这是一篇来自已证抗体库的有关人类 Skp2的综述,是根据43篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Skp2 抗体。
Skp2 同义词: FBL1; FBXL1; FLB1; p45

赛默飞世尔
小鼠 单克隆(SKP2-8D9)
  • 流式细胞仪; 小鼠; 图 5e
赛默飞世尔 Skp2抗体(eBioscience, 8D9)被用于被用于流式细胞仪在小鼠样本上 (图 5e). J Exp Med (2019) ncbi
小鼠 单克隆(SKP2-8D9)
  • 流式细胞仪; 小鼠; 图 8a
赛默飞世尔 Skp2抗体(eBioscience, 8D9)被用于被用于流式细胞仪在小鼠样本上 (图 8a). J Exp Med (2019) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔 Skp2抗体(Invitrogen, 32-3300)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Cell Cycle (2016) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 Skp2抗体(Invitrogen, 32-3300)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Lett (2015) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫印迹; 人类; 1:2000
赛默飞世尔 Skp2抗体(Invitrogen, 323300)被用于被用于免疫印迹在人类样本上浓度为1:2000. Nat Commun (2015) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫印迹; 小鼠
赛默飞世尔 Skp2抗体(Invitrogen, 32-3300)被用于被用于免疫印迹在小鼠样本上. Nat Commun (2014) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫印迹; 人类; 1:500-1:1000
赛默飞世尔 Skp2抗体(生活技术, 32-3300)被用于被用于免疫印迹在人类样本上浓度为1:500-1:1000. Biochem Pharmacol (2014) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫印迹; 人类
赛默飞世尔 Skp2抗体(Zymed, 32-3300)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫印迹; 人类; 1:1000; 图 7
赛默飞世尔 Skp2抗体(Invitrogen, 32-3300)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 7). World J Gastroenterol (2014) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫印迹; 人类; 图 6
赛默飞世尔 Skp2抗体(Invitrogen, 32-3300)被用于被用于免疫印迹在人类样本上 (图 6). Cancer Res (2013) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫沉淀; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Skp2抗体(Invitrogen, 32-3300)被用于被用于免疫沉淀在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Oncogene (2011) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫细胞化学; 人类; 图 1c
  • 免疫印迹; 人类; 1:2000; 图 1a
赛默飞世尔 Skp2抗体(Zymed Laboratories, 32-3300)被用于被用于免疫细胞化学在人类样本上 (图 1c) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). BMC Biol (2010) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫印迹; 人类; 图 8
赛默飞世尔 Skp2抗体(Invitrogen, 32-3300)被用于被用于免疫印迹在人类样本上 (图 8). Immunology (2010) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Skp2抗体(Zymed, 32-3300)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2010) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Skp2抗体(Zymed, 32-3300)被用于被用于免疫印迹在人类样本上 (图 3). J Virol (2010) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Skp2抗体(Zymed, 32-3300)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cell Biol (2009) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Skp2抗体(Zymed, 8D9)被用于被用于免疫印迹在人类样本上 (图 3). Mol Biol Cell (2008) ncbi
小鼠 单克隆(SKP2-8D9)
  • 流式细胞仪; 人类; 图 1
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Skp2抗体(Zymed, 32-3,300)被用于被用于流式细胞仪在人类样本上 (图 1), 被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Mol Cancer Ther (2007) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫印迹; 人类
赛默飞世尔 Skp2抗体(Zymed, 32-3300)被用于被用于免疫印迹在人类样本上. J Biol Chem (2006) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Skp2抗体(Zymed, Skp2-8D9)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2007) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Skp2抗体(Zymed, 32-3300)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2006) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
赛默飞世尔 Skp2抗体(Zymed, SKP2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). BJU Int (2005) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫印迹; 人类
赛默飞世尔 Skp2抗体(Zymed, 8D9)被用于被用于免疫印迹在人类样本上. J Mol Med (Berl) (2005) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫印迹; 人类
赛默飞世尔 Skp2抗体(Zymed, SKP2-8D9)被用于被用于免疫印迹在人类样本上. J Biol Chem (2004) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Skp2抗体(Zymed, 8D9)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2004) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫印迹; 人类
赛默飞世尔 Skp2抗体(Zymed, 8D9)被用于被用于免疫印迹在人类样本上. J Biol Chem (2003) ncbi
小鼠 单克隆(SKP2-8D9)
  • 免疫印迹; 人类; 1:250
赛默飞世尔 Skp2抗体(Zymed, 32?C3300)被用于被用于免疫印迹在人类样本上浓度为1:250. BMC Cell Biol (2002) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-2)
  • 免疫印迹; 人类; 图 2e
圣克鲁斯生物技术 Skp2抗体(SantaCruz, sc-74477)被用于被用于免疫印迹在人类样本上 (图 2e). Oncotarget (2017) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR3305(2))
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 Skp2抗体(Abcam, ab183039)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 2f
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Skp2抗体(Cell Signaling, 4358)被用于被用于免疫沉淀在人类样本上 (图 2f) 和 被用于免疫印迹在人类样本上 (图 5a). Pharmaceutics (2022) ncbi
domestic rabbit 单克隆(D3G5)
  • 免疫印迹; 人类; 1:1000; 图 5h
赛信通(上海)生物试剂有限公司 Skp2抗体(CST, 2652)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5h). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 Skp2抗体(Cell Signaling Technology, 4358)被用于被用于免疫印迹在人类样本上 (图 5d). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 Skp2抗体(Cell Signaling Technology, 4313)被用于被用于免疫印迹在小鼠样本上 (图 3b). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(D3G5)
  • 免疫细胞化学; 人类; 1:1000; 图 s4f
  • 免疫印迹; 人类; 1:1000; 图 s4d
赛信通(上海)生物试剂有限公司 Skp2抗体(Cell Signaling, 2652)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s4f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s4d). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Skp2抗体(New England Biolab, 4358)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Oncogene (2018) ncbi
domestic rabbit 单克隆(D3G5)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 3i
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Skp2抗体(Cell Signaling, 2652)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 3i) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D3G5)
  • 免疫组化; 小鼠; 图 7h
  • 免疫沉淀; 人类; 图 3a
  • 免疫组化; 人类; 1:1000; 图 6b
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 Skp2抗体(cell signalling, 2652)被用于被用于免疫组化在小鼠样本上 (图 7h), 被用于免疫沉淀在人类样本上 (图 3a), 被用于免疫组化在人类样本上浓度为1:1000 (图 6b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D3G5)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Skp2抗体(Cell Signaling, 2652)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D3G5)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Skp2抗体(Cell Signalling, 2652)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Skp2抗体(Cell Signaling Tech, 4358)被用于被用于免疫印迹在人类样本上 (图 6). Cancer Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Skp2抗体(Cell Signaling, 4313)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D3G5)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Skp2抗体(Cell Signaling Technology, 2652)被用于被用于免疫印迹在人类样本上 (图 3b). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D3G5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Skp2抗体(Cell Signaling Technology, 2652)被用于被用于免疫印迹在人类样本上浓度为1:1000. FEBS J (2014) ncbi
文章列表
  1. Deshmukh D, Xu J, Yang X, Shimelis H, Fang S, Qiu Y. Regulation of p27 (Kip1) by Ubiquitin E3 Ligase RNF6. Pharmaceutics. 2022;14: pubmed 出版商
  2. Tang X, Li G, Shi L, Su F, Qian M, Liu Z, et al. Combined intermittent fasting and ERK inhibition enhance the anti-tumor effects of chemotherapy via the GSK3β-SIRT7 axis. Nat Commun. 2021;12:5058 pubmed 出版商
  3. Li Z, Zhang H, Huang Y, Huang J, Sun P, Zhou N, et al. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat Commun. 2020;11:3806 pubmed 出版商
  4. Cui J, Duan J, Chu J, Guo C, Xi M, Li Y, et al. Chikusetsu saponin IVa protects pancreatic β cell against intermittent high glucose-induced injury by activating Wnt/β-catenin/TCF7L2 pathway. Aging (Albany NY). 2020;12:1591-1609 pubmed 出版商
  5. von Gamm M, Schaub A, Jones A, Wolf C, Behrens G, Lichti J, et al. Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3. J Exp Med. 2019;: pubmed 出版商
  6. Mentrup T, Theodorou K, Cabrera Cabrera F, Helbig A, Happ K, Gijbels M, et al. Atherogenic LOX-1 signaling is controlled by SPPL2-mediated intramembrane proteolysis. J Exp Med. 2019;: pubmed 出版商
  7. Li Y, Liu Y, Xu H, Jiang G, Van der Jeught K, Fang Y, et al. Heterozygous deletion of chromosome 17p renders prostate cancer vulnerable to inhibition of RNA polymerase II. Nat Commun. 2018;9:4394 pubmed 出版商
  8. Brough R, Gulati A, Haider S, Kumar R, Campbell J, Knudsen E, et al. Identification of highly penetrant Rb-related synthetic lethal interactions in triple negative breast cancer. Oncogene. 2018;37:5701-5718 pubmed 出版商
  9. Yao F, Zhou Z, Kim J, Hang Q, Xiao Z, Ton B, et al. SKP2- and OTUD1-regulated non-proteolytic ubiquitination of YAP promotes YAP nuclear localization and activity. Nat Commun. 2018;9:2269 pubmed 出版商
  10. Xu J, Zhou W, Yang F, Chen G, Li H, Zhao Y, et al. The β-TrCP-FBXW2-SKP2 axis regulates lung cancer cell growth with FBXW2 acting as a tumour suppressor. Nat Commun. 2017;8:14002 pubmed 出版商
  11. Nagashima K, Fukushima H, Shimizu K, Yamada A, Hidaka M, Hasumi H, et al. Nutrient-induced FNIP degradation by SCFβ-TRCP regulates FLCN complex localization and promotes renal cancer progression. Oncotarget. 2017;8:9947-9960 pubmed 出版商
  12. Schlierf A, Altmann E, Quancard J, Jefferson A, Assenberg R, Renatus M, et al. Targeted inhibition of the COP9 signalosome for treatment of cancer. Nat Commun. 2016;7:13166 pubmed 出版商
  13. Wang C, Guo S, Wang J, Yan X, Farrelly M, Zhang Y, et al. Reactivation of ERK and Akt confers resistance of mutant BRAF colon cancer cells to the HSP90 inhibitor AUY922. Oncotarget. 2016;7:49597-49610 pubmed 出版商
  14. Itsumi M, Shiota M, Takeuchi A, Kashiwagi E, Inokuchi J, Tatsugami K, et al. Equol inhibits prostate cancer growth through degradation of androgen receptor by S-phase kinase-associated protein 2. Cancer Sci. 2016;107:1022-8 pubmed 出版商
  15. Dai Y, Wang L, Tang J, Cao P, Luo Z, Sun J, et al. Activation of anaphase-promoting complex by p53 induces a state of dormancy in cancer cells against chemotherapeutic stress. Oncotarget. 2016;7:25478-92 pubmed 出版商
  16. Pavlides S, Lecanda J, Daubriac J, Pandya U, Gama P, Blank S, et al. TGF-β activates APC through Cdh1 binding for Cks1 and Skp2 proteasomal destruction stabilizing p27kip1 for normal endometrial growth. Cell Cycle. 2016;15:931-47 pubmed 出版商
  17. Lub S, Maes A, Maes K, De Veirman K, De Bruyne E, Menu E, et al. Inhibiting the anaphase promoting complex/cyclosome induces a metaphase arrest and cell death in multiple myeloma cells. Oncotarget. 2016;7:4062-76 pubmed 出版商
  18. Yu D, Makkar G, Dong T, Strickland D, Sarkar R, Monahan T. MARCKS Signaling Differentially Regulates Vascular Smooth Muscle and Endothelial Cell Proliferation through a KIS-, p27kip1- Dependent Mechanism. PLoS ONE. 2015;10:e0141397 pubmed 出版商
  19. Evans L, Chen L, Milazzo G, Gherardi S, Perini G, Willmore E, et al. SKP2 is a direct transcriptional target of MYCN and a potential therapeutic target in neuroblastoma. Cancer Lett. 2015;363:37-45 pubmed 出版商
  20. Xu D, Li C, Zhang X, Gong Z, Chan C, Lee S, et al. Skp2-macroH2A1-CDK8 axis orchestrates G2/M transition and tumorigenesis. Nat Commun. 2015;6:6641 pubmed 出版商
  21. Chen J, Shin J, Zhao R, Phan L, Wang H, Xue Y, et al. CSN6 drives carcinogenesis by positively regulating Myc stability. Nat Commun. 2014;5:5384 pubmed 出版商
  22. Lupino E, Ramondetti C, Buccinnà B, Piccinini M. Exposure of neuroblastoma cell lines to imatinib results in the upregulation of the CDK inhibitor p27(KIP1) as a consequence of c-Abl inhibition. Biochem Pharmacol. 2014;92:235-50 pubmed 出版商
  23. Ram R, Mendiratta S, Bodemann B, Torres M, Eskiocak U, White M. RASSF1A inactivation unleashes a tumor suppressor/oncogene cascade with context-dependent consequences on cell cycle progression. Mol Cell Biol. 2014;34:2350-8 pubmed 出版商
  24. Kim J, Kim H, Park J, Park D, Cho Y, Sohn C, et al. Epidermal growth factor upregulates Skp2/Cks1 and p27(kip1) in human extrahepatic cholangiocarcinoma cells. World J Gastroenterol. 2014;20:755-73 pubmed 出版商
  25. Tanaka T, Iino M. Knockdown of Sec8 promotes cell-cycle arrest at G1/S phase by inducing p21 via control of FOXO proteins. FEBS J. 2014;281:1068-84 pubmed 出版商
  26. Segura M, Fontanals Cirera B, Gaziel Sovran A, Guijarro M, Hanniford D, Zhang G, et al. BRD4 sustains melanoma proliferation and represents a new target for epigenetic therapy. Cancer Res. 2013;73:6264-76 pubmed 出版商
  27. Roe J, Kim H, Hwang I, Cho E, Youn H. von Hippel-Lindau protein promotes Skp2 destabilization on DNA damage. Oncogene. 2011;30:3127-38 pubmed 出版商
  28. Rico Bautista E, Yang C, Lu L, Roth G, Wolf D. Chemical genetics approach to restoring p27Kip1 reveals novel compounds with antiproliferative activity in prostate cancer cells. BMC Biol. 2010;8:153 pubmed 出版商
  29. Lupino E, Buccinnà B, Ramondetti C, Lomartire A, De Marco G, Ricotti E, et al. In CD28-costimulated human naïve CD4+ T cells, I-?B kinase controls the expression of cell cycle regulatory proteins via interleukin-2-independent mechanisms. Immunology. 2010;131:231-41 pubmed 出版商
  30. Fernandez Sanchez M, Sechet E, Margottin Goguet F, Rogge L, Bianchi E. The human COP9 signalosome protects ubiquitin-conjugating enzyme 3 (UBC3/Cdc34) from beta-transducin repeat-containing protein (betaTrCP)-mediated degradation. J Biol Chem. 2010;285:17390-7 pubmed 出版商
  31. Bellanger S, Tan C, Nei W, He P, Thierry F. The human papillomavirus type 18 E2 protein is a cell cycle-dependent target of the SCFSkp2 ubiquitin ligase. J Virol. 2010;84:437-44 pubmed 出版商
  32. Jiang X, Austin P, Niederhoff R, Manson S, Riehm J, Cook B, et al. Mechanoregulation of proliferation. Mol Cell Biol. 2009;29:5104-14 pubmed 出版商
  33. Hu R, Aplin A. Skp2 regulates G2/M progression in a p53-dependent manner. Mol Biol Cell. 2008;19:4602-10 pubmed 出版商
  34. Ji P, Sun D, Wang H, Bauzon F, Zhu L. Disrupting Skp2-cyclin A interaction with a blocking peptide induces selective cancer cell killing. Mol Cancer Ther. 2007;6:684-91 pubmed
  35. Denti S, Fernandez Sanchez M, Rogge L, Bianchi E. The COP9 signalosome regulates Skp2 levels and proliferation of human cells. J Biol Chem. 2006;281:32188-96 pubmed
  36. Bhatt K, Hu R, Spofford L, Aplin A. Mutant B-RAF signaling and cyclin D1 regulate Cks1/S-phase kinase-associated protein 2-mediated degradation of p27Kip1 in human melanoma cells. Oncogene. 2007;26:1056-66 pubmed
  37. Ji P, Goldin L, Ren H, Sun D, Guardavaccaro D, Pagano M, et al. Skp2 contains a novel cyclin A binding domain that directly protects cyclin A from inhibition by p27Kip1. J Biol Chem. 2006;281:24058-69 pubmed
  38. Langner C, Ratschek M, Rehak P, Tsybrovskyy O, Zigeuner R. The pT1a and pT1b category subdivision in renal cell carcinoma: is it reflected by differences in tumour biology?. BJU Int. 2005;95:310-4 pubmed
  39. Lee S, McCormick F. Downregulation of Skp2 and p27/Kip1 synergistically induces apoptosis in T98G glioblastoma cells. J Mol Med (Berl). 2005;83:296-307 pubmed
  40. Mammoto A, Huang S, Moore K, Oh P, Ingber D. Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition. J Biol Chem. 2004;279:26323-30 pubmed
  41. Liu E, Li X, Yan F, Zhao Q, Wu X. Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation. J Biol Chem. 2004;279:17283-8 pubmed
  42. Li X, Zhao Q, Liao R, Sun P, Wu X. The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J Biol Chem. 2003;278:30854-8 pubmed
  43. Lu L, Schulz H, Wolf D. The F-box protein SKP2 mediates androgen control of p27 stability in LNCaP human prostate cancer cells. BMC Cell Biol. 2002;3:22 pubmed