这是一篇来自已证抗体库的有关人类 Smad1的综述,是根据66篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Smad1 抗体。
Smad1 同义词: BSP-1; BSP1; JV4-1; JV41; MADH1; MADR1

赛默飞世尔
domestic rabbit 重组(31H14L11)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5e
  • 免疫印迹; 小鼠; 1:500; 图 5g
赛默飞世尔 Smad1抗体(Thermo, 700047)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5e) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 5g). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛默飞世尔 Smad1抗体(Invitrogen, 38-5400)被用于被用于免疫印迹在人类样本上 (图 1a). J Cell Sci (2019) ncbi
domestic rabbit 单克隆(E.239.4)
  • 免疫印迹; 斑马鱼; 1:500; 图 2i
赛默飞世尔 Smad1抗体(Invitrogen, MA5-15124)被用于被用于免疫印迹在斑马鱼样本上浓度为1:500 (图 2i). Cell Rep (2018) ncbi
domestic rabbit 重组(31H14L11)
  • 免疫组化; 小鼠; 图 1n
赛默飞世尔 Smad1抗体(Invitrogen, 700047)被用于被用于免疫组化在小鼠样本上 (图 1n). J Mol Histol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 6c
赛默飞世尔 Smad1抗体(ThermoFisher, 38-5400)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 6c). J Orthop Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7c
赛默飞世尔 Smad1抗体(Invitrogen, 38-5400)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7c). Mol Cell Biol (2016) ncbi
domestic rabbit 重组(31H14L11)
  • 免疫细胞化学; 小鼠; 图 6
赛默飞世尔 Smad1抗体(Invitrogen, 700047)被用于被用于免疫细胞化学在小鼠样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Smad1抗体(Invitrogen, 38-5400)被用于. Sci Rep (2015) ncbi
domestic rabbit 重组(31H14L11)
  • 免疫印迹; 小鼠; 1:200
赛默飞世尔 Smad1抗体(Invitrogen, 700047)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Dev Biol (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 Smad1抗体(Abcam, 80255)被用于被用于免疫印迹在人类样本上浓度为1:1000. Commun Biol (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1d
艾博抗(上海)贸易有限公司 Smad1抗体(Abcam, ab80255)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1d). Respir Res (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 Smad1抗体(Abcam, ab80255)被用于被用于免疫印迹在小鼠样本上 (图 6a). Front Pharmacol (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:500; 图 5g
艾博抗(上海)贸易有限公司 Smad1抗体(Abcam, ab75273)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5g). Nat Commun (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 5e
艾博抗(上海)贸易有限公司 Smad1抗体(Abcam, ab75273)被用于被用于免疫印迹在人类样本上 (图 5e). Diabetes (2020) ncbi
domestic rabbit 单克隆
  • 免疫组化; 人类; 图 2f
艾博抗(上海)贸易有限公司 Smad1抗体(Abcam, ab126761)被用于被用于免疫组化在人类样本上 (图 2f). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(EP565Y)
  • 其他; 人类; 图 4c
艾博抗(上海)贸易有限公司 Smad1抗体(Abcam, ab33902)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(EP565Y)
  • 免疫印迹; 小鼠; 图 2,3
艾博抗(上海)贸易有限公司 Smad1抗体(Abcam, 33902)被用于被用于免疫印迹在小鼠样本上 (图 2,3). J Histochem Cytochem (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(H-2)
  • 免疫印迹; 小鼠; 图 3c
圣克鲁斯生物技术 Smad1抗体(Santa Cruz, sc-7960)被用于被用于免疫印迹在小鼠样本上 (图 3c). Stem Cell Reports (2019) ncbi
小鼠 单克隆(A-4)
  • 免疫印迹; 小鼠; 图 4b
圣克鲁斯生物技术 Smad1抗体(Santa Cruz, sc-7965)被用于被用于免疫印迹在小鼠样本上 (图 4b). Cell Rep (2018) ncbi
小鼠 单克隆(H-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Smad1抗体(Santa Cruz, sc-7960)被用于被用于免疫印迹在人类样本上. Oncogene (2017) ncbi
小鼠 单克隆(A-4)
  • 免疫印迹; 小鼠; 1:1000; 表 2
圣克鲁斯生物技术 Smad1抗体(Santa Cruz, sc-7965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(A-4)
  • 免疫印迹; fission yeast; 1:1000; 图 6
圣克鲁斯生物技术 Smad1抗体(Santa Cruz Biotechnology, sc-7965)被用于被用于免疫印迹在fission yeast样本上浓度为1:1000 (图 6). PLoS ONE (2014) ncbi
小鼠 单克隆(A-4)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Smad1抗体(Santa Cruz Biotechnology, sc-7965x)被用于被用于免疫印迹在人类样本上 (图 2a). PLoS Pathog (2014) ncbi
小鼠 单克隆(913C1b)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Smad1抗体(Santa Cruz Biotechnology, sc-81378)被用于被用于免疫印迹在大鼠样本上. Obesity (Silver Spring) (2014) ncbi
小鼠 单克隆(A-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Smad1抗体(Santa Cruz Biotechnology, sc-7965)被用于被用于免疫印迹在小鼠样本上. J Am Soc Nephrol (2013) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell signaling, 9743)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Sci Rep (2022) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 6944)被用于被用于免疫印迹在小鼠样本上 (图 5f). Leukemia (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Smad1抗体(CST, 9743)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Front Cardiovasc Med (2022) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 人类; 1:1000; 图 1b
  • 免疫印迹; 小鼠; 1:1000; 图 s1a
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 6944)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1a). Acta Neuropathol (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 9743S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Nat Microbiol (2021) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 小鼠; 1:1000; 图 1c, s5a, s5d
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell signaling, 6944)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c, s5a, s5d). Sci Signal (2021) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 6944)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Bone Res (2020) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Smad1抗体(CST, 6944S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). elife (2020) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling Technology, 6944)被用于被用于免疫印迹在人类样本上 (图 3c). Int J Mol Sci (2020) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 6944)被用于被用于免疫印迹在人类样本上 (图 s2). Clin Transl Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 9743)被用于被用于免疫印迹在小鼠样本上 (图 6c). J Cardiovasc Dev Dis (2020) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Smad1抗体(CST, 6944)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Int J Mol Sci (2020) ncbi
domestic rabbit 单克隆(D59D7)
  • 染色质免疫沉淀 ; 人类; 图 3g
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling Technologies, D59D7)被用于被用于染色质免疫沉淀 在人类样本上 (图 3g) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). PLoS Biol (2019) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 6944)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 9553s)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 9743L)被用于被用于免疫印迹在小鼠样本上 (图 7a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling Technology, 9743)被用于被用于免疫印迹在小鼠样本上 (图 3e). PLoS ONE (2019) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 人类; 1:250; 图 2b
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 6944)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 2b). BMC Res Notes (2019) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 Smad1抗体(cell signaling, 6944)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Sci Rep (2019) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 6944)被用于被用于免疫印迹在小鼠样本上 (图 6c). Cell Rep (2019) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 人类; 1:2000; 图 2c
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 6944)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2c). Dev Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 9743S)被用于被用于免疫印迹在人类样本上 (图 2f). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 Smad1抗体(CST, 9743)被用于被用于免疫印迹在人类样本上 (图 1e). J Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 9743S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d). Blood (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling Technology, 9743)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s5a
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 9743)被用于被用于免疫印迹在小鼠样本上 (图 s5a). PLoS Genet (2017) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell signaling, 6944)被用于被用于免疫印迹在人类样本上 (图 6d). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 人类; 1:20,000; 图 S1i
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell signaling, 6944)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 S1i). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 97435)被用于被用于免疫印迹在小鼠样本上 (图 8). Exp Cell Res (2016) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 人类; 1:1000; 图 st1
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 6944)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 6
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 9743)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 小鼠; 1:100; 图 8c
  • 免疫印迹; 小鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 9743)被用于被用于免疫沉淀在小鼠样本上浓度为1:100 (图 8c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 鸡; 1:100; 图 1
  • 免疫印迹; 鸡; 1:100; 图 2
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell signaling, 9743S)被用于被用于免疫组化在鸡样本上浓度为1:100 (图 1) 和 被用于免疫印迹在鸡样本上浓度为1:100 (图 2). J Cell Sci (2017) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 6944)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D40B7)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Smad1抗体(cell Signaling Tech, 5753s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫细胞化学; 小鼠; 图 1c
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 6944)被用于被用于免疫细胞化学在小鼠样本上 (图 1c) 和 被用于免疫印迹在小鼠样本上 (图 4c). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 6944P)被用于被用于免疫印迹在人类样本上. Stem Cell Reports (2015) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 6944)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 人类; 图 s3g
赛信通(上海)生物试剂有限公司 Smad1抗体(CST, 6944)被用于被用于免疫印迹在人类样本上 (图 s3g). Nat Commun (2014) ncbi
domestic rabbit 单克隆(D59D7)
  • 染色质免疫沉淀 ; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling Technology, 6944)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4). Stem Cell Reports (2014) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 6944)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nucleic Acids Res (2013) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling Technologies, 6944p)被用于被用于免疫印迹在人类样本上浓度为1:2000. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(D59D7)
  • 免疫印迹; 非洲爪蛙
赛信通(上海)生物试剂有限公司 Smad1抗体(Cell Signaling, 6944)被用于被用于免疫印迹在非洲爪蛙样本上. Development (2013) ncbi
文章列表
  1. Bertrand Chapel A, Caligaris C, Fenouil T, Savary C, Aires S, Martel S, et al. SMAD2/3 mediate oncogenic effects of TGF-β in the absence of SMAD4. Commun Biol. 2022;5:1068 pubmed 出版商
  2. Wei T, Richter G, Zhang H, Sun R, Smith C, STRUB G. Extracranial arteriovenous malformations demonstrate dysregulated TGF-β/BMP signaling and increased circulating TGF-β1. Sci Rep. 2022;12:16612 pubmed 出版商
  3. Lee A, Pingali S, Pinilla Ibarz J, Atchison M, Koumenis C, Argon Y, et al. Loss of AID exacerbates the malignant progression of CLL. Leukemia. 2022;36:2430-2442 pubmed 出版商
  4. Chakrabarti M, Bhattacharya A, Gebere M, Johnson J, Ayub Z, Chatzistamou I, et al. Increased TGFβ1 and SMAD3 Contribute to Age-Related Aortic Valve Calcification. Front Cardiovasc Med. 2022;9:770065 pubmed 出版商
  5. Forouhan M, Lim W, Zanetti Domingues L, Tynan C, Roberts T, Malik B, et al. AR cooperates with SMAD4 to maintain skeletal muscle homeostasis. Acta Neuropathol. 2022;143:713-731 pubmed 出版商
  6. Kabwe J, Sawada H, Mitani Y, Oshita H, Tsuboya N, Zhang E, et al. CRISPR-mediated Bmpr2 point mutation exacerbates late pulmonary vasculopathy and reduces survival in rats with experimental pulmonary hypertension. Respir Res. 2022;23:87 pubmed 出版商
  7. Kim J, Kim M, Hong S, Kim E, Lee H, Jung H, et al. Albiflorin Promotes Osteoblast Differentiation and Healing of Rat Femoral Fractures Through Enhancing BMP-2/Smad and Wnt/β-Catenin Signaling. Front Pharmacol. 2021;12:690113 pubmed 出版商
  8. Zhang D, Huang J, Sun X, Chen H, Huang S, Yang J, et al. Targeting local lymphatics to ameliorate heterotopic ossification via FGFR3-BMPR1a pathway. Nat Commun. 2021;12:4391 pubmed 出版商
  9. Chen W, Foo S, Hong E, Wu C, Lee W, Lee S, et al. Zika virus NS3 protease induces bone morphogenetic protein-dependent brain calcification in human fetuses. Nat Microbiol. 2021;6:455-466 pubmed 出版商
  10. Yang J, Kitami M, Pan H, Nakamura M, Zhang H, Liu F, et al. Augmented BMP signaling commits cranial neural crest cells to a chondrogenic fate by suppressing autophagic β-catenin degradation. Sci Signal. 2021;14: pubmed 出版商
  11. Kushioka J, Kaito T, Okada R, Ishiguro H, Bal Z, Kodama J, et al. A novel negative regulatory mechanism of Smurf2 in BMP/Smad signaling in bone. Bone Res. 2020;8:41 pubmed 出版商
  12. Li M, Xie Z, Li J, Lin J, Zheng G, Liu W, et al. GAS5 protects against osteoporosis by targeting UPF1/SMAD7 axis in osteoblast differentiation. elife. 2020;9: pubmed 出版商
  13. Liu C, Teo M, Pek S, Wu X, Leong M, Tay H, et al. A Multifunctional Role of Leucine-Rich α-2-Glycoprotein 1 in Cutaneous Wound Healing Under Normal and Diabetic Conditions. Diabetes. 2020;69:2467-2480 pubmed 出版商
  14. Park N, Kang H. BMP-Induced MicroRNA-101 Expression Regulates Vascular Smooth Muscle Cell Migration. Int J Mol Sci. 2020;21: pubmed 出版商
  15. Shoemaker L, McCormick A, Allen B, Chang S. Evidence for endothelial-to-mesenchymal transition in human brain arteriovenous malformations. Clin Transl Med. 2020;10:e99 pubmed 出版商
  16. Chakrabarti M, Al Sammarraie N, Gebere M, Bhattacharya A, Chopra S, Johnson J, et al. Transforming Growth Factor Beta3 is Required for Cardiovascular Development. J Cardiovasc Dev Dis. 2020;7: pubmed 出版商
  17. Li P, Fleischhauer L, Nicolae C, Prein C, Farkas Z, Saller M, et al. Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis. Int J Mol Sci. 2020;21: pubmed 出版商
  18. Hiepen C, Jatzlau J, Hildebrandt S, Kampfrath B, Goktas M, Murgai A, et al. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics. PLoS Biol. 2019;17:e3000557 pubmed 出版商
  19. Fan Q, He W, Gayen M, Benoit M, Luo X, Hu X, et al. Activated CX3CL1/Smad2 Signals Prevent Neuronal Loss and Alzheimer's Tau Pathology-Mediated Cognitive Dysfunction. J Neurosci. 2020;40:1133-1144 pubmed 出版商
  20. Deng Q, Li P, Che M, Liu J, Biswas S, Ma G, et al. Activation of hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-Catenin. elife. 2019;8: pubmed 出版商
  21. Seki M, Furukawa N, Koitabashi N, Obokata M, Conway S, Arakawa H, et al. Periostin-expressing cell-specific transforming growth factor-β inhibition in pulmonary artery prevents pulmonary arterial hypertension. PLoS ONE. 2019;14:e0220795 pubmed 出版商
  22. Miller D, Schmierer B, Hill C. TGF-β family ligands exhibit distinct signalling dynamics that are driven by receptor localisation. J Cell Sci. 2019;: pubmed 出版商
  23. Gorrell R, Totten M, Schoerning L, Newby J, Geyman L, Lawless W, et al. Identification of a bone morphogenetic protein type 2 receptor neutralizing antibody. BMC Res Notes. 2019;12:331 pubmed 出版商
  24. Tsai C, Tsai C, Yi J, Kao H, Huang Y, Wang C, et al. Activin A regulates the epidermal growth factor receptor promoter by activating the PI3K/SP1 pathway in oral squamous cell carcinoma cells. Sci Rep. 2019;9:5197 pubmed 出版商
  25. Hendrikx S, Coso S, Prat Luri B, Wetterwald L, Sabine A, Franco C, et al. Endothelial Calcineurin Signaling Restrains Metastatic Outgrowth by Regulating Bmp2. Cell Rep. 2019;26:1227-1241.e6 pubmed 出版商
  26. Narayana Y, Gadgil C, Mote R, Rajan R, Subramanyam D. Clathrin-Mediated Endocytosis Regulates a Balance between Opposing Signals to Maintain the Pluripotent State of Embryonic Stem Cells. Stem Cell Reports. 2019;12:152-164 pubmed 出版商
  27. Senft A, Costello I, King H, Mould A, Bikoff E, Robertson E. Combinatorial Smad2/3 Activities Downstream of Nodal Signaling Maintain Embryonic/Extra-Embryonic Cell Identities during Lineage Priming. Cell Rep. 2018;24:1977-1985.e7 pubmed 出版商
  28. Castanotto D, Zhang X, Alluin J, Zhang X, Rüger J, Armstrong B, et al. A stress-induced response complex (SIRC) shuttles miRNAs, siRNAs, and oligonucleotides to the nucleus. Proc Natl Acad Sci U S A. 2018;115:E5756-E5765 pubmed 出版商
  29. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  30. Mönnich M, Borgeskov L, Breslin L, Jakobsen L, Rogowski M, Doğanlı C, et al. CEP128 Localizes to the Subdistal Appendages of the Mother Centriole and Regulates TGF-β/BMP Signaling at the Primary Cilium. Cell Rep. 2018;22:2584-2592 pubmed 出版商
  31. Bajikar S, Wang C, Borten M, Pereira E, Atkins K, Janes K. Tumor-Suppressor Inactivation of GDF11 Occurs by Precursor Sequestration in Triple-Negative Breast Cancer. Dev Cell. 2017;43:418-435.e13 pubmed 出版商
  32. Dufton N, Peghaire C, Osuna Almagro L, Raimondi C, Kalna V, Chuahan A, et al. Dynamic regulation of canonical TGFβ signalling by endothelial transcription factor ERG protects from liver fibrogenesis. Nat Commun. 2017;8:895 pubmed 出版商
  33. Ventura E, Weller M, Burghardt I. Cutting Edge: ERK1 Mediates the Autocrine Positive Feedback Loop of TGF-? and Furin in Glioma-Initiating Cells. J Immunol. 2017;198:4569-4574 pubmed 出版商
  34. Wang C, Core A, Canali S, Zumbrennen Bullough K, Ozer S, Umans L, et al. Smad1/5 is required for erythropoietin-mediated suppression of hepcidin in mice. Blood. 2017;130:73-83 pubmed 出版商
  35. Hurst L, Dunmore B, Long L, Crosby A, Al Lamki R, Deighton J, et al. TNFα drives pulmonary arterial hypertension by suppressing the BMP type-II receptor and altering NOTCH signalling. Nat Commun. 2017;8:14079 pubmed 出版商
  36. Jiang C, Diao F, Sang Y, Xu N, Zhu R, Wang X, et al. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary. PLoS Genet. 2017;13:e1006535 pubmed 出版商
  37. Sun J, Liu X, Gao H, Zhang L, Ji Q, Wang Z, et al. Overexpression of colorectal cancer oncogene CHRDL2 predicts a poor prognosis. Oncotarget. 2017;8:11489-11506 pubmed 出版商
  38. Mouillesseaux K, Wiley D, Saunders L, Wylie L, Kushner E, Chong D, et al. Notch regulates BMP responsiveness and lateral branching in vessel networks via SMAD6. Nat Commun. 2016;7:13247 pubmed 出版商
  39. Iyer S, Chhabra Y, Harvey T, Wang R, Chiu H, Smith A, et al. CRIM1 is necessary for coronary vascular endothelial cell development and homeostasis. J Mol Histol. 2017;48:53-61 pubmed 出版商
  40. Zhao G, Zhu P, Renvoisé B, Maldonado Baez L, Park S, Blackstone C. Mammalian knock out cells reveal prominent roles for atlastin GTPases in ER network morphology. Exp Cell Res. 2016;349:32-44 pubmed 出版商
  41. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  42. Chan D, Hui W, Wang J, Yung M, Hui L, Qin Y, et al. DLX1 acts as a crucial target of FOXM1 to promote ovarian cancer aggressiveness by enhancing TGF-β/SMAD4 signaling. Oncogene. 2017;36:1404-1416 pubmed 出版商
  43. Nakamichi R, Ito Y, Inui M, Onizuka N, Kayama T, Kataoka K, et al. Mohawk promotes the maintenance and regeneration of the outer annulus fibrosus of intervertebral discs. Nat Commun. 2016;7:12503 pubmed 出版商
  44. Huang Z, Hu J, Pan J, Wang Y, Hu G, Zhou J, et al. YAP stabilizes SMAD1 and promotes BMP2-induced neocortical astrocytic differentiation. Development. 2016;143:2398-409 pubmed 出版商
  45. Muñoz Félix J, Pérez Roque L, Núñez Gómez E, Oujo B, Arevalo M, Ruiz Remolina L, et al. Overexpression of the short endoglin isoform reduces renal fibrosis and inflammation after unilateral ureteral obstruction. Biochim Biophys Acta. 2016;1862:1801-14 pubmed 出版商
  46. Amarnath S, Agarwala S. Cell-cycle-dependent TGF?-BMP antagonism regulates neural tube closure by modulating tight junctions. J Cell Sci. 2017;130:119-131 pubmed 出版商
  47. Morgan E, Pittman J, DeGiacomo A, Cusher D, de Bakker C, Mroszczyk K, et al. BMPR1A antagonist differentially affects cartilage and bone formation during fracture healing. J Orthop Res. 2016;34:2096-2105 pubmed 出版商
  48. Cyr Depauw C, Northey J, Tabariès S, Annis M, Dong Z, Cory S, et al. Chordin-Like 1 Suppresses Bone Morphogenetic Protein 4-Induced Breast Cancer Cell Migration and Invasion. Mol Cell Biol. 2016;36:1509-25 pubmed 出版商
  49. West J, Carrier E, Bloodworth N, Schroer A, Chen P, Ryzhova L, et al. Serotonin 2B Receptor Antagonism Prevents Heritable Pulmonary Arterial Hypertension. PLoS ONE. 2016;11:e0148657 pubmed 出版商
  50. Iyer S, Chou F, Wang R, Chiu H, Raju V, Little M, et al. Crim1 has cell-autonomous and paracrine roles during embryonic heart development. Sci Rep. 2016;6:19832 pubmed 出版商
  51. Lee S, Jeong J, Oh C, Park S, Kim J, Kim H, et al. Pyruvate Dehydrogenase Kinase 4 Promotes Vascular Calcification via SMAD1/5/8 Phosphorylation. Sci Rep. 2015;5:16577 pubmed 出版商
  52. Huan C, Yang T, Liang J, Xie T, Cheng L, Liu N, et al. Methylation-mediated BMPER expression in fibroblast activation in vitro and lung fibrosis in mice in vivo. Sci Rep. 2015;5:14910 pubmed 出版商
  53. Wainwright E, Wilhelm D, Combes A, Little M, Koopman P. ROBO2 restricts the nephrogenic field and regulates Wolffian duct-nephrogenic cord separation. Dev Biol. 2015;404:88-102 pubmed 出版商
  54. Marks Bluth J, Khanna A, Chandrakanthan V, Thoms J, Bee T, Eich C, et al. SMAD1 and SMAD5 Expression Is Coordinately Regulated by FLI1 and GATA2 during Endothelial Development. Mol Cell Biol. 2015;35:2165-72 pubmed 出版商
  55. Perna F, Vu L, Themeli M, Kriks S, Hoya Arias R, Khanin R, et al. The polycomb group protein L3MBTL1 represses a SMAD5-mediated hematopoietic transcriptional program in human pluripotent stem cells. Stem Cell Reports. 2015;4:658-69 pubmed 出版商
  56. Tian E, Stevens S, Guan Y, Springer D, Anderson S, Starost M, et al. Galnt1 is required for normal heart valve development and cardiac function. PLoS ONE. 2015;10:e0115861 pubmed 出版商
  57. Li Q, Zou J, Wang M, Ding X, Chepelev I, Zhou X, et al. Critical role of histone demethylase Jmjd3 in the regulation of CD4+ T-cell differentiation. Nat Commun. 2014;5:5780 pubmed 出版商
  58. Oujo B, Muñoz Félix J, Arévalo M, Núñez Gómez E, Pérez Roque L, Pericacho M, et al. L-Endoglin overexpression increases renal fibrosis after unilateral ureteral obstruction. PLoS ONE. 2014;9:e110365 pubmed 出版商
  59. Flanders K, Heger C, Conway C, Tang B, Sato M, Dengler S, et al. Brightfield proximity ligation assay reveals both canonical and mixed transforming growth factor-β/bone morphogenetic protein Smad signaling complexes in tissue sections. J Histochem Cytochem. 2014;62:846-63 pubmed 出版商
  60. Onishi K, Tonge P, Nagy A, Zandstra P. Local BMP-SMAD1 signaling increases LIF receptor-dependent STAT3 responsiveness and primed-to-naive mouse pluripotent stem cell conversion frequency. Stem Cell Reports. 2014;3:156-68 pubmed 出版商
  61. Liang D, Hu H, Li S, Dong J, Wang X, Wang Y, et al. Oncogenic herpesvirus KSHV Hijacks BMP-Smad1-Id signaling to promote tumorigenesis. PLoS Pathog. 2014;10:e1004253 pubmed 出版商
  62. Beaudoin M, Snook L, Arkell A, Stefanson A, Wan Z, Simpson J, et al. Novel effects of rosiglitazone on SMAD2 and SMAD3 signaling in white adipose tissue of diabetic rats. Obesity (Silver Spring). 2014;22:1632-42 pubmed 出版商
  63. Hou P, Chuang C, Kao C, Chou S, Stone L, Ho H, et al. LHX2 regulates the neural differentiation of human embryonic stem cells via transcriptional modulation of PAX6 and CER1. Nucleic Acids Res. 2013;41:7753-70 pubmed 出版商
  64. Ren G, Beech C, Smas C. The immunoglobulin superfamily protein differentiation of embryonic stem cells 1 (dies1) has a regulatory role in preadipocyte to adipocyte conversion. PLoS ONE. 2013;8:e65531 pubmed 出版商
  65. Soofi A, Zhang P, Dressler G. Kielin/chordin-like protein attenuates both acute and chronic renal injury. J Am Soc Nephrol. 2013;24:897-905 pubmed 出版商
  66. Lim C, Reversade B, Knowles B, Solter D. Optimal histone H3 to linker histone H1 chromatin ratio is vital for mesodermal competence in Xenopus. Development. 2013;140:853-60 pubmed 出版商