这是一篇来自已证抗体库的有关人类 Shh的综述,是根据27篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Shh 抗体。
Shh 同义词: HHG1; HLP3; HPE3; MCOPCB5; SMMCI; ShhNC; TPT; TPTPS

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP1190Y)
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司 Shh抗体(Abcam, ab53281)被用于被用于免疫印迹在人类样本上 (图 1c). Oncogenesis (2020) ncbi
domestic rabbit 单克隆(EP1190Y)
  • 免疫印迹; 人类; 1:5000; 图 3a
艾博抗(上海)贸易有限公司 Shh抗体(Abcam, ab53281)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3a). Oncol Lett (2019) ncbi
domestic rabbit 单克隆(EP1190Y)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司 Shh抗体(Abcam, ab53281)被用于被用于免疫印迹在人类样本上 (图 1a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Shh抗体(Abcam, ab19897)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Neurochem Res (2019) ncbi
domestic rabbit 单克隆(EP1190Y)
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司 Shh抗体(Abcam, ab53281)被用于被用于免疫印迹在人类样本上 (图 6a). Clin Cancer Res (2018) ncbi
domestic rabbit 单克隆(EP1190Y)
  • 免疫组化; 人类; 1:600; 图 1
艾博抗(上海)贸易有限公司 Shh抗体(Abcam, ab53281)被用于被用于免疫组化在人类样本上浓度为1:600 (图 1). PLoS ONE (2017) ncbi
圣克鲁斯生物技术
小鼠 单克隆(E-1)
  • 免疫印迹; 人类; 1:500; 图 s5a
圣克鲁斯生物技术 Shh抗体(Santa Cruz, sc-365112)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s5a). Front Immunol (2022) ncbi
赛默飞世尔
小鼠 单克隆(5H4)
  • 免疫印迹; 小鼠; 1:1000; 图 6m
赛默飞世尔 Shh抗体(Thermo Fisher, 5H4)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6m). Adv Sci (Weinh) (2021) ncbi
Novus Biologicals
小鼠 单克隆(5H4)
  • 免疫细胞化学; 人类; 1:500; 图 1c
Novus Biologicals Shh抗体(Novus, NBP2-22126)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1c). Int J Mol Sci (2020) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C9C5)
  • 免疫印迹; 人类; 1:1000; 图 s5c
赛信通(上海)生物试剂有限公司 Shh抗体(Cell Signaling, 2207)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5c). Mol Cancer Res (2021) ncbi
domestic rabbit 单克隆(C9C5)
  • 免疫印迹; 小鼠; 1:2500; 图 6g, 6h
  • 免疫印迹; black ferret; 1:2500; 图 6g, 6h
赛信通(上海)生物试剂有限公司 Shh抗体(Cell Signaling, 2207)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 6g, 6h) 和 被用于免疫印迹在black ferret样本上浓度为1:2500 (图 6g, 6h). elife (2020) ncbi
domestic rabbit 单克隆(C9C5)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Shh抗体(Cell Signaling, 2207)被用于被用于免疫印迹在人类样本上 (图 5). Mol Clin Oncol (2016) ncbi
domestic rabbit 单克隆(C9C5)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Shh抗体(Cell Signaling, 2207)被用于被用于免疫印迹在小鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Shh抗体(Cell signaling, 2287)被用于被用于免疫印迹在小鼠样本上. Oncogene (2016) ncbi
domestic rabbit 单克隆(C9C5)
  • 免疫印迹; 鸡; 1:600
赛信通(上海)生物试剂有限公司 Shh抗体(Cell Signaling, C9C5)被用于被用于免疫印迹在鸡样本上浓度为1:600. Int J Mol Sci (2015) ncbi
domestic rabbit 单克隆(C9C5)
  • 免疫组化-石蜡切片; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Shh抗体(Cell Signaling Technology, 2207)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:500. Mol Neurobiol (2016) ncbi
domestic rabbit 单克隆(C9C5)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Shh抗体(Cell Signaling, 2207)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Toxicol Appl Pharmacol (2014) ncbi
domestic rabbit 单克隆(C9C5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Shh抗体(Cell Signaling Technology, 2207)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C9C5)
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 Shh抗体(Cell Signaling, 2207S)被用于被用于免疫印迹在人类样本上 (图 8a). Nature (2014) ncbi
domestic rabbit 单克隆(C9C5)
  • 免疫组化-石蜡切片; 人类
赛信通(上海)生物试剂有限公司 Shh抗体(Cell Signaling Technologies, 2207)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Pathol (2012) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(5E1)
  • 免疫组化; 小鼠; 1:5; 图 4a
Developmental Studies Hybridoma Bank Shh抗体(DSHB, 5E1)被用于被用于免疫组化在小鼠样本上浓度为1:5 (图 4a). elife (2020) ncbi
小鼠 单克隆(5E1)
  • 免疫组化基因敲除验证; 小鼠; 1:20; 图 s8b
  • 免疫组化-石蜡切片; 小鼠; 1:20; 图 6b
Developmental Studies Hybridoma Bank Shh抗体(DSHB, 5E1)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:20 (图 s8b) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20 (图 6b). PLoS Genet (2017) ncbi
小鼠 单克隆(5E1)
  • 免疫组化基因敲除验证; Common quail; 图 6c
Developmental Studies Hybridoma Bank Shh抗体(DSHB, 5E1)被用于被用于免疫组化基因敲除验证在Common quail样本上 (图 6c). Front Cell Dev Biol (2016) ncbi
小鼠 单克隆(5E1)
  • 免疫组化; 鸡; 1:200; 图 s2
Developmental Studies Hybridoma Bank Shh抗体(DSHB, 5E1)被用于被用于免疫组化在鸡样本上浓度为1:200 (图 s2). J Cell Sci (2017) ncbi
小鼠 单克隆(5E1)
  • 免疫印迹; 人类; 1:500; 图 4b
Developmental Studies Hybridoma Bank Shh抗体(DSHB, 5E1)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(5E1)
  • 免疫细胞化学; 小鼠; 1:10; 图 3
Developmental Studies Hybridoma Bank Shh抗体(DSHB, 5E1)被用于被用于免疫细胞化学在小鼠样本上浓度为1:10 (图 3). Development (2014) ncbi
小鼠 单克隆(5E1)
  • 免疫组化-石蜡切片; Gallot's lizard; 1:2
Developmental Studies Hybridoma Bank Shh抗体(DSHB, 5E1)被用于被用于免疫组化-石蜡切片在Gallot's lizard样本上浓度为1:2. J Comp Neurol (2012) ncbi
文章列表
  1. Liu J, Qian B, Zhou L, Shen G, Tan Y, Liu S, et al. IL25 Enhanced Colitis-Associated Tumorigenesis in Mice by Upregulating Transcription Factor GLI1. Front Immunol. 2022;13:837262 pubmed 出版商
  2. Arnold F, Mahaddalkar P, Kraus J, Zhong X, Bergmann W, Srinivasan D, et al. Functional Genomic Screening During Somatic Cell Reprogramming Identifies DKK3 as a Roadblock of Organ Regeneration. Adv Sci (Weinh). 2021;8:2100626 pubmed 出版商
  3. Sanchez D, Missiaen R, Skuli N, Steger D, Simon M. Cell-Intrinsic Tumorigenic Functions of PPARγ in Bladder Urothelial Carcinoma. Mol Cancer Res. 2021;19:598-611 pubmed 出版商
  4. Ferreira Mendes J, de Faro Valverde L, Torres Andion Vidal M, Paredes B, Coelho P, Allahdadi K, et al. Effects of IGF-1 on Proliferation, Angiogenesis, Tumor Stem Cell Populations and Activation of AKT and Hedgehog Pathways in Oral Squamous Cell Carcinoma. Int J Mol Sci. 2020;21: pubmed 出版商
  5. Matsumoto N, Tanaka S, Horiike T, Shinmyo Y, Kawasaki H. A discrete subtype of neural progenitor crucial for cortical folding in the gyrencephalic mammalian brain. elife. 2020;9: pubmed 出版商
  6. Gigante E, Taylor M, Ivanova A, Kahn R, Caspary T. ARL13B regulates Sonic hedgehog signaling from outside primary cilia. elife. 2020;9: pubmed 出版商
  7. Chandrasekaran B, Dahiya N, Tyagi A, Kolluru V, Saran U, Baby B, et al. Chronic exposure to cadmium induces a malignant transformation of benign prostate epithelial cells. Oncogenesis. 2020;9:23 pubmed 出版商
  8. Yao F, Yu J, He Y, Liu J, Li H, Liu Q, et al. Primary impact of Gli1 on radioresistance in esophageal cancer. Oncol Lett. 2019;18:4825-4833 pubmed 出版商
  9. Adams C, Htwe H, Marsh T, Wang A, Montoya M, Subbaraj L, et al. Transcriptional control of subtype switching ensures adaptation and growth of pancreatic cancer. elife. 2019;8: pubmed 出版商
  10. Gong P, Li M, Zou C, Tian Q, Xu Z. Tissue Plasminogen Activator Causes Brain Microvascular Endothelial Cell Injury After Oxygen Glucose Deprivation by Inhibiting Sonic Hedgehog Signaling. Neurochem Res. 2019;44:441-449 pubmed 出版商
  11. Zhao Z, Jia Q, Wu M, Xie X, Wang Y, Song G, et al. Degalactotigonin, a Natural Compound from Solanum nigrum L., Inhibits Growth and Metastasis of Osteosarcoma through GSK3β Inactivation-Mediated Repression of the Hedgehog/Gli1 Pathway. Clin Cancer Res. 2018;24:130-144 pubmed 出版商
  12. He H, Huang M, Sun S, Wu Y, Lin X. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development. PLoS Genet. 2017;13:e1006992 pubmed 出版商
  13. Grzelak C, Sigglekow N, Tirnitz Parker J, Hamson E, Warren A, Maneck B, et al. Widespread GLI expression but limited canonical hedgehog signaling restricted to the ductular reaction in human chronic liver disease. PLoS ONE. 2017;12:e0171480 pubmed 出版商
  14. Matsubara Y, Nakano M, Kawamura K, Tsudzuki M, Funahashi J, Agata K, et al. Inactivation of Sonic Hedgehog Signaling and Polydactyly in Limbs of Hereditary Multiple Malformation, a Novel Type of Talpid Mutant. Front Cell Dev Biol. 2016;4:149 pubmed 出版商
  15. Galoian K, Luo S, Qureshi A, Patel P, Price R, Morse A, et al. Effect of cytostatic proline rich polypeptide-1 on tumor suppressors of inflammation pathway signaling in chondrosarcoma. Mol Clin Oncol. 2016;5:618-624 pubmed
  16. Singh V, Singh M, Gorantla S, Poluektova L, Maggirwar S. Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice. Sci Rep. 2016;6:26876 pubmed 出版商
  17. Amarnath S, Agarwala S. Cell-cycle-dependent TGF?-BMP antagonism regulates neural tube closure by modulating tight junctions. J Cell Sci. 2017;130:119-131 pubmed 出版商
  18. Coffman L, Choi Y, McLean K, Allen B, di Magliano M, Buckanovich R. Human carcinoma-associated mesenchymal stem cells promote ovarian cancer chemotherapy resistance via a BMP4/HH signaling loop. Oncotarget. 2016;7:6916-32 pubmed 出版商
  19. Wei Q, Chen Z, Wang L, Zhang T, Duan L, Behrens C, et al. LZTFL1 suppresses lung tumorigenesis by maintaining differentiation of lung epithelial cells. Oncogene. 2016;35:2655-63 pubmed 出版商
  20. Juhász T, Szentléleky E, Somogyi C, Takács R, Dobrosi N, Engler M, et al. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures. Int J Mol Sci. 2015;16:17344-67 pubmed 出版商
  21. Hung Y, Chang S, Huang C, Yin J, Hwang C, Yang L, et al. Inhibitor of Differentiation-1 and Hypoxia-Inducible Factor-1 Mediate Sonic Hedgehog Induction by Amyloid Beta-Peptide in Rat Cortical Neurons. Mol Neurobiol. 2016;53:793-809 pubmed 出版商
  22. Liu J, Bain L. Arsenic inhibits hedgehog signaling during P19 cell differentiation. Toxicol Appl Pharmacol. 2014;281:243-53 pubmed 出版商
  23. So J, Lin J, Wahler J, Liby K, Sporn M, Suh N. A synthetic triterpenoid CDDO-Im inhibits tumorsphere formation by regulating stem cell signaling pathways in triple-negative breast cancer. PLoS ONE. 2014;9:e107616 pubmed 出版商
  24. Alfaro A, Roberts B, Kwong L, Bijlsma M, Roelink H. Ptch2 mediates the Shh response in Ptch1-/- cells. Development. 2014;141:3331-9 pubmed 出版商
  25. Zahreddine H, Culjkovic Kraljacic B, Assouline S, Gendron P, Romeo A, Morris S, et al. The sonic hedgehog factor GLI1 imparts drug resistance through inducible glucuronidation. Nature. 2014;511:90-3 pubmed 出版商
  26. Cigna N, Farrokhi Moshai E, Brayer S, Marchal Sommé J, Wemeau Stervinou L, Fabre A, et al. The hedgehog system machinery controls transforming growth factor-?-dependent myofibroblastic differentiation in humans: involvement in idiopathic pulmonary fibrosis. Am J Pathol. 2012;181:2126-37 pubmed 出版商
  27. Romero Alemán M, Monzon Mayor M, Santos E, Lang D, Yanes C. Neuronal and glial differentiation during lizard (Gallotia galloti) visual system ontogeny. J Comp Neurol. 2012;520:2163-84 pubmed 出版商