这是一篇来自已证抗体库的有关人类 SYT1的综述,是根据27篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合SYT1 抗体。
SYT1 同义词: BAGOS; P65; SVP65; SYT

Synaptic Systems
小鼠 单克隆(41.1)
  • 免疫组化-冰冻切片; 小鼠; 图 2f
  • 免疫印迹; 小鼠; 图 2d
Synaptic Systems SYT1抗体(Synaptic Systems, 105011)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2f) 和 被用于免疫印迹在小鼠样本上 (图 2d). JCI Insight (2021) ncbi
小鼠 单克隆(41.1)
  • 免疫组化; 人类; 1:500; 图 1j
Synaptic Systems SYT1抗体(Synaptic Systems, 105011)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1j). Brain Commun (2021) ncbi
小鼠 单克隆(41.1)
  • 免疫组化; 小鼠; 1:500; 图 1b
Synaptic Systems SYT1抗体(Synaptic Systems, 105011)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b). elife (2020) ncbi
小鼠 单克隆(41.1)
  • 免疫组化-冰冻切片; 小鼠; 图 s1f
  • 免疫印迹; 小鼠; 图 s6b
Synaptic Systems SYT1抗体(Synaptic Systems, 105 011C5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1f) 和 被用于免疫印迹在小鼠样本上 (图 s6b). Neuron (2021) ncbi
小鼠 单克隆(41.1)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
Synaptic Systems SYT1抗体(Synaptic Systems, 105011)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). elife (2020) ncbi
小鼠 单克隆(41.1)
  • 免疫细胞化学; 人类; 图 s1e
Synaptic Systems SYT1抗体(Synaptic Systems, 105 011C2)被用于被用于免疫细胞化学在人类样本上 (图 s1e). Cell (2019) ncbi
小鼠 单克隆(41.1)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 2d
Synaptic Systems SYT1抗体(Synaptic Systems, 105011)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 2d). J Neurosci (2017) ncbi
小鼠 单克隆(41.1)
  • 免疫印迹; 牛; 图 s1
Synaptic Systems SYT1抗体(Synaptic Systems, 41.1)被用于被用于免疫印迹在牛样本上 (图 s1). Sci Rep (2017) ncbi
小鼠 单克隆(41.1)
  • 免疫印迹; 小鼠; 表 1
Synaptic Systems SYT1抗体(Synaptic Systems, 105 011)被用于被用于免疫印迹在小鼠样本上 (表 1). Neuron (2017) ncbi
小鼠 单克隆(41.1)
  • 免疫细胞化学; 小鼠; 1:100; 图 2a
Synaptic Systems SYT1抗体(SySy, 105 011)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2a). Neuron (2017) ncbi
小鼠 单克隆(41.1)
  • 免疫印迹; 小鼠; 1:5000; 图 1a
Synaptic Systems SYT1抗体(Synaptic Systems, 105 011)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1a). J Neurosci Methods (2017) ncbi
小鼠 单克隆(41.1)
  • 免疫印迹; 大鼠; 1:1000; 图 5b
Synaptic Systems SYT1抗体(Synaptic Systems, 105011)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5b). J Gen Physiol (2017) ncbi
小鼠 单克隆(41.1)
  • 免疫印迹; 小鼠; 图 2
Synaptic Systems SYT1抗体(Synaptic Systems, 105011)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(41.1)
  • 免疫印迹; 大鼠; 图 6a
Synaptic Systems SYT1抗体(Synaptic Systems, 105 011)被用于被用于免疫印迹在大鼠样本上 (图 6a). J Neurosci (2016) ncbi
小鼠 单克隆(41.1)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
Synaptic Systems SYT1抗体(Synaptic systems, 41.1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). PLoS ONE (2016) ncbi
小鼠 单克隆(41.1)
  • 免疫组化; 小鼠; 图 4a
  • 免疫印迹; 小鼠; 图 2b
Synaptic Systems SYT1抗体(Synaptic Systems, 105011)被用于被用于免疫组化在小鼠样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 2b). EBioMedicine (2016) ncbi
小鼠 单克隆(41.1)
  • 免疫印迹; 小鼠; 1:300; 图 5
Synaptic Systems SYT1抗体(Synaptic Systems, 105 011)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 5). Nat Neurosci (2015) ncbi
小鼠 单克隆(41.1)
  • 免疫印迹; 大鼠
Synaptic Systems SYT1抗体(Synaptic Systems, 105 011)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(ASV30)
  • 免疫印迹; 小鼠; 图 4p
艾博抗(上海)贸易有限公司 SYT1抗体(Abcam, ab13259)被用于被用于免疫印迹在小鼠样本上 (图 4p). EBioMedicine (2022) ncbi
小鼠 单克隆(ASV30)
  • 免疫细胞化学; 大鼠
艾博抗(上海)贸易有限公司 SYT1抗体(Abcam, ab13259)被用于被用于免疫细胞化学在大鼠样本上. Sci Adv (2021) ncbi
小鼠 单克隆(ASV30)
  • 免疫印迹; 大鼠; 1:1000; 图 2f
艾博抗(上海)贸易有限公司 SYT1抗体(Abcam, ab13259)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2f). Aging Cell (2020) ncbi
小鼠 单克隆(ASV30)
  • 免疫细胞化学; 小鼠; 1:500; 图 2b
艾博抗(上海)贸易有限公司 SYT1抗体(Abcam, ab13259)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2b). J Immunol Methods (2017) ncbi
小鼠 单克隆(ASV30)
  • 免疫组化; 大鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司 SYT1抗体(Abcam, ab13259)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 5). Development (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(41)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 SYT1抗体(Santa Cruz, sc-136088)被用于被用于免疫印迹在人类样本上 (图 2a). Toxicol Lett (2015) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(mAB 30 (asv30))
  • 免疫印迹; 小鼠; 1:50; 图 s6a
Developmental Studies Hybridoma Bank SYT1抗体(DSHB, mAB30)被用于被用于免疫印迹在小鼠样本上浓度为1:50 (图 s6a). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(mAB 30 (asv30))
  • 免疫组化; 小鼠; 1:100; 图 8
Developmental Studies Hybridoma Bank SYT1抗体(DSHB, 30)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 8). Nat Commun (2015) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 3
西格玛奥德里奇 SYT1抗体(Sigma, SAB4502907)被用于被用于免疫细胞化学在大鼠样本上 (图 3). J Alzheimers Dis (2016) ncbi
文章列表
  1. Zhou Q, Li S, Li M, Ke D, Wang Q, Yang Y, et al. Human tau accumulation promotes glycogen synthase kinase-3β acetylation and thus upregulates the kinase: A vicious cycle in Alzheimer neurodegeneration. EBioMedicine. 2022;78:103970 pubmed 出版商
  2. Chen H, Zhang Brotzge X, Morozov Y, Li Y, Wang S, Zhang H, et al. Creatine transporter deficiency impairs stress adaptation and brain energetics homeostasis. JCI Insight. 2021;6: pubmed 出版商
  3. Haytural H, Jordà Siquier T, Winblad B, Mulle C, Tjernberg L, Granholm A, et al. Distinctive alteration of presynaptic proteins in the outer molecular layer of the dentate gyrus in Alzheimer's disease. Brain Commun. 2021;3:fcab079 pubmed 出版商
  4. Ivanova D, Dobson K, Gajbhiye A, Davenport E, Hacker D, Ultanir S, et al. Control of synaptic vesicle release probability via VAMP4 targeting to endolysosomes. Sci Adv. 2021;7: pubmed 出版商
  5. Turecek J, Regehr W. Cerebellar and vestibular nuclear synapses in the inferior olive have distinct release kinetics and neurotransmitters. elife. 2020;9: pubmed 出版商
  6. Kuijpers M, Kochlamazashvili G, Stumpf A, Puchkov D, Swaminathan A, Lucht M, et al. Neuronal Autophagy Regulates Presynaptic Neurotransmission by Controlling the Axonal Endoplasmic Reticulum. Neuron. 2021;109:299-313.e9 pubmed 出版商
  7. Sclip A, Sudhof T. LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses. elife. 2020;9: pubmed 出版商
  8. Ye J, Yin Y, Liu H, Fang L, Tao X, Wei L, et al. Tau inhibits PKA by nuclear proteasome-dependent PKAR2α elevation with suppressed CREB/GluA1 phosphorylation. Aging Cell. 2020;19:e13055 pubmed 出版商
  9. Patzke C, Brockmann M, Dai J, Gan K, Grauel M, Fenske P, et al. Neuromodulator Signaling Bidirectionally Controls Vesicle Numbers in Human Synapses. Cell. 2019;179:498-513.e22 pubmed 出版商
  10. Wang Y, Figueiredo D, Sun X, Dong Z, Chen W, Cui W, et al. Controlling of glutamate release by neuregulin3 via inhibiting the assembly of the SNARE complex. Proc Natl Acad Sci U S A. 2018;115:2508-2513 pubmed 出版商
  11. Yadirgi G, Stickings P, Rajagopal S, Liu Y, Sesardic D. Immuno-detection of cleaved SNAP-25 from differentiated mouse embryonic stem cells provides a sensitive assay for determination of botulinum A toxin and antitoxin potency. J Immunol Methods. 2017;451:90-99 pubmed 出版商
  12. Bouhours B, Gjoni E, Kochubey O, Schneggenburger R. Synaptotagmin2 (Syt2) Drives Fast Release Redundantly with Syt1 at the Output Synapses of Parvalbumin-Expressing Inhibitory Neurons. J Neurosci. 2017;37:4604-4617 pubmed 出版商
  13. Gümürdü A, Yildiz R, Eren E, Karakülah G, Unver T, Genc S, et al. MicroRNA exocytosis by large dense-core vesicle fusion. Sci Rep. 2017;7:45661 pubmed 出版商
  14. Cao M, Wu Y, Ashrafi G, McCartney A, Wheeler H, Bushong E, et al. Parkinson Sac Domain Mutation in Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in Dopaminergic Axons. Neuron. 2017;93:882-896.e5 pubmed 出版商
  15. Soykan T, Kaempf N, Sakaba T, Vollweiter D, Goerdeler F, Puchkov D, et al. Synaptic Vesicle Endocytosis Occurs on Multiple Timescales and Is Mediated by Formin-Dependent Actin Assembly. Neuron. 2017;93:854-866.e4 pubmed 出版商
  16. Horvath P, Kavalali E, Monteggia L. CRISPR/Cas9 system-mediated impairment of synaptobrevin/VAMP function in postmitotic hippocampal neurons. J Neurosci Methods. 2017;278:57-64 pubmed 出版商
  17. Wolfes A, Ahmed S, Awasthi A, Stahlberg M, Rajput A, Magruder D, et al. A novel method for culturing stellate astrocytes reveals spatially distinct Ca2+ signaling and vesicle recycling in astrocytic processes. J Gen Physiol. 2017;149:149-170 pubmed 出版商
  18. Li Y, Chang L, Song Y, Gao X, Roselli F, Liu J, et al. Astrocytic GluN2A and GluN2B Oppose the Synaptotoxic Effects of Amyloid-?1-40 in Hippocampal Cells. J Alzheimers Dis. 2016;54:135-48 pubmed 出版商
  19. Bodaleo F, Montenegro Venegas C, Henríquez D, Court F, Gonzalez Billault C. Microtubule-associated protein 1B (MAP1B)-deficient neurons show structural presynaptic deficiencies in vitro and altered presynaptic physiology. Sci Rep. 2016;6:30069 pubmed 出版商
  20. Villarroel Campos D, Henríquez D, Bodaleo F, Oguchi M, Bronfman F, Fukuda M, et al. Rab35 Functions in Axon Elongation Are Regulated by P53-Related Protein Kinase in a Mechanism That Involves Rab35 Protein Degradation and the Microtubule-Associated Protein 1B. J Neurosci. 2016;36:7298-313 pubmed 出版商
  21. Sclip A, Bacaj T, Giam L, Sudhof T. Extended Synaptotagmin (ESyt) Triple Knock-Out Mice Are Viable and Fertile without Obvious Endoplasmic Reticulum Dysfunction. PLoS ONE. 2016;11:e0158295 pubmed 出版商
  22. Emanuele M, Esposito A, Camerini S, Antonucci F, Ferrara S, Seghezza S, et al. Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts. EBioMedicine. 2016;7:191-204 pubmed 出版商
  23. Vilmont V, Cadot B, Ouanounou G, Gomes E. A system for studying mechanisms of neuromuscular junction development and maintenance. Development. 2016;143:2464-77 pubmed 出版商
  24. Chiou Y, Liou S, Wong R, Chen C, Lee H. Nickel may contribute to EGFR mutation and synergistically promotes tumor invasion in EGFR-mutated lung cancer via nickel-induced microRNA-21 expression. Toxicol Lett. 2015;237:46-54 pubmed 出版商
  25. Siegert S, Seo J, Kwon E, Rudenko A, Cho S, Wang W, et al. The schizophrenia risk gene product miR-137 alters presynaptic plasticity. Nat Neurosci. 2015;18:1008-16 pubmed 出版商
  26. Adams K, Rousso D, Umbach J, Novitch B. Foxp1-mediated programming of limb-innervating motor neurons from mouse and human embryonic stem cells. Nat Commun. 2015;6:6778 pubmed 出版商
  27. Xu W, Tse Y, Dobie F, Baudry M, Craig A, Wong T, et al. Simultaneous monitoring of presynaptic transmitter release and postsynaptic receptor trafficking reveals an enhancement of presynaptic activity in metabotropic glutamate receptor-mediated long-term depression. J Neurosci. 2013;33:5867-5877 pubmed 出版商