci U S A. 2004;101:8870-5 pubmed
  121. Pountney D, Huang Y, Burns R, Haan E, Thompson P, Blumbergs P, et al. SUMO-1 marks the nuclear inclusions in familial neuronal intranuclear inclusion disease. Exp Neurol. 2003;184:436-46 pubmed
  122. Xu L, Yang L, Moitra P, Hashimoto K, Rallabhandi P, Kaul S, et al. BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBCC/tripartite motif protein, TRIM5delta. Exp Cell Res. 2003;288:84-93 pubmed
  123. Endter C, Kzhyshkowska J, Stauber R, Dobner T. SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein. Proc Natl Acad Sci U S A. 2001;98:11312-7 pubmed
  124. Tse W, Tang J, Jin O, Korsgren C, John K, Kung A, et al. A new spectrin, beta IV, has a major truncated isoform that associates with promyelocytic leukemia protein nuclear bodies and the nuclear matrix. J Biol Chem. 2001;276:23974-85 pubmed
  125. Kinoshita Y, Jarell A, Flaman J, Foltz G, Schuster J, Sopher B, et al. Pescadillo, a novel cell cycle regulatory protein abnormally expressed in malignant cells. J Biol Chem. 2001;276:6656-65 pubmed
  126. Rangasamy D, Woytek K, Khan S, Wilson V. SUMO-1 modification of bovine papillomavirus E1 protein is required for intranuclear accumulation. J Biol Chem. 2000;275:37999-8004 pubmed
  127. Rangasamy D, Wilson V. Bovine papillomavirus E1 protein is sumoylated by the host cell Ubc9 protein. J Biol Chem. 2000;275:30487-95 pubmed
  128. Saitoh H, Hinchey J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem. 2000;275:6252-8 pubmed
  129. Hofmann H, Flöss S, Stamminger T. Covalent modification of the transactivator protein IE2-p86 of human cytomegalovirus by conjugation to the ubiquitin-homologous proteins SUMO-1 and hSMT3b. J Virol. 2000;74:2510-24 pubmed
  130. Sternsdorf T, Puccetti E, Jensen K, Hoelzer D, Will H, Ottmann O, et al. PIC-1/SUMO-1-modified PML-retinoic acid receptor alpha mediates arsenic trioxide-induced apoptosis in acute promyelocytic leukemia. Mol Cell Biol. 1999;19:5170-8 pubmed
  131. Desterro J, Rodriguez M, Hay R. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell. 1998;2:233-9 pubmed