这是一篇来自已证抗体库的有关人类 Skp1的综述,是根据23篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Skp1 抗体。
Skp1 同义词: EMC19; OCP-II; OCP2; SKP1A; TCEB1L; p19A

圣克鲁斯生物技术
小鼠 单克隆(H-6)
  • 免疫印迹; 人类; 图 5d
圣克鲁斯生物技术 Skp1抗体(Santa Cruz, sc-5281)被用于被用于免疫印迹在人类样本上 (图 5d). J Exp Clin Cancer Res (2022) ncbi
小鼠 单克隆(H-6)
  • 免疫印迹; 人类; 1:1000; 图 2d
圣克鲁斯生物技术 Skp1抗体(Santa Cruz, sc-5281)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Cell Death Dis (2021) ncbi
小鼠 单克隆(H-6)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 Skp1抗体(Santa, sc-5281)被用于被用于免疫印迹在人类样本上 (图 3b). J Pathol (2019) ncbi
小鼠 单克隆(H-6)
  • 免疫印迹; 人类; 图 8c
圣克鲁斯生物技术 Skp1抗体(SantaCruz, sc-5281)被用于被用于免疫印迹在人类样本上 (图 8c). J Virol (2018) ncbi
小鼠 单克隆(H-6)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 Skp1抗体(Santa Cruz Biotechnology, sc-5281)被用于被用于免疫印迹在人类样本上 (图 3b). J Cell Biol (2018) ncbi
小鼠 单克隆(H-6)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Skp1抗体(Santa Cruz, sc-5281)被用于被用于免疫印迹在人类样本上 (图 1). Cell Rep (2015) ncbi
小鼠 单克隆(H-6)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Skp1抗体(santa Cruz, sc-5281)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(H-6)
  • 免疫印迹; 人类; 图 1f
圣克鲁斯生物技术 Skp1抗体(Santa Cruz, sc-5281)被用于被用于免疫印迹在人类样本上 (图 1f). Nucleic Acids Res (2014) ncbi
赛默飞世尔
小鼠 单克隆(4E11)
  • 免疫印迹; 小鼠; 1:1,000
赛默飞世尔 Skp1抗体(生活技术, 4E11)被用于被用于免疫印迹在小鼠样本上浓度为1:1,000. J Biol Chem (2014) ncbi
小鼠 单克隆(1C10F4)
  • 免疫印迹; 人类
赛默飞世尔 Skp1抗体(Zymed, noca)被用于被用于免疫印迹在人类样本上. Blood (2008) ncbi
小鼠 单克隆(1C10F4)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Skp1抗体(Zymed, 1C10F4)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2004) ncbi
小鼠 单克隆(1C10F4)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Skp1抗体(Zymed, 1C10F4)被用于被用于免疫印迹在人类样本上 (图 4). Nature (2003) ncbi
Rockland Immunochemicals
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 5B
Rockland Immunochemicals Skp1抗体(Rockland Immunochemicals, 100-401-A08)被用于被用于免疫沉淀在人类样本上 (图 5B). J Biol Chem (2017) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR3304)
  • 免疫沉淀; 人类; 图 2
艾博抗(上海)贸易有限公司 Skp1抗体(Epitomics, 2538-1)被用于被用于免疫沉淀在人类样本上 (图 2). Oncogene (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D3J4N)
  • 免疫印迹; 人类; 1:1000; 图 5l
赛信通(上海)生物试剂有限公司 Skp1抗体(CST, 12248)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5l). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4d, s8
  • 免疫印迹; 人类; 1:100; 图 s5b, s6e
赛信通(上海)生物试剂有限公司 Skp1抗体(Cell Signaling, 2156S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4d, s8) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 s5b, s6e). Sci Transl Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Skp1抗体(Cell Signaling, 2156)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D3J4N)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Skp1抗体(Cell signaling, 12248)被用于被用于免疫印迹在小鼠样本上. elife (2016) ncbi
domestic rabbit 单克隆(D3J4N)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Skp1抗体(Cell Signaling, 12248)被用于被用于免疫印迹在人类样本上 (图 5c). PLoS ONE (2015) ncbi
碧迪BD
小鼠 单克隆(52/p19 [Skp1)
  • 免疫印迹; 人类; 图 3a
碧迪BD Skp1抗体(BD Biosciences, 52)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Cell Proteomics (2017) ncbi
小鼠 单克隆(52/p19 [Skp1)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
碧迪BD Skp1抗体(BD Transduction Laboratories, 610530)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Nat Commun (2014) ncbi
小鼠 单克隆(52/p19 [Skp1)
  • 免疫印迹; 人类; 1:500; 图 1
碧迪BD Skp1抗体(BD Biosciences, 610530)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). J Biol Chem (2014) ncbi
小鼠 单克隆(52/p19 [Skp1)
  • 免疫印迹; 人类
碧迪BD Skp1抗体(BD Biosciences, 610530)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
文章列表
  1. Salaroglio I, Belisario D, Bironzo P, Ananthanarayanan P, Ricci L, Digiovanni S, et al. SKP2 drives the sensitivity to neddylation inhibitors and cisplatin in malignant pleural mesothelioma. J Exp Clin Cancer Res. 2022;41:75 pubmed 出版商
  2. Tang X, Li G, Shi L, Su F, Qian M, Liu Z, et al. Combined intermittent fasting and ERK inhibition enhance the anti-tumor effects of chemotherapy via the GSK3β-SIRT7 axis. Nat Commun. 2021;12:5058 pubmed 出版商
  3. Ji M, Zhao Z, Li Y, Xu P, Shi J, Li Z, et al. FBXO6-mediated RNASET2 ubiquitination and degradation governs the development of ovarian cancer. Cell Death Dis. 2021;12:317 pubmed 出版商
  4. Li Y, Sun Y, Kulke M, Hechler T, Van der Jeught K, Dong T, et al. Targeted immunotherapy for HER2-low breast cancer with 17p loss. Sci Transl Med. 2021;13: pubmed 出版商
  5. Paul D, Islam S, Manne R, Dinesh U, Malonia S, Maity B, et al. F-box protein FBXO16 functions as a tumor suppressor by attenuating nuclear β-catenin function. J Pathol. 2019;248:266-279 pubmed 出版商
  6. Liu R, Moss B. Vaccinia Virus C9 Ankyrin Repeat/F-Box Protein Is a Newly Identified Antagonist of the Type I Interferon-Induced Antiviral State. J Virol. 2018;92: pubmed 出版商
  7. Pleiner T, Bates M, Gorlich D. A toolbox of anti-mouse and anti-rabbit IgG secondary nanobodies. J Cell Biol. 2018;217:1143-1154 pubmed 出版商
  8. Augustine T, Chaudhary P, Gupta K, Islam S, Ghosh P, Santra M, et al. Cyclin F/FBXO1 Interacts with HIV-1 Viral Infectivity Factor (Vif) and Restricts Progeny Virion Infectivity by Ubiquitination and Proteasomal Degradation of Vif Protein through SCFcyclin F E3 Ligase Machinery. J Biol Chem. 2017;292:5349-5363 pubmed 出版商
  9. Van Puyenbroeck V, Claeys E, Schols D, Bell T, Vermeire K. A Proteomic Survey Indicates Sortilin as a Secondary Substrate of the ER Translocation Inhibitor Cyclotriazadisulfonamide (CADA). Mol Cell Proteomics. 2017;16:157-167 pubmed 出版商
  10. Schlierf A, Altmann E, Quancard J, Jefferson A, Assenberg R, Renatus M, et al. Targeted inhibition of the COP9 signalosome for treatment of cancer. Nat Commun. 2016;7:13166 pubmed 出版商
  11. Yu Z, Chen T, Li X, Yang M, Tang S, Zhu X, et al. Lys29-linkage of ASK1 by Skp1-Cullin 1-Fbxo21 ubiquitin ligase complex is required for antiviral innate response. elife. 2016;5: pubmed 出版商
  12. Han X, Zha Z, Yuan H, Feng X, Xia Y, Lei Q, et al. KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation. Oncogene. 2016;35:4179-90 pubmed 出版商
  13. Young L, Marzio A, Pérez Durán P, Reid D, Meredith D, Roberti D, et al. TIMELESS Forms a Complex with PARP1 Distinct from Its Complex with TIPIN and Plays a Role in the DNA Damage Response. Cell Rep. 2015;13:451-459 pubmed 出版商
  14. Sjögren B, Swaney S, Neubig R. FBXO44-Mediated Degradation of RGS2 Protein Uniquely Depends on a Cullin 4B/DDB1 Complex. PLoS ONE. 2015;10:e0123581 pubmed 出版商
  15. Cruz Bermúdez A, Vallejo C, Vicente Blanco R, Gallardo M, Fernández Moreno M, Quintanilla M, et al. Enhanced tumorigenicity by mitochondrial DNA mild mutations. Oncotarget. 2015;6:13628-43 pubmed
  16. Chen J, Shin J, Zhao R, Phan L, Wang H, Xue Y, et al. CSN6 drives carcinogenesis by positively regulating Myc stability. Nat Commun. 2014;5:5384 pubmed 出版商
  17. Dikopoltsev E, Foltyn V, Zehl M, Jensen O, Mori H, Radzishevsky I, et al. FBXO22 protein is required for optimal synthesis of the N-methyl-D-aspartate (NMDA) receptor coagonist D-serine. J Biol Chem. 2014;289:33904-15 pubmed 出版商
  18. Shiba Fukushima K, Inoshita T, Hattori N, Imai Y. Lysine 63-linked polyubiquitination is dispensable for Parkin-mediated mitophagy. J Biol Chem. 2014;289:33131-6 pubmed 出版商
  19. Chen Z, Liu B, Tang N, Xu Y, Ye X, Li Z, et al. FBXL5-mediated degradation of single-stranded DNA-binding protein hSSB1 controls DNA damage response. Nucleic Acids Res. 2014;42:11560-9 pubmed 出版商
  20. Moroishi T, Yamauchi T, Nishiyama M, Nakayama K. HERC2 targets the iron regulator FBXL5 for degradation and modulates iron metabolism. J Biol Chem. 2014;289:16430-41 pubmed 出版商
  21. Chen Q, Xie W, Kuhn D, Voorhees P, Lopez Girona A, Mendy D, et al. Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood. 2008;111:4690-9 pubmed 出版商
  22. Donzelli M, Busino L, Chiesa M, Ganoth D, Hershko A, Draetta G. Hierarchical order of phosphorylation events commits Cdc25A to betaTrCP-dependent degradation. Cell Cycle. 2004;3:469-71 pubmed
  23. Busino L, Donzelli M, Chiesa M, Guardavaccaro D, Ganoth D, Dorrello N, et al. Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature. 2003;426:87-91 pubmed