这是一篇来自已证抗体库的有关人类 Smad3的综述,是根据224篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Smad3 抗体。
Smad3 同义词: HSPC193; HsT17436; JV15-2; LDS1C; LDS3; MADH3

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP823Y)
  • 免疫组化-石蜡切片; 斑马鱼; 1:200; 图 1a
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:200 (图 1a). elife (2020) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2e
  • 免疫印迹; 小鼠; 1:1000; 图 s8a
  • 免疫细胞化学; 猕猴; 图 s7h
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, Ab52903)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2e), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s8a) 和 被用于免疫细胞化学在猕猴样本上 (图 s7h). Nat Commun (2020) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
  • 免疫细胞化学; 小鼠; 1:100; 图 5b
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5b). Sci Rep (2020) ncbi
domestic rabbit 单克隆(EP568Y)
  • 免疫印迹; 人类; 图 4c
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab40854)被用于被用于免疫印迹在人类样本上 (图 4c). Sci Adv (2019) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 人类; 图 4c
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫印迹在人类样本上 (图 4c). Sci Adv (2019) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫组化; 小鼠; 1:100; 图 5b
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EP568Y)
  • 免疫印迹; 小鼠; 图 3d
艾博抗(上海)贸易有限公司 Smad3抗体(abcam, ab40854)被用于被用于免疫印迹在小鼠样本上 (图 3d). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 小鼠; 图 3d
艾博抗(上海)贸易有限公司 Smad3抗体(abcam, ab52903)被用于被用于免疫印迹在小鼠样本上 (图 3d). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3f
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, Ab52903)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3f). Sci Rep (2019) ncbi
domestic rabbit 单克隆(EP568Y)
  • 免疫印迹; 人类; 图 3e
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab40854)被用于被用于免疫印迹在人类样本上 (图 3e). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫组化; 小鼠; 图 1d
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, Ab52903)被用于被用于免疫组化在小鼠样本上 (图 1d). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(EP568Y)
  • 免疫印迹; 小鼠; 1:1000; 图 3d, 4c
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab40854)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d, 4c). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 单克隆(EP568Y)
  • 免疫印迹基因敲除验证; 小鼠; 图 s1c
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab40854)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 s1c). Cell Rep (2018) ncbi
domestic rabbit 单克隆(EPR19557)
  • 免疫印迹; 人类; 图 6b
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab207447)被用于被用于免疫印迹在人类样本上 (图 6b). Biosci Rep (2018) ncbi
domestic rabbit 单克隆(EP568Y)
  • 免疫沉淀; 人类; 图 6a
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab40854)被用于被用于免疫沉淀在人类样本上 (图 6a). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫细胞化学; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫细胞化学在小鼠样本上 (图 4a). Mol Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 2c
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab28379)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2c). J Biol Chem (2018) ncbi
domestic rabbit 单克隆(EP568Y)
  • 其他; 人类; 图 4c
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab40854)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 s1a
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab28379)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 s1a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a). Diabetes (2018) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 人类; 1:1000; 图 2c
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Dev Cell (2017) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 人类; 图 2f
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫印迹在人类样本上 (图 2f). Nat Commun (2017) ncbi
domestic rabbit 单克隆(EP568Y)
  • 免疫组化; 人类; 1:1000; 图 3a
  • 免疫印迹; 人类; 图 4a
  • 免疫组化; 小鼠; 1:1000; 图 1c
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab40854)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 3a), 被用于免疫印迹在人类样本上 (图 4a) 和 被用于免疫组化在小鼠样本上浓度为1:1000 (图 1c). Histochem Cell Biol (2017) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 小鼠; 图 6e, 6g
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫印迹在小鼠样本上 (图 6e, 6g). Basic Res Cardiol (2017) ncbi
domestic rabbit 单克隆(EP568Y)
  • 免疫印迹; 大鼠; 1:1000; 图 1c
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab40854)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1c). World J Gastroenterol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s16
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab51451)被用于被用于免疫印迹在小鼠样本上 (图 s16). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s16
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab28379)被用于被用于免疫印迹在小鼠样本上 (图 s16). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 小鼠; 图 5e
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, EP823Y)被用于被用于免疫印迹在小鼠样本上 (图 5e). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 1a
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab51451)被用于被用于其他在人类样本上 (图 1a). Oncogene (2017) ncbi
domestic rabbit 单克隆(EP568Y)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab40854)被用于被用于免疫印迹在人类样本上 (图 4). Cancer Cell Int (2016) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫组化; 小鼠; 1:50; 图 6
  • 免疫组化; 人类; 1:50; 图 s8
  • 免疫印迹; 人类; 1:1000; 图 s5
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, 52903)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 6), 被用于免疫组化在人类样本上浓度为1:50 (图 s8) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 小鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, Ab52903)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 6
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab28379)被用于被用于ChIP-Seq在小鼠样本上 (图 6). elife (2016) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫印迹在人类样本上 (图 1). Am J Transl Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s10
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab51451)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s10). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:400; 图 7
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab138659)被用于被用于免疫印迹在大鼠样本上浓度为1:400 (图 7). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 人类; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EP568Y)
  • 免疫印迹; 人类; 1:5000; 图 5c
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab40854)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5c). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 5
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 5) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6). EMBO Mol Med (2016) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫组化-石蜡切片; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 4
  • 免疫细胞化学; 大鼠; 图 6
  • 免疫印迹; 大鼠; 图 6
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4), 被用于免疫印迹在小鼠样本上 (图 4), 被用于免疫细胞化学在大鼠样本上 (图 6) 和 被用于免疫印迹在大鼠样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫组化-石蜡切片; 小鼠; 1:25; 图 s2
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:25 (图 s2). Nature (2016) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫组化; fruit fly ; 1:200; 图 1
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, AB52903)被用于被用于免疫组化在fruit fly 样本上浓度为1:200 (图 1). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(EP568Y)
  • 免疫印迹; 人类; 1:2500; 图 4
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab40854)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 4). FEBS Lett (2016) ncbi
domestic rabbit 单克隆(EP568Y)
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司 Smad3抗体(abcam, ab40854)被用于被用于免疫印迹在小鼠样本上 (图 3). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司 Smad3抗体(abcam, ab51451)被用于被用于免疫印迹在小鼠样本上 (图 3). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 小鼠; 图 6
  • 免疫印迹; 小鼠; 图 2
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, 29379)被用于被用于免疫沉淀在小鼠样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Smad3抗体(abcam, 28379)被用于被用于免疫印迹在人类样本上 (图 1). Bone (2016) ncbi
domestic rabbit 单克隆(EP568Y)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab40854)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cancer (2015) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 5). Development (2015) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 小鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, 52903)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Med (2015) ncbi
domestic rabbit 单克隆(EP568Y)
  • 免疫印迹; 小鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab40854)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Med (2015) ncbi
domestic rabbit 单克隆(EP568Y)
  • 免疫印迹; 小鼠; 图 7b
艾博抗(上海)贸易有限公司 Smad3抗体(abcam, ab40854)被用于被用于免疫印迹在小鼠样本上 (图 7b). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫印迹在人类样本上 (图 1). Cell Biosci (2015) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫印迹在人类样本上 (图 5). Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(EP568Y)
  • 免疫印迹; 人类; 1:500; 图 5
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab40854)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Nat Commun (2015) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 人类; 1:500; 图 5
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Nat Commun (2015) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫印迹在小鼠样本上 (图 5). Kidney Int (2015) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(EP568Y)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab40854)被用于被用于免疫印迹在人类样本上. World J Gastroenterol (2014) ncbi
domestic rabbit 单克隆(EP568Y)
  • In-Cell Western; 人类
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, 40854)被用于被用于In-Cell Western在人类样本上. Mol Hum Reprod (2014) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫印迹在人类样本上. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 小鼠; 图 2,3
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, 52903)被用于被用于免疫印迹在小鼠样本上 (图 2,3). J Histochem Cytochem (2014) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab51451)被用于. Hum Mol Genet (2014) ncbi
domestic rabbit 单克隆(EP568Y)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab40854)被用于被用于免疫细胞化学在人类样本上. Cell Res (2014) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 人类; 1:1000; 图 5
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, EP823Y)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Endocr Relat Cancer (2014) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫组化-石蜡切片; 小鼠; 1:50
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, Ab52903)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. J Am Soc Nephrol (2013) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫印迹在人类样本上. Am J Physiol Cell Physiol (2013) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫印迹在小鼠样本上. J Am Soc Nephrol (2013) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Lipid Res (2012) ncbi
domestic rabbit 单克隆(EP823Y)
  • 免疫组化; 斑马鱼; 1:400
艾博抗(上海)贸易有限公司 Smad3抗体(Abcam, ab52903)被用于被用于免疫组化在斑马鱼样本上浓度为1:400. Development (2012) ncbi
圣克鲁斯生物技术
小鼠 单克隆(38-Q)
  • proximity ligation assay; 人类; 1:200; 图 3d
圣克鲁斯生物技术 Smad3抗体(Santa Cruz, sc-101154)被用于被用于proximity ligation assay在人类样本上浓度为1:200 (图 3d). elife (2020) ncbi
小鼠 单克隆(C-8)
  • 免疫印迹; 小鼠; 1:500; 图 3a
圣克鲁斯生物技术 Smad3抗体(Thermo, sc-133098)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). Physiol Rep (2020) ncbi
小鼠 单克隆(38-Q)
  • 免疫印迹; 小鼠; 1:200; 图 7d
圣克鲁斯生物技术 Smad3抗体(Santa Cruz, sc-101154)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 7d). Cardiovasc Res (2018) ncbi
单克隆(1D9)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 7f
  • 免疫印迹; 小鼠; 1:200; 图 7d
圣克鲁斯生物技术 Smad3抗体(Santa Cruz, sc-517575)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 7f) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 7d). Cardiovasc Res (2018) ncbi
小鼠 单克隆(H-2)
  • 免疫印迹; 小鼠; 图 3c
圣克鲁斯生物技术 Smad3抗体(Santa Cruz, sc-7960)被用于被用于免疫印迹在小鼠样本上 (图 3c). Stem Cell Reports (2019) ncbi
小鼠 单克隆(38-Q)
  • 免疫印迹; 人类; 1:1500; 图 5a
圣克鲁斯生物技术 Smad3抗体(Santa Cruz Biotechnology, Inc, sc-101154)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 5a). Mol Med Rep (2018) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 大鼠; 1:1000; 图 3
圣克鲁斯生物技术 Smad3抗体(Santa Cruz, sc-376928)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Exp Ther Med (2016) ncbi
小鼠 单克隆(H-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Smad3抗体(Santa Cruz, sc-7960)被用于被用于免疫印迹在人类样本上. Oncogene (2017) ncbi
小鼠 单克隆(C-8)
  • 免疫细胞化学; 人类; 1:50; 图 4
  • 免疫印迹; 人类; 1:500; 图 6
圣克鲁斯生物技术 Smad3抗体(Santa Cruz Biotechnology, sc-133098)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 6). Int J Mol Sci (2016) ncbi
小鼠 单克隆(C-8)
  • 免疫沉淀; 人类; 1:50; 图 3
  • 免疫印迹; 人类; 1:500; 图 3
圣克鲁斯生物技术 Smad3抗体(Santa Cruz Biotechnology, sc-133098)被用于被用于免疫沉淀在人类样本上浓度为1:50 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(38-Q)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Smad3抗体(Santa Cruz Biotechnology);, sc-101154)被用于被用于免疫印迹在人类样本上 (图 4). Oncol Rep (2015) ncbi
小鼠 单克隆(38-Q)
  • 免疫印迹; 大鼠; 图 7
圣克鲁斯生物技术 Smad3抗体(Santa Cruz, sc-101154)被用于被用于免疫印迹在大鼠样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(C-8)
  • proximity ligation assay; 小鼠; 图 s12
圣克鲁斯生物技术 Smad3抗体(Santa Cruz, sc-133098)被用于被用于proximity ligation assay在小鼠样本上 (图 s12). Nat Commun (2015) ncbi
小鼠 单克隆(38-Q)
  • 免疫印迹; 人类; 1:1000; 图 s13
圣克鲁斯生物技术 Smad3抗体(Santa Cruz, sc-101154)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s13). Nat Commun (2015) ncbi
小鼠 单克隆(C-8)
  • 免疫印迹; 小鼠; 图 s3
  • 免疫印迹; 大鼠; 图 s2
圣克鲁斯生物技术 Smad3抗体(santa Cruz, sc-133098)被用于被用于免疫印迹在小鼠样本上 (图 s3) 和 被用于免疫印迹在大鼠样本上 (图 s2). Oncotarget (2015) ncbi
小鼠 单克隆(38-Q)
  • 免疫细胞化学; 大鼠; 图 5
  • 免疫印迹; 大鼠; 图 4
圣克鲁斯生物技术 Smad3抗体(Santa Cruz, sc-101154)被用于被用于免疫细胞化学在大鼠样本上 (图 5) 和 被用于免疫印迹在大鼠样本上 (图 4). Cell Physiol Biochem (2015) ncbi
小鼠 单克隆(C-8)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Smad3抗体(Santa Cruz, SC-133098)被用于被用于免疫印迹在人类样本上浓度为1:500. Growth Factors (2015) ncbi
小鼠 单克隆(38-Q)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Smad3抗体(Santa Cruz Biotechnology, SC-101154)被用于被用于免疫印迹在小鼠样本上. J Am Heart Assoc (2014) ncbi
小鼠 单克隆(C-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Smad3抗体(Santa Cruz Biotechnology, SC-133098)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(38-Q)
  • 免疫组化-冰冻切片; 小鼠
圣克鲁斯生物技术 Smad3抗体(Santa Cruz Biotechnology, sc-101154)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Biol Chem (2013) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:250; 图 4a
  • 免疫印迹; 小鼠; 图 4b
赛默飞世尔 Smad3抗体(Invitrogen, 51-1500)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 4b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 7b
赛默飞世尔 Smad3抗体(Invitrogen, 511500)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7b
赛默飞世尔 Smad3抗体(Invitrogen, 44246 G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3f
赛默飞世尔 Smad3抗体(Zymed Laboratories, 51-1500)被用于被用于免疫印迹在人类样本上 (图 3f). Oncotarget (2016) ncbi
domestic rabbit 单克隆(S.434.0)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛默飞世尔 Smad3抗体(ThermoFisher Scientific, MA5-14936)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Neurochem Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 3
赛默飞世尔 Smad3抗体(Thermo Fisher Scientific, PA5-12694)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(5G11)
  • 免疫印迹; 人类
赛默飞世尔 Smad3抗体(Pierce, MA5-15663)被用于被用于免疫印迹在人类样本上. BMC Cancer (2014) ncbi
安迪生物R&D
大鼠 单克隆(378611)
  • 免疫细胞化学; 人类; 图 2b
安迪生物R&D Smad3抗体(R&D, MAB4038)被用于被用于免疫细胞化学在人类样本上 (图 2b). Cell Rep (2019) ncbi
Rockland Immunochemicals
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6e
Rockland Immunochemicals Smad3抗体(Rockland, 600-401-919)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6e). Oncogene (2017) ncbi
domestic rabbit 多克隆
Rockland Immunochemicals Smad3抗体(Rockland, 600-401-C48)被用于. Nature (2015) ncbi
domestic rabbit 多克隆
Rockland Immunochemicals Smad3抗体(Rockland, 600-401-919)被用于. Am J Physiol Renal Physiol (2015) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 6
西格玛奥德里奇 Smad3抗体(Sigma-Aldrich, SAB4300253)被用于被用于免疫组化在人类样本上浓度为1:500 (图 6). Oncogene (2016) ncbi
武汉三鹰
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
武汉三鹰 Smad3抗体(Proteintech, 25494-1-AP)被用于被用于免疫印迹在人类样本上 (图 6). Int J Mol Med (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C25A9)
  • 染色质免疫沉淀 ; 人类; 图 3b
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于染色质免疫沉淀 在人类样本上 (图 3b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). elife (2020) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Death Differ (2020) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 大鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling technology, 9523)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5c). Front Pharmacol (2020) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 大鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling technology, 9520)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5c). Front Pharmacol (2020) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Smad3抗体(CST, 9520)被用于被用于免疫印迹在人类样本上 (图 4c). Front Oncol (2020) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 1:100; 图 5c
赛信通(上海)生物试剂有限公司 Smad3抗体(CST, 9520)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 5c). Onco Targets Ther (2020) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 1:100; 图 5c
赛信通(上海)生物试剂有限公司 Smad3抗体(CST, 9523)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 5c). Onco Targets Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s8a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signalling, 9513s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s8a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Smad3抗体(CST, C25A9)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). J Cancer (2020) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Smad3抗体(CST, 9523T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). J Cancer (2020) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 大鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 Smad3抗体(CST, 9520)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7c). Int J Nanomedicine (2019) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Commun Biol (2020) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Commun Biol (2020) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 8685)被用于被用于免疫印迹在小鼠样本上 (图 1e). Cell (2020) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 8685)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Neurosci (2020) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 1:500; 图 7a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 小鼠; 图 s9d
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在小鼠样本上 (图 s9d). Sci Adv (2019) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 图 s9d
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在小鼠样本上 (图 s9d). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 人类; 1:1000; 图 2i, s2b
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, D7G7)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2i, s2b). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫组化; 小鼠; 1:400; 图 s8i
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 8685)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s8i). Nature (2019) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520S)被用于被用于免疫印迹在小鼠样本上 (图 7a). elife (2019) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, 9520)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). EMBO J (2019) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, 9523)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). EMBO J (2019) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 8685)被用于被用于免疫印迹在人类样本上 (图 3b). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 1:750; 图 5e
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9523S)被用于被用于免疫印迹在人类样本上浓度为1:750 (图 5e). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 小鼠; 图 1s1f
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 8685)被用于被用于免疫印迹在小鼠样本上 (图 1s1f). elife (2019) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Smad3抗体(cell signaling, 9523)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Sci Rep (2019) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 8685S)被用于被用于免疫印迹在人类样本上 (图 7b). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 8685)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). EBioMedicine (2019) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523P)被用于被用于免疫印迹在小鼠样本上 (图 4c). EBioMedicine (2019) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520P)被用于被用于免疫印迹在小鼠样本上 (图 4c). EBioMedicine (2019) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在小鼠样本上 (图 4b). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Oncol Rep (2019) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Oncol Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9513)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cancer Discov (2019) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9530)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cancer Discov (2019) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 8685)被用于被用于免疫印迹在小鼠样本上 (图 4c). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 小鼠; 1:500; 图 s2
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9523)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2). Nat Commun (2018) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 图 1k
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9520)被用于被用于免疫印迹在小鼠样本上 (图 1k). Cell (2018) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, C67H9)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, C25A9)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 大鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 8685)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Cell Death Differ (2018) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 大鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5b). Cell Death Differ (2018) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 大鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5b). Cell Death Differ (2018) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 图 s6c
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, C67H9)被用于被用于免疫印迹在人类样本上 (图 s6c). Cancer Res (2018) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 图 s6c
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, C25A9)被用于被用于免疫印迹在人类样本上 (图 s6c). Cancer Res (2018) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫细胞化学; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, C25A9)被用于被用于免疫细胞化学在小鼠样本上 (图 2a). Cell Stem Cell (2017) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Dev Cell (2017) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 图 s3d
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, C25A9)被用于被用于免疫印迹在小鼠样本上 (图 s3d). Nature (2017) ncbi
domestic rabbit 单克隆(C67H9)
  • 染色质免疫沉淀 ; 人类; 图 3d
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 Smad3抗体(Sigma, 9523S)被用于被用于染色质免疫沉淀 在人类样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 2f). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Am J Physiol Renal Physiol (2017) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在小鼠样本上 (图 6a). Int J Biochem Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 Smad3抗体(CST, 9513)被用于被用于免疫印迹在人类样本上 (图 1e). J Immunol (2017) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 Smad3抗体(CST, 9520)被用于被用于免疫印迹在人类样本上 (图 1e). J Immunol (2017) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 1:2000; 图 9a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology Inc., 9520)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 9a). Oncol Lett (2017) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫细胞化学; 人类; 图 3a
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 8685)被用于被用于免疫细胞化学在人类样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 3b). J Cell Biochem (2017) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在小鼠样本上 (图 5c). J Exp Med (2017) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在小鼠样本上 (图 5c). J Exp Med (2017) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在小鼠样本上 (图 1c). EMBO Mol Med (2017) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在小鼠样本上 (图 1c). EMBO Mol Med (2017) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 小鼠; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8b). Radiat Res (2017) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 1:500; 图 8b
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 8b). Radiat Res (2017) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 8685S)被用于被用于免疫印迹在小鼠样本上 (图 1c). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signalling, C67H9)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 Smad3抗体(cell signalling, cst9523S)被用于被用于免疫印迹在人类样本上 (图 7c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫组化; 大鼠; 1:100; 图 9a
  • 免疫印迹; 大鼠; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 8685)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 9a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8a). Invest Ophthalmol Vis Sci (2017) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, 9520)被用于被用于免疫印迹在小鼠样本上 (图 6a). Skelet Muscle (2017) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signalling Technology, 9523)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signalling Technology, 9520)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2d
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, 9513)被用于被用于免疫印迹在人类样本上 (图 s2d). Oncotarget (2017) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在小鼠样本上 (图 5b). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫组化-冰冻切片; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, 9520)被用于被用于免疫组化-冰冻切片在人类样本上 (图 5a). J Orthop Res (2017) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, 9523)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, 9520)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 牛; 图 6 - s1e
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, C25A9)被用于被用于免疫印迹在牛样本上 (图 6 - s1e). elife (2016) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 小鼠; 1:1000; 图 e6
赛信通(上海)生物试剂有限公司 Smad3抗体(cell signalling, 8685)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 e6). Nature (2016) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在人类样本上 (图 3a). Cell Cycle (2017) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在人类样本上 (图 2c). Cell Cycle (2017) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 1:1000; 图 7d
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7d). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 1:1000; 图 7d
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7d). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1c
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, 9513)被用于被用于免疫印迹在小鼠样本上 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(C67H9)
  • 染色质免疫沉淀 ; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, 9523s)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5b). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, 9523)被用于被用于免疫印迹在小鼠样本上 (图 s2a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D7G7)
  • 染色质免疫沉淀 ; 小鼠
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 8685)被用于被用于染色质免疫沉淀 在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Commun (2016) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Oncogene (2017) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Tech, 9523)被用于被用于免疫印迹在大鼠样本上 (图 5). Carcinogenesis (2016) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Tech, 8685)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 1). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 人类; 1:500; 图 5a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 8685)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5a). Physiol Rep (2016) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 1:500; 图 5b
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5b). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Tech, 9513)被用于被用于免疫印迹在人类样本上 (图 3). Respir Res (2016) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, 8685)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 1:500; 图 s1b
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, 9523)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s1b). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Smad3抗体(cell signalling, C67H9)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s10
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9513)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s10). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 1:1000; 表 2
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 2). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 大鼠; 图 3e
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在大鼠样本上 (图 3e). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 大鼠; 图 3e
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在大鼠样本上 (图 3e). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在人类样本上 (图 4f). EBioMedicine (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Smad3抗体(ell Signaling Technology, 9513)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, CST9520)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6). Mol Endocrinol (2016) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 8685)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 8685)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, 9513)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nature (2016) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, C25A9)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nature (2016) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, 9520s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). FEBS Lett (2016) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523S)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Oncol (2016) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫细胞化学; 人类; 图 s10
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signalling technology, C67H9)被用于被用于免疫细胞化学在人类样本上 (图 s10). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 1:500; 图 1a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9520)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1a). J Dent Res (2016) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9523)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). J Dent Res (2016) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 8685)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在小鼠样本上 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, 9520)被用于被用于免疫印迹在小鼠样本上 (图 6). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, 9513)被用于被用于免疫印迹在小鼠样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, 9523)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫沉淀; 人类; 图 4
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, 8685)被用于被用于免疫沉淀在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell signaling, 9520)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9513)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 8685)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Smad3抗体(cell Signaling Tech, 9523s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Sci Rep (2015) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Smad3抗体(cell Signaling Tech, 9520p)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫细胞化学; 人类; 1:2000; 表 4
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 8685)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (表 4). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 人类; 图 s2d
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 8685)被用于被用于免疫印迹在人类样本上 (图 s2d). Nature (2015) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9523)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Int J Mol Sci (2015) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9520)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Int J Mol Sci (2015) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 8685)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). PLoS Med (2015) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Tech, 9523)被用于被用于免疫印迹在小鼠样本上 (图 5). Mol Cancer (2015) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9520)被用于被用于免疫印迹在小鼠样本上. Cell Physiol Biochem (2015) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell-Signalling Technology, C67H9)被用于被用于免疫印迹在人类样本上. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫细胞化学; 小鼠; 图 8
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9520)被用于被用于免疫细胞化学在小鼠样本上 (图 8) 和 被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C67H9)
  • proximity ligation assay; 小鼠; 图 s12
  • 染色质免疫沉淀 ; 小鼠; 图 s15
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于proximity ligation assay在小鼠样本上 (图 s12) 和 被用于染色质免疫沉淀 在小鼠样本上 (图 s15). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C25A9)
  • proximity ligation assay; 小鼠; 图 s12
  • 染色质免疫沉淀 ; 小鼠; 图 s14
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9520)被用于被用于proximity ligation assay在小鼠样本上 (图 s12) 和 被用于染色质免疫沉淀 在小鼠样本上 (图 s14). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫组化; 小鼠; 1:300; 图 5
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 8685S)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 5). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Cell Physiol (2015) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 图 3d, 4a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在小鼠样本上 (图 3d, 4a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520S)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Metab (2015) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 8685)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, C25A9)被用于被用于免疫印迹在小鼠样本上. J Physiol (2015) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 大鼠; 图 4
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9520s)被用于被用于免疫印迹在大鼠样本上 (图 4). Cell Physiol Biochem (2015) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 图 S4a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9520)被用于被用于免疫印迹在小鼠样本上 (图 S4a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). J Transl Med (2015) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 图 s1i
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在小鼠样本上 (图 s1i). Clin Sci (Lond) (2015) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫沉淀; 小鼠; 图 7j
  • 免疫印迹; 小鼠; 图 7h
  • 免疫印迹; 人类; 图 s3g
赛信通(上海)生物试剂有限公司 Smad3抗体(CST, 9523)被用于被用于免疫沉淀在小鼠样本上 (图 7j), 被用于免疫印迹在小鼠样本上 (图 7h) 和 被用于免疫印迹在人类样本上 (图 s3g). Nat Commun (2014) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520S)被用于被用于免疫印迹在小鼠样本上. Nature (2015) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Smad3抗体(Epitomics, 9523)被用于被用于免疫印迹在人类样本上 (图 5). J Clin Invest (2015) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 大鼠; 图 5b
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9520)被用于被用于免疫印迹在大鼠样本上 (图 5b). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, C25A9)被用于被用于免疫印迹在人类样本上. World J Gastroenterol (2014) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; fission yeast; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9520)被用于被用于免疫印迹在fission yeast样本上浓度为1:1000 (图 7). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Smad3抗体(CST, 9523)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Inflammation (2015) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Smad3抗体(CST, 9520)被用于被用于免疫印迹在人类样本上. Inflammation (2015) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在小鼠样本上 (图 6). J Biol Chem (2014) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在人类样本上 (图 4a). Connect Tissue Res (2015) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 小鼠; 图 2,3
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signalling, 9523)被用于被用于免疫印迹在小鼠样本上 (图 2,3). J Histochem Cytochem (2014) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, C25A9)被用于被用于免疫印迹在人类样本上. Cell Res (2014) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9520)被用于被用于免疫印迹在小鼠样本上. J Am Heart Assoc (2014) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Physiol Rep (2014) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Physiol Rep (2014) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9520)被用于被用于免疫印迹在大鼠样本上. Int J Mol Med (2014) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9523)被用于被用于免疫印迹在大鼠样本上. Int J Mol Med (2014) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 小鼠; 图 13
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 8685)被用于被用于免疫印迹在小鼠样本上 (图 13). BMC Nephrol (2014) ncbi
domestic rabbit 单克隆(C67H9)
  • 染色质免疫沉淀 ; 小鼠; 1:50; 图 1d
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technologies, 9523)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:50 (图 1d). Oncogene (2015) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9520)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9523)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在大鼠样本上. Obesity (Silver Spring) (2014) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在大鼠样本上. Obesity (Silver Spring) (2014) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 8685)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9520)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology , 9520)被用于被用于免疫印迹在人类样本上 (图 1). FASEB J (2014) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology , 9523)被用于被用于免疫印迹在人类样本上 (图 1). FASEB J (2014) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9520)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Am J Physiol Renal Physiol (2014) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9523)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Am J Physiol Renal Physiol (2014) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurochem (2014) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Biol Chem (2013) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在小鼠样本上. Nature (2013) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在小鼠样本上. Nature (2013) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9520)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 9523)被用于被用于免疫印迹在小鼠样本上 (图 2) 和 被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Smad3抗体(CST, 9520)被用于被用于免疫印迹在大鼠样本上. Diabetes (2013) ncbi
domestic rabbit 单克隆(D7G7)
  • 免疫沉淀; 大鼠
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling, 8685)被用于被用于免疫沉淀在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Am J Physiol Renal Physiol (2013) ncbi
domestic rabbit 单克隆(C67H9)
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technologies, 9523)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫印迹在人类样本上 (图 4). Am J Pathol (2012) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technologies, 9520)被用于被用于免疫印迹在人类样本上. Am J Pathol (2012) ncbi
domestic rabbit 单克隆(C25A9)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Smad3抗体(Cell Signaling Technology, 9520)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Clin Invest (2011) ncbi
碧迪BD
小鼠 单克隆(O72-670)
  • 流式细胞仪; 人类; 图 3b
碧迪BD Smad3抗体(BD, 562586)被用于被用于流式细胞仪在人类样本上 (图 3b). J Exp Med (2018) ncbi
文章列表
  1. Gibbs Z, Reza L, Cheng C, Westcott J, McGlynn K, Whitehurst A. The testis protein ZNF165 is a SMAD3 cofactor that coordinates oncogenic TGFβ signaling in triple-negative breast cancer. elife. 2020;9: pubmed 出版商
  2. Lee M, Wan J, Goldman D. Tgfb3 collaborates with PP2A and notch signaling pathways to inhibit retina regeneration. elife. 2020;9: pubmed 出版商
  3. Simula L, Corrado M, Accordi B, Di Rita A, Nazio F, Antonucci Y, et al. JNK1 and ERK1/2 modulate lymphocyte homeostasis via BIM and DRP1 upon AICD induction. Cell Death Differ. 2020;: pubmed 出版商
  4. Hreha T, Collins C, Daugherty A, Twentyman J, Paluri N, Hunstad D. TGFβ1 orchestrates renal fibrosis following Escherichia coli pyelonephritis. Physiol Rep. 2020;8:e14401 pubmed 出版商
  5. Yang L, Han B, Zhang M, Wang Y, Tao K, Zhu M, et al. Activation of BK Channels Prevents Hepatic Stellate Cell Activation and Liver Fibrosis Through the Suppression of TGFβ1/SMAD3 and JAK/STAT3 Profibrotic Signaling Pathways. Front Pharmacol. 2020;11:165 pubmed 出版商
  6. Fu X, Qie J, Fu Q, Chen J, Jin Y, Ding Z. miR-20a-5p/TGFBR2 Axis Affects Pro-inflammatory Macrophages and Aggravates Liver Fibrosis. Front Oncol. 2020;10:107 pubmed 出版商
  7. Wang X, Lu Q, Fei X, Zhao Y, Shi B, Li C, et al. Expression and Prognostic Value of Id-4 in Patients with Esophageal Squamous Cell Carcinoma. Onco Targets Ther. 2020;13:1225-1234 pubmed 出版商
  8. Dudiki T, Meller J, Mahajan G, Liu H, Zhevlakova I, Stefl S, et al. Microglia control vascular architecture via a TGFβ1 dependent paracrine mechanism linked to tissue mechanics. Nat Commun. 2020;11:986 pubmed 出版商
  9. Ye D, Zhu J, Zhao Q, Ma W, Xiao Y, Xu G, et al. LMP1 Up-regulates Calreticulin to Induce Epithelial-mesenchymal Transition via TGF-β/Smad3/NRP1 Pathway in Nasopharyngeal Carcinoma Cells. J Cancer. 2020;11:1257-1269 pubmed 出版商
  10. Sarić N, Selby M, Ramaswamy V, Kool M, Stockinger B, Hogstrand C, et al. The AHR pathway represses TGFβ-SMAD3 signalling and has a potent tumour suppressive role in SHH medulloblastoma. Sci Rep. 2020;10:148 pubmed 出版商
  11. Tran B, Yu Y, Chang L, Tan B, Jia W, Xiong Y, et al. A Novel Liposomal S-Propargyl-Cysteine: A Sustained Release of Hydrogen Sulfide Reducing Myocardial Fibrosis via TGF-β1/Smad Pathway. Int J Nanomedicine. 2019;14:10061-10077 pubmed 出版商
  12. Cheng X, Haeberle S, Luca Shytaj I, Gama Brambila R, Theobald J, Ghafoory S, et al. NHC-gold compounds mediate immune suppression through induction of AHR-TGFβ1 signalling in vitro and in scurfy mice. Commun Biol. 2020;3:10 pubmed 出版商
  13. Lee J, Hall J, Kroehling L, Wu L, Najar T, Nguyen H, et al. Serum Amyloid A Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease. Cell. 2020;180:79-91.e16 pubmed 出版商
  14. Vijayaraj P, Minasyan A, Durra A, Karumbayaram S, Mehrabi M, Aros C, et al. Modeling Progressive Fibrosis with Pluripotent Stem Cells Identifies an Anti-fibrotic Small Molecule. Cell Rep. 2019;29:3488-3505.e9 pubmed 出版商
  15. Fan Q, He W, Gayen M, Benoit M, Luo X, Hu X, et al. Activated CX3CL1/Smad2 Signals Prevent Neuronal Loss and Alzheimer's Tau Pathology-Mediated Cognitive Dysfunction. J Neurosci. 2020;40:1133-1144 pubmed 出版商
  16. Reed M, Luissint A, Azcutia V, Fan S, O Leary M, Quirós M, et al. Epithelial CD47 is critical for mucosal repair in the murine intestine in vivo. Nat Commun. 2019;10:5004 pubmed 出版商
  17. Lin F, Meng X, Guo Y, Cao W, Liu W, Xia Q, et al. Epigenetic initiation of the TH17 differentiation program is promoted by Cxxc finger protein 1. Sci Adv. 2019;5:eaax1608 pubmed 出版商
  18. Kuninty P, Bansal R, de Geus S, Mardhian D, Schnittert J, van Baarlen J, et al. ITGA5 inhibition in pancreatic stellate cells attenuates desmoplasia and potentiates efficacy of chemotherapy in pancreatic cancer. Sci Adv. 2019;5:eaax2770 pubmed 出版商
  19. Herberg S, McDermott A, Dang P, Alt D, Tang R, Dawahare J, et al. Combinatorial morphogenetic and mechanical cues to mimic bone development for defect repair. Sci Adv. 2019;5:eaax2476 pubmed 出版商
  20. Padmanaban V, Krol I, Suhail Y, Szczerba B, Aceto N, Bader J, et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature. 2019;573:439-444 pubmed 出版商
  21. Deng Q, Li P, Che M, Liu J, Biswas S, Ma G, et al. Activation of hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-Catenin. elife. 2019;8: pubmed 出版商
  22. Gal H, Lysenko M, Stroganov S, Vadai E, Youssef S, Tzadikevitch Geffen K, et al. Molecular pathways of senescence regulate placental structure and function. EMBO J. 2019;38:e100849 pubmed 出版商
  23. Hori A, Shimoda M, Naoi Y, Kagara N, Tanei T, Miyake T, et al. Vasculogenic mimicry is associated with trastuzumab resistance of HER2-positive breast cancer. Breast Cancer Res. 2019;21:88 pubmed 出版商
  24. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  25. Minuesa G, Albanese S, Xie W, Kazansky Y, Worroll D, Chow A, et al. Small-molecule targeting of MUSASHI RNA-binding activity in acute myeloid leukemia. Nat Commun. 2019;10:2691 pubmed 出版商
  26. Liu F, Fan D, Yang Z, Tang N, Guo Z, Ma S, et al. TLR9 is essential for HMGB1-mediated post-myocardial infarction tissue repair through affecting apoptosis, cardiac healing, and angiogenesis. Cell Death Dis. 2019;10:480 pubmed 出版商
  27. Hamaguchi M, Muramatsu R, Fujimura H, Mochizuki H, Kataoka H, Yamashita T. Circulating transforming growth factor-β1 facilitates remyelination in the adult central nervous system. elife. 2019;8: pubmed 出版商
  28. Tsai C, Tsai C, Yi J, Kao H, Huang Y, Wang C, et al. Activin A regulates the epidermal growth factor receptor promoter by activating the PI3K/SP1 pathway in oral squamous cell carcinoma cells. Sci Rep. 2019;9:5197 pubmed 出版商
  29. Wei X, Guo J, Li Q, Jia Q, Jing Q, Li Y, et al. Bach1 regulates self-renewal and impedes mesendodermal differentiation of human embryonic stem cells. Sci Adv. 2019;5:eaau7887 pubmed 出版商
  30. Wang M, Xiong L, Jiang L, Lu Y, Liu F, Song L, et al. miR-4739 mediates pleural fibrosis by targeting bone morphogenetic protein 7. EBioMedicine. 2019;41:670-682 pubmed 出版商
  31. Nixon A, Duque A, Yelle N, McLaughlin M, Davoudi S, Pedley N, et al. A rapid in vitro methodology for simultaneous target discovery and antibody generation against functional cell subpopulations. Sci Rep. 2019;9:842 pubmed 出版商
  32. Guo H, Ci X, Ahmed M, Hua J, Soares F, Lin D, et al. ONECUT2 is a driver of neuroendocrine prostate cancer. Nat Commun. 2019;10:278 pubmed 出版商
  33. Li J, Wang Y, Ma M, Jiang S, Zhang X, Zhang Y, et al. Autocrine CTHRC1 activates hepatic stellate cells and promotes liver fibrosis by activating TGF-β signaling. EBioMedicine. 2019;40:43-55 pubmed 出版商
  34. MacFarlane E, Parker S, Shin J, Kang B, Ziegler S, Creamer T, et al. Lineage-specific events underlie aortic root aneurysm pathogenesis in Loeys-Dietz syndrome. J Clin Invest. 2019;129:659-675 pubmed 出版商
  35. Zhang J, Sheng J, Dong L, Xu Y, Yu L, Liu Y, et al. Cardiomyocyte-specific loss of RMP causes myocardial dysfunction and heart failure. Cardiovasc Res. 2018;: pubmed 出版商
  36. Narayana Y, Gadgil C, Mote R, Rajan R, Subramanyam D. Clathrin-Mediated Endocytosis Regulates a Balance between Opposing Signals to Maintain the Pluripotent State of Embryonic Stem Cells. Stem Cell Reports. 2019;12:152-164 pubmed 出版商
  37. Peng J, Liang S, Li L. sFRP1 exerts effects on gastric cancer cells through GSK3β/Rac1‑mediated restraint of TGFβ/Smad3 signaling. Oncol Rep. 2019;41:224-234 pubmed 出版商
  38. Biffi G, Oni T, Spielman B, Hao Y, Elyada E, Park Y, et al. IL1-Induced JAK/STAT Signaling Is Antagonized by TGFβ to Shape CAF Heterogeneity in Pancreatic Ductal Adenocarcinoma. Cancer Discov. 2019;9:282-301 pubmed 出版商
  39. Kelly A, Günaltay S, McEntee C, Shuttleworth E, Smedley C, Houston S, et al. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J Exp Med. 2018;215:2725-2736 pubmed 出版商
  40. Zhang X, Zhang M, Wang C. Loss of LRRC25 accelerates pathological cardiac hypertrophy through promoting fibrosis and inflammation regulated by TGF-β1. Biochem Biophys Res Commun. 2018;506:137-144 pubmed 出版商
  41. Yin J, Wang Y, Chang J, Li B, Zhang J, Liu Y, et al. Apelin inhibited epithelial-mesenchymal transition of podocytes in diabetic mice through downregulating immunoproteasome subunits β5i. Cell Death Dis. 2018;9:1031 pubmed 出版商
  42. Senft A, Costello I, King H, Mould A, Bikoff E, Robertson E. Combinatorial Smad2/3 Activities Downstream of Nodal Signaling Maintain Embryonic/Extra-Embryonic Cell Identities during Lineage Priming. Cell Rep. 2018;24:1977-1985.e7 pubmed 出版商
  43. Chen K, Li Q, Weng C, Duan Z, Zhang D, Chen Z, et al. Bleomycin-enhanced alternative splicing of fibroblast growth factor receptor 2 induces epithelial to mesenchymal transition in lung fibrosis. Biosci Rep. 2018;38: pubmed 出版商
  44. Lam J, van den Bosch M, Wegrzyn J, Parker J, Ibrahim R, Slowski K, et al. miR-143/145 differentially regulate hematopoietic stem and progenitor activity through suppression of canonical TGFβ signaling. Nat Commun. 2018;9:2418 pubmed 出版商
  45. Castanotto D, Zhang X, Alluin J, Zhang X, Rüger J, Armstrong B, et al. A stress-induced response complex (SIRC) shuttles miRNAs, siRNAs, and oligonucleotides to the nucleus. Proc Natl Acad Sci U S A. 2018;115:E5756-E5765 pubmed 出版商
  46. Park J, Kim I, Choi J, Lim H, Shin J, Kim Y, et al. AHNAK Loss in Mice Promotes Type II Pneumocyte Hyperplasia and Lung Tumor Development. Mol Cancer Res. 2018;16:1287-1298 pubmed 出版商
  47. Ge J, Burnier L, Adamopoulou M, Kwa M, Schaks M, Rottner K, et al. RhoA, Rac1, and Cdc42 differentially regulate αSMA and collagen I expression in mesenchymal stem cells. J Biol Chem. 2018;293:9358-9369 pubmed 出版商
  48. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  49. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  50. Lino Cardenas C, Kessinger C, Cheng Y, MacDonald C, Macgillivray T, Ghoshhajra B, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9:1009 pubmed 出版商
  51. Zhao H, Klausen C, Li Y, Zhu H, Wang Y, Leung P. Bone morphogenetic protein 2 promotes human trophoblast cell invasion by upregulating N-cadherin via non-canonical SMAD2/3 signaling. Cell Death Dis. 2018;9:174 pubmed 出版商
  52. Zhang R, Wu Y, Xie F, Zhong Y, Wang Y, Xu M, et al. RGMa mediates reactive astrogliosis and glial scar formation through TGF?1/Smad2/3 signaling after stroke. Cell Death Differ. 2018;25:1503-1516 pubmed 出版商
  53. Schwab A, Siddiqui A, Vazakidou M, Napoli F, Böttcher M, Menchicchi B, et al. Polyol Pathway Links Glucose Metabolism to the Aggressiveness of Cancer Cells. Cancer Res. 2018;78:1604-1618 pubmed 出版商
  54. Li J, Huynh P, Dai A, Wu T, Tu Y, Chow B, et al. Diabetes Reduces Severity of Aortic Aneurysms Depending on the Presence of Cell Division Autoantigen 1 (CDA1). Diabetes. 2018;67:755-768 pubmed 出版商
  55. Li T, Zhao J. Knockdown of elF3a inhibits TGF??1?induced extracellular matrix protein expression in keloid fibroblasts. Mol Med Rep. 2018;17:4057-4061 pubmed 出版商
  56. Ruetz T, Pfisterer U, Di Stefano B, Ashmore J, Beniazza M, Tian T, et al. Constitutively Active SMAD2/3 Are Broad-Scope Potentiators of Transcription-Factor-Mediated Cellular Reprogramming. Cell Stem Cell. 2017;21:791-805.e9 pubmed 出版商
  57. Bajikar S, Wang C, Borten M, Pereira E, Atkins K, Janes K. Tumor-Suppressor Inactivation of GDF11 Occurs by Precursor Sequestration in Triple-Negative Breast Cancer. Dev Cell. 2017;43:418-435.e13 pubmed 出版商
  58. Zhang S, Takaku M, Zou L, Gu A, Chou W, Zhang G, et al. Reversing SKI-SMAD4-mediated suppression is essential for TH17 cell differentiation. Nature. 2017;551:105-109 pubmed 出版商
  59. Dufton N, Peghaire C, Osuna Almagro L, Raimondi C, Kalna V, Chuahan A, et al. Dynamic regulation of canonical TGFβ signalling by endothelial transcription factor ERG protects from liver fibrogenesis. Nat Commun. 2017;8:895 pubmed 出版商
  60. Hama T, Nakanishi K, Sato M, Mukaiyama H, Togawa H, Shima Y, et al. Aberrant Smad3 phosphoisoforms in cyst-lining epithelial cells in the cpk mouse, a model of autosomal recessive polycystic kidney disease. Am J Physiol Renal Physiol. 2017;:ajprenal.00697.2016 pubmed 出版商
  61. Han W, Li X, Zhang H, Yu B, Guo C, Deng C. Recombinant human elafin promotes alveologenesis in newborn mice exposed to chronic hyperoxia. Int J Biochem Cell Biol. 2017;92:173-182 pubmed 出版商
  62. Sato F, Kohsaka A, Takahashi K, Otao S, Kitada Y, Iwasaki Y, et al. Smad3 and Bmal1 regulate p21 and S100A4 expression in myocardial stromal fibroblasts via TNF-?. Histochem Cell Biol. 2017;148:617-624 pubmed 出版商
  63. Wang Q, Yu Y, Zhang P, Chen Y, Li C, Chen J, et al. The crucial role of activin A/ALK4 pathway in the pathogenesis of Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation. Basic Res Cardiol. 2017;112:47 pubmed 出版商
  64. Ventura E, Weller M, Burghardt I. Cutting Edge: ERK1 Mediates the Autocrine Positive Feedback Loop of TGF-? and Furin in Glioma-Initiating Cells. J Immunol. 2017;198:4569-4574 pubmed 出版商
  65. Wu K, Zhao Z, Ma J, Chen J, Peng J, Yang S, et al. Deregulation of miR-193b affects the growth of colon cancer cells via transforming growth factor-? and regulation of the SMAD3 pathway. Oncol Lett. 2017;13:2557-2562 pubmed 出版商
  66. Bermeo S, Al Saedi A, Kassem M, Vidal C, Duque G. The Role of the Nuclear Envelope Protein MAN1 in Mesenchymal Stem Cell Differentiation. J Cell Biochem. 2017;118:4425-4435 pubmed 出版商
  67. Wang Y, Shen R, Han B, Li Z, Xiong L, Zhang F, et al. Notch signaling mediated by TGF-?/Smad pathway in concanavalin A-induced liver fibrosis in rats. World J Gastroenterol. 2017;23:2330-2336 pubmed 出版商
  68. Fu G, Xu Q, Qiu Y, Jin X, Xu T, Dong S, et al. Suppression of Th17 cell differentiation by misshapen/NIK-related kinase MINK1. J Exp Med. 2017;214:1453-1469 pubmed 出版商
  69. Wassermann Dozorets R, Rubinstein M. C/EBPβ LIP augments cell death by inducing osteoglycin. Cell Death Dis. 2017;8:e2733 pubmed 出版商
  70. Ansa Addo E, Zhang Y, Yang Y, Hussey G, Howley B, Salem M, et al. Membrane-organizing protein moesin controls Treg differentiation and antitumor immunity via TGF-β signaling. J Clin Invest. 2017;127:1321-1337 pubmed 出版商
  71. Hammers D, Merscham Banda M, Hsiao J, ENGST S, Hartman J, Sweeney H. Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med. 2017;9:531-544 pubmed 出版商
  72. Chatterjee A, Kosmacek E, Oberley Deegan R. MnTE-2-PyP Treatment, or NOX4 Inhibition, Protects against Radiation-Induced Damage in Mouse Primary Prostate Fibroblasts by Inhibiting the TGF-Beta 1 Signaling Pathway. Radiat Res. 2017;187:367-381 pubmed 出版商
  73. Dahan J, Levillayer F, Xia T, Nouet Y, Werts C, Fanton d Andon M, et al. LIM-Only Protein FHL2 Is a Negative Regulator of Transforming Growth Factor ?1 Expression. Mol Cell Biol. 2017;37: pubmed 出版商
  74. Xu Z, Greenblatt M, Yan G, Feng H, Sun J, Lotinun S, et al. SMURF2 regulates bone homeostasis by disrupting SMAD3 interaction with vitamin D receptor in osteoblasts. Nat Commun. 2017;8:14570 pubmed 出版商
  75. Chowdhury A, Hasselbach L, Echtermeyer F, Jyotsana N, Theilmeier G, Herzog C. Fibulin-6 regulates pro-fibrotic TGF-β responses in neonatal mouse ventricular cardiac fibroblasts. Sci Rep. 2017;7:42725 pubmed 出版商
  76. Sun H, Peng Z, Tang H, Xie D, Jia Z, Zhong L, et al. Loss of KLF4 and consequential downregulation of Smad7 exacerbate oncogenic TGF-? signaling in and promote progression of hepatocellular carcinoma. Oncogene. 2017;36:2957-2968 pubmed 出版商
  77. He S, Cao Y, Xie P, Dong G, Zhang L. The Nedd8 Non-covalent Binding Region in the Smurf HECT Domain is Critical to its Ubiquitn Ligase Function. Sci Rep. 2017;7:41364 pubmed 出版商
  78. Zhu Y, Takayama T, Wang B, Kent A, Zhang M, Binder B, et al. Restenosis Inhibition and Re-differentiation of TGFβ/Smad3-activated Smooth Muscle Cells by Resveratrol. Sci Rep. 2017;7:41916 pubmed 出版商
  79. Shu D, Wojciechowski M, Lovicu F. Bone Morphogenetic Protein-7 Suppresses TGF?2-Induced Epithelial-Mesenchymal Transition in the Lens: Implications for Cataract Prevention. Invest Ophthalmol Vis Sci. 2017;58:781-796 pubmed 出版商
  80. Gopinath S. Inhibition of Stat3 signaling ameliorates atrophy of the soleus muscles in mice lacking the vitamin D receptor. Skelet Muscle. 2017;7:2 pubmed 出版商
  81. Gopal S, Veracini L, Grall D, Butori C, Schaub S, Audebert S, et al. Fibronectin-guided migration of carcinoma collectives. Nat Commun. 2017;8:14105 pubmed 出版商
  82. Sun J, Liu X, Gao H, Zhang L, Ji Q, Wang Z, et al. Overexpression of colorectal cancer oncogene CHRDL2 predicts a poor prognosis. Oncotarget. 2017;8:11489-11506 pubmed 出版商
  83. Chung H, Ryu D, Kim K, Chang J, Kim Y, Yi H, et al. Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis. J Cell Biol. 2017;216:149-165 pubmed 出版商
  84. Fry C, Johnson D, Ireland M, Noehren B. ACL injury reduces satellite cell abundance and promotes fibrogenic cell expansion within skeletal muscle. J Orthop Res. 2017;35:1876-1885 pubmed 出版商
  85. Choi S, Piao Z, Jin L, Kim J, Kim G, Ryu Y, et al. Piceatannol Attenuates Renal Fibrosis Induced by Unilateral Ureteral Obstruction via Downregulation of Histone Deacetylase 4/5 or p38-MAPK Signaling. PLoS ONE. 2016;11:e0167340 pubmed 出版商
  86. Heo S, Driscoll T, Thorpe S, Nerurkar N, Baker B, Yang M, et al. Differentiation alters stem cell nuclear architecture, mechanics, and mechano-sensitivity. elife. 2016;5: pubmed 出版商
  87. Mueller A, van Velthoven C, Fukumoto K, Cheung T, Rando T. Intronic polyadenylation of PDGFR? in resident stem cells attenuates muscle fibrosis. Nature. 2016;540:276-279 pubmed 出版商
  88. Bryson B, Junk D, Cipriano R, Jackson M. STAT3-mediated SMAD3 activation underlies Oncostatin M-induced Senescence. Cell Cycle. 2017;16:319-334 pubmed 出版商
  89. Zhu L, Gómez Durán A, Saretzki G, Jin S, Tilgner K, Melguizo Sanchís D, et al. The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages. J Cell Biol. 2016;215:187-202 pubmed
  90. Takai K, Le A, Weaver V, Werb Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 2016;7:82889-82901 pubmed 出版商
  91. Yang T, Wang J, Pang Y, Dang X, Ren H, Liu Y, et al. Emodin suppresses silica-induced lung fibrosis by promoting Sirt1 signaling via direct contact. Mol Med Rep. 2016;14:4643-4649 pubmed 出版商
  92. Wang W, Song B, Anbarchian T, Shirazyan A, Sadik J, Lyons K. Smad2 and Smad3 Regulate Chondrocyte Proliferation and Differentiation in the Growth Plate. PLoS Genet. 2016;12:e1006352 pubmed 出版商
  93. Yang P, Schmit B, Fu C, Desart K, Oh S, Berceli S, et al. Smooth muscle cell-specific Tgfbr1 deficiency promotes aortic aneurysm formation by stimulating multiple signaling events. Sci Rep. 2016;6:35444 pubmed 出版商
  94. Liao F, Li G, Yuan W, Chen Y, Zuo Y, Rashid K, et al. LSKL peptide alleviates subarachnoid fibrosis and hydrocephalus by inhibiting TSP1-mediated TGF-?1 signaling activity following subarachnoid hemorrhage in rats. Exp Ther Med. 2016;12:2537-2543 pubmed
  95. Liu W, Zhou L, Zhou C, Zhang S, Jing J, Xie L, et al. GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation. Nat Commun. 2016;7:12794 pubmed 出版商
  96. Queisser A, Hagedorn S, Wang H, Schaefer T, Konantz M, Alavi S, et al. Ecotropic viral integration site 1, a novel oncogene in prostate cancer. Oncogene. 2017;36:1573-1584 pubmed 出版商
  97. Hesler R, Huang J, Starr M, Treboschi V, Bernanke A, Nixon A, et al. TGF-?-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3. Carcinogenesis. 2016;37:1041-1051 pubmed 出版商
  98. Liu P, Wang C, Ma C, Wu Q, Zhang W, Lao G. MicroRNA-23a regulates epithelial-to-mesenchymal transition in endometrial endometrioid adenocarcinoma by targeting SMAD3. Cancer Cell Int. 2016;16:67 pubmed 出版商
  99. Liu Z, Hui Y, Shi L, Chen Z, Xu X, Chi L, et al. Efficient CRISPR/Cas9-Mediated Versatile, Predictable, and Donor-Free Gene Knockout in Human Pluripotent Stem Cells. Stem Cell Reports. 2016;7:496-507 pubmed 出版商
  100. Chan D, Hui W, Wang J, Yung M, Hui L, Qin Y, et al. DLX1 acts as a crucial target of FOXM1 to promote ovarian cancer aggressiveness by enhancing TGF-β/SMAD4 signaling. Oncogene. 2017;36:1404-1416 pubmed 出版商
  101. Xiao X, Senavirathna L, Gou X, Huang C, Liang Y, Liu L. EZH2 enhances the differentiation of fibroblasts into myofibroblasts in idiopathic pulmonary fibrosis. Physiol Rep. 2016;4: pubmed 出版商
  102. Sato N, Takasaka N, Yoshida M, Tsubouchi K, Minagawa S, Araya J, et al. Metformin attenuates lung fibrosis development via NOX4 suppression. Respir Res. 2016;17:107 pubmed 出版商
  103. Cammareri P, Rose A, Vincent D, Wang J, Nagano A, Libertini S, et al. Inactivation of TGFβ receptors in stem cells drives cutaneous squamous cell carcinoma. Nat Commun. 2016;7:12493 pubmed 出版商
  104. Nakamichi R, Ito Y, Inui M, Onizuka N, Kayama T, Kataoka K, et al. Mohawk promotes the maintenance and regeneration of the outer annulus fibrosus of intervertebral discs. Nat Commun. 2016;7:12503 pubmed 出版商
  105. Hoare M, Ito Y, Kang T, Weekes M, Matheson N, Patten D, et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol. 2016;18:979-92 pubmed 出版商
  106. Elsafadi M, Manikandan M, Dawud R, Alajez N, Hamam R, Alfayez M, et al. Transgelin is a TGFβ-inducible gene that regulates osteoblastic and adipogenic differentiation of human skeletal stem cells through actin cytoskeleston organization. Cell Death Dis. 2016;7:e2321 pubmed 出版商
  107. Eichenfield D, Troutman T, Link V, Lam M, Cho H, Gosselin D, et al. Tissue damage drives co-localization of NF-?B, Smad3, and Nrf2 to direct Rev-erb sensitive wound repair in mouse macrophages. elife. 2016;5: pubmed 出版商
  108. Kim D, Chang M, Yoon C, Middeldorp J, Martinez O, Byeon S, et al. Epstein-Barr virus BARF1-induced NFκB/miR-146a/SMAD4 alterations in stomach cancer cells. Oncotarget. 2016;7:82213-82227 pubmed 出版商
  109. Lefort K, Ostano P, Mello Grand M, Calpini V, Scatolini M, Farsetti A, et al. Dual tumor suppressing and promoting function of Notch1 signaling in human prostate cancer. Oncotarget. 2016;7:48011-48026 pubmed 出版商
  110. Languino L, Singh A, Prisco M, Inman G, Luginbuhl A, Curry J, et al. Exosome-mediated transfer from the tumor microenvironment increases TGF? signaling in squamous cell carcinoma. Am J Transl Res. 2016;8:2432-7 pubmed
  111. Su Q, Zhang B, Zhang L, Dang T, Rowley D, Ittmann M, et al. Jagged1 upregulation in prostate epithelial cells promotes formation of reactive stroma in the Pten null mouse model for prostate cancer. Oncogene. 2017;36:618-627 pubmed 出版商
  112. Evrard S, Lecce L, Michelis K, Nomura Kitabayashi A, Pandey G, Purushothaman K, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853 pubmed 出版商
  113. Muñoz Félix J, Pérez Roque L, Núñez Gómez E, Oujo B, Arevalo M, Ruiz Remolina L, et al. Overexpression of the short endoglin isoform reduces renal fibrosis and inflammation after unilateral ureteral obstruction. Biochim Biophys Acta. 2016;1862:1801-14 pubmed 出版商
  114. Cui L, Wang Y, Yu R, Li B, Xie S, Gao Y, et al. Jia-Shen decoction-medicated serum inhibits angiotensin-II induced cardiac fibroblast proliferation via the TGF-?1/Smad signaling pathway. Mol Med Rep. 2016;14:1610-6 pubmed 出版商
  115. Kang L, Zhang D, Ma C, Zhang J, Jia K, Liu J, et al. Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation. Sci Rep. 2016;6:27460 pubmed 出版商
  116. Chen X, Kong X, Liu D, Gao P, Zhang Y, Li P, et al. In vitro differentiation of endometrial regenerative cells into smooth muscle cells: ? potential approach for the management of pelvic organ prolapse. Int J Mol Med. 2016;38:95-104 pubmed 出版商
  117. Oh T, Wang S, Acharya B, Goode J, Graham J, Clarke C, et al. The Nuclear Receptor, ROR?, Regulates Pathways Necessary for Breast Cancer Metastasis. EBioMedicine. 2016;6:59-72 pubmed 出版商
  118. Omata M, Doke Y, Yamada C, Kawashima K, Sho R, Enomoto K, et al. Hepatocyte Nuclear Factor-1β Induces Redifferentiation of Dedifferentiated Tubular Epithelial Cells. PLoS ONE. 2016;11:e0154912 pubmed 出版商
  119. Chen P, Qin L, Li G, Tellides G, Simons M. Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression. EMBO Mol Med. 2016;8:712-28 pubmed 出版商
  120. Liu B, Shi Y, Peng W, Zhang Q, Liu J, Chen N, et al. Diosmetin induces apoptosis by upregulating p53 via the TGF-? signal pathway in HepG2 hepatoma cells. Mol Med Rep. 2016;14:159-64 pubmed 出版商
  121. Terakawa J, Rocchi A, Serna V, Bottinger E, Graff J, Kurita T. FGFR2IIIb-MAPK Activity Is Required for Epithelial Cell Fate Decision in the Lower Müllerian Duct. Mol Endocrinol. 2016;30:783-95 pubmed 出版商
  122. Bianchi E, Boekelheide K, Sigman M, Lamb D, Hall S, Hwang K. Ghrelin Inhibits Post-Operative Adhesions via Blockage of the TGF-β Signaling Pathway. PLoS ONE. 2016;11:e0153968 pubmed 出版商
  123. Ren J, Li J, Liu X, Feng Y, Gui Y, Yang J, et al. Quercetin Inhibits Fibroblast Activation and Kidney Fibrosis Involving the Suppression of Mammalian Target of Rapamycin and β-catenin Signaling. Sci Rep. 2016;6:23968 pubmed 出版商
  124. Thongon N, Castiglioni I, Zucal C, Latorre E, D Agostino V, Bauer I, et al. The GSK3β inhibitor BIS I reverts YAP-dependent EMT signature in PDAC cell lines by decreasing SMADs expression level. Oncotarget. 2016;7:26551-66 pubmed 出版商
  125. Zhou Z, Tang A, Wong W, Bamezai S, Goddard L, Shenkar R, et al. Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature. 2016;532:122-6 pubmed 出版商
  126. Upadhyay M, Martino Cortez Y, Wong Deyrup S, Tavares L, Schowalter S, Flora P, et al. Transposon Dysregulation Modulates dWnt4 Signaling to Control Germline Stem Cell Differentiation in Drosophila. PLoS Genet. 2016;12:e1005918 pubmed 出版商
  127. Xu X, Tan X, Hulshoff M, Wilhelmi T, Zeisberg M, Zeisberg E. Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells. FEBS Lett. 2016;590:1222-33 pubmed 出版商
  128. Ding Z, Jin G, Wang W, Sun Y, Chen W, Chen L, et al. Activin A-Smad Signaling Mediates Connective Tissue Growth Factor Synthesis in Liver Progenitor Cells. Int J Mol Sci. 2016;17:408 pubmed 出版商
  129. Kurimoto R, Iwasawa S, Ebata T, Ishiwata T, Sekine I, Tada Y, et al. Drug resistance originating from a TGF-β/FGF-2-driven epithelial-to-mesenchymal transition and its reversion in human lung adenocarcinoma cell lines harboring an EGFR mutation. Int J Oncol. 2016;48:1825-36 pubmed 出版商
  130. Li S, Wang F, Yang Y, Tiao M, Chuang J, Huang Y. Microarray Study of Pathway Analysis Expression Profile Associated with MicroRNA-29a with Regard to Murine Cholestatic Liver Injuries. Int J Mol Sci. 2016;17:324 pubmed 出版商
  131. Chang H, Liu Y, Xue M, Liu H, Du S, Zhang L, et al. Synergistic action of master transcription factors controls epithelial-to-mesenchymal transition. Nucleic Acids Res. 2016;44:2514-27 pubmed 出版商
  132. Yang W, Deng Y, Hsieh Y, Wu K, Kuo M. Thrombin Activates Latent TGF?1 via Integrin ?v?1 in Gingival Fibroblasts. J Dent Res. 2016;95:939-45 pubmed 出版商
  133. Liu L, Liu X, Ren X, Tian Y, Chen Z, Xu X, et al. Smad2 and Smad3 have differential sensitivity in relaying TGFβ signaling and inversely regulate early lineage specification. Sci Rep. 2016;6:21602 pubmed 出版商
  134. Hwang S, Jang S, Kim M, Kim L, Kim B, Kim H, et al. YY1 inhibits differentiation and function of regulatory T cells by blocking Foxp3 expression and activity. Nat Commun. 2016;7:10789 pubmed 出版商
  135. Du L, Chen X, Cao Y, Lu L, Zhang F, Bornstein S, et al. Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFβ signaling. Oncogene. 2016;35:4641-52 pubmed 出版商
  136. Wang Q, Li J, Wu W, Shen R, Jiang H, Qian Y, et al. Smad4-dependent suppressor pituitary homeobox 2 promotes PPP2R2A-mediated inhibition of Akt pathway in pancreatic cancer. Oncotarget. 2016;7:11208-22 pubmed 出版商
  137. Micha D, Voermans E, Eekhoff M, van Essen H, Zandieh Doulabi B, Netelenbos C, et al. Inhibition of TGFβ signaling decreases osteogenic differentiation of fibrodysplasia ossificans progressiva fibroblasts in a novel in vitro model of the disease. Bone. 2016;84:169-180 pubmed 出版商
  138. Wang J, Liang W, Cui Y, He J, Liu H, Wang Y, et al. Noncanonical Activin A Signaling in PC12 Cells: A Self-Limiting Feedback Loop. Neurochem Res. 2016;41:1073-84 pubmed 出版商
  139. Sun J, Chen X, Zhang L, Wang J, Diehn M. Yap1 promotes the survival and self-renewal of breast tumor initiating cells via inhibiting Smad3 signaling. Oncotarget. 2016;7:9692-706 pubmed 出版商
  140. Wu Y, Ai X, Liu F, Liang H, Zhang B, Chen X. c-Jun N-terminal kinase inhibitor favors transforming growth factor-β to antagonize hepatitis B virus X protein-induced cell growth promotion in hepatocellular carcinoma. Mol Med Rep. 2016;13:1345-52 pubmed 出版商
  141. Wang G, Yu Y, Sun C, Liu T, Liang T, Zhan L, et al. STAT3 selectively interacts with Smad3 to antagonize TGF-β signalling. Oncogene. 2016;35:4388-98 pubmed 出版商
  142. Bartscht T, Rosien B, Rades D, Kaufmann R, Biersack H, Lehnert H, et al. Dasatinib blocks transcriptional and promigratory responses to transforming growth factor-beta in pancreatic adenocarcinoma cells through inhibition of Smad signalling: implications for in vivo mode of action. Mol Cancer. 2015;14:199 pubmed 出版商
  143. Hirota S, Clements T, Tang L, Morales J, Lee H, Oh S, et al. Neuropilin 1 balances β8 integrin-activated TGFβ signaling to control sprouting angiogenesis in the brain. Development. 2015;142:4363-73 pubmed 出版商
  144. Buczek M, Miles A, Green W, Johnson C, Boocock D, Pockley A, et al. Cytoplasmic PML promotes TGF-β-associated epithelial-mesenchymal transition and invasion in prostate cancer. Oncogene. 2016;35:3465-75 pubmed 出版商
  145. Quigley H, Pitha I, Welsbie D, Nguyen C, Steinhart M, Nguyen T, et al. Losartan Treatment Protects Retinal Ganglion Cells and Alters Scleral Remodeling in Experimental Glaucoma. PLoS ONE. 2015;10:e0141137 pubmed 出版商
  146. Waning D, Mohammad K, Reiken S, Xie W, Andersson D, John S, et al. Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nat Med. 2015;21:1262-1271 pubmed 出版商
  147. Huan C, Yang T, Liang J, Xie T, Cheng L, Liu N, et al. Methylation-mediated BMPER expression in fibroblast activation in vitro and lung fibrosis in mice in vivo. Sci Rep. 2015;5:14910 pubmed 出版商
  148. Nath A, Li I, Roberts L, Chan C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 2015;5:14752 pubmed 出版商
  149. Pelish H, Liau B, Nitulescu I, Tangpeerachaikul A, Poss Z, Da Silva D, et al. Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature. 2015;526:273-276 pubmed 出版商
  150. Xiao X, Shi X, Fan Y, Zhang X, Wu M, Lan P, et al. GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation. Nat Commun. 2015;6:8266 pubmed 出版商
  151. Zhou X, Tao Y, Liang C, Zhang Y, Li H, Chen Q. BMP3 Alone and Together with TGF-β Promote the Differentiation of Human Mesenchymal Stem Cells into a Nucleus Pulposus-Like Phenotype. Int J Mol Sci. 2015;16:20344-59 pubmed 出版商
  152. Maris P, Blomme A, Palacios A, Costanza B, Bellahcène A, Bianchi E, et al. Asporin Is a Fibroblast-Derived TGF-β1 Inhibitor and a Tumor Suppressor Associated with Good Prognosis in Breast Cancer. PLoS Med. 2015;12:e1001871 pubmed 出版商
  153. Huang Y, Tiao M, Huang L, Chuang J, Kuo K, Yang Y, et al. Activation of Mir-29a in Activated Hepatic Stellate Cells Modulates Its Profibrogenic Phenotype through Inhibition of Histone Deacetylases 4. PLoS ONE. 2015;10:e0136453 pubmed 出版商
  154. Lee S, Litan A, Li Z, Graves B, Lindsey S, Barwe S, et al. Na,K-ATPase β1-subunit is a target of sonic hedgehog signaling and enhances medulloblastoma tumorigenicity. Mol Cancer. 2015;14:159 pubmed 出版商
  155. Wang J, Bao L, Yu B, Liu Z, Han W, Deng C, et al. Interleukin-1β Promotes Epithelial-Derived Alveolar Elastogenesis via αvβ6 Integrin-Dependent TGF-β Activation. Cell Physiol Biochem. 2015;36:2198-216 pubmed 出版商
  156. Cui H, Li Q, Chen J, Na Q, Liu C. Hepatitis B virus X protein modifies invasion, proliferation and the inflammatory response in an HTR-8/SVneo cell model. Oncol Rep. 2015;34:2090-8 pubmed 出版商
  157. Namachivayam K, Mohankumar K, Arbach D, Jagadeeswaran R, Jain S, Natarajan V, et al. All-Trans Retinoic Acid Induces TGF-β2 in Intestinal Epithelial Cells via RhoA- and p38α MAPK-Mediated Activation of the Transcription Factor ATF2. PLoS ONE. 2015;10:e0134003 pubmed 出版商
  158. Faura Tellez G, Vandepoele K, Brouwer U, Koning H, Elderman R, Hackett T, et al. Protocadherin-1 binds to SMAD3 and suppresses TGF-β1-induced gene transcription. Am J Physiol Lung Cell Mol Physiol. 2015;309:L725-35 pubmed 出版商
  159. Thomas A, Eijgelaar W, Daemen M, Newby A. Foam Cell Formation In Vivo Converts Macrophages to a Pro-Fibrotic Phenotype. PLoS ONE. 2015;10:e0128163 pubmed 出版商
  160. Yoon J, Sudo K, Kuroda M, Kato M, Lee I, Han J, et al. Phosphorylation status determines the opposing functions of Smad2/Smad3 as STAT3 cofactors in TH17 differentiation. Nat Commun. 2015;6:7600 pubmed 出版商
  161. Wu C, Jiao H, Lai Y, Zheng W, Chen K, Qu H, et al. Kindlin-2 controls TGF-β signalling and Sox9 expression to regulate chondrogenesis. Nat Commun. 2015;6:7531 pubmed 出版商
  162. Cui W, Zhou J, Dehne N, Brüne B. Hypoxia induces calpain activity and degrades SMAD2 to attenuate TGFβ signaling in macrophages. Cell Biosci. 2015;5:36 pubmed 出版商
  163. Zhao L, Liu S, Che X, Hou K, Ma Y, Li C, et al. Bufalin inhibits TGF-β-induced epithelial-to-mesenchymal transition and migration in human lung cancer A549 cells by downregulating TGF-β receptors. Int J Mol Med. 2015;36:645-52 pubmed 出版商
  164. Carthy J, Sundqvist A, Heldin A, van Dam H, Kletsas D, Heldin C, et al. Tamoxifen Inhibits TGF-β-Mediated Activation of Myofibroblasts by Blocking Non-Smad Signaling Through ERK1/2. J Cell Physiol. 2015;230:3084-92 pubmed 出版商
  165. Aspalter I, Gordon E, Dubrac A, Ragab A, Narloch J, Vizan P, et al. Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nat Commun. 2015;6:7264 pubmed 出版商
  166. Subathra M, Korrapati M, Howell L, Arthur J, Shayman J, Schnellmann R, et al. Kidney glycosphingolipids are elevated early in diabetic nephropathy and mediate hypertrophy of mesangial cells. Am J Physiol Renal Physiol. 2015;309:F204-15 pubmed 出版商
  167. Yi H, Eun H, Lee Y, Jung J, Park S, Park K, et al. Treatment with 4-methylpyrazole modulated stellate cells and natural killer cells and ameliorated liver fibrosis in mice. PLoS ONE. 2015;10:e0127946 pubmed 出版商
  168. Yousef H, Conboy M, Morgenthaler A, Schlesinger C, Bugaj L, Paliwal P, et al. Systemic attenuation of the TGF-β pathway by a single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal. Oncotarget. 2015;6:11959-78 pubmed
  169. Egerman M, Cadena S, Gilbert J, Meyer A, Nelson H, Swalley S, et al. GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration. Cell Metab. 2015;22:164-74 pubmed 出版商
  170. Li J, Ren J, Liu X, Jiang L, He W, Yuan W, et al. Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis. Kidney Int. 2015;88:515-27 pubmed 出版商
  171. Min K, Liggett J, Silva G, Wu W, Wang R, Shen R, et al. NAG-1/GDF15 accumulates in the nucleus and modulates transcriptional regulation of the Smad pathway. Oncogene. 2016;35:377-88 pubmed 出版商
  172. Cohen T, Kollias H, Liu N, Ward C, Wagner K. Genetic disruption of Smad7 impairs skeletal muscle growth and regeneration. J Physiol. 2015;593:2479-97 pubmed 出版商
  173. Zhang Z, Zhang T, Zhou Y, Wei X, Zhu J, Zhang J, et al. Activated phosphatidylinositol 3-kinase/Akt inhibits the transition of endothelial progenitor cells to mesenchymal cells by regulating the forkhead box subgroup O-3a signaling. Cell Physiol Biochem. 2015;35:1643-53 pubmed 出版商
  174. Maquigussa E, Arnoni C, Pereira L, Boim M. Calcitriol ameliorates renal damage in a pre-established proteinuria model. Mol Med Rep. 2015;12:1009-15 pubmed 出版商
  175. Jia D, Duan F, Peng P, Sun L, Ruan Y, Gu J. Pyrroloquinoline-quinone suppresses liver fibrogenesis in mice. PLoS ONE. 2015;10:e0121939 pubmed 出版商
  176. Ghiabi P, Jiang J, Pasquier J, Maleki M, Abu Kaoud N, Halabi N, et al. Breast cancer cells promote a notch-dependent mesenchymal phenotype in endothelial cells participating to a pro-tumoral niche. J Transl Med. 2015;13:27 pubmed 出版商
  177. Aki S, Yoshioka K, Okamoto Y, Takuwa N, Takuwa Y. Phosphatidylinositol 3-kinase class II α-isoform PI3K-C2α is required for transforming growth factor β-induced Smad signaling in endothelial cells. J Biol Chem. 2015;290:6086-105 pubmed 出版商
  178. Tontonoz P, Cortez Toledo O, Wroblewski K, Hong C, Lim L, Carranza R, et al. The orphan nuclear receptor Nur77 is a determinant of myofiber size and muscle mass in mice. Mol Cell Biol. 2015;35:1125-38 pubmed 出版商
  179. Feng T, Dzieran J, Gu X, Marhenke S, Vogel A, Machida K, et al. Smad7 regulates compensatory hepatocyte proliferation in damaged mouse liver and positively relates to better clinical outcome in human hepatocellular carcinoma. Clin Sci (Lond). 2015;128:761-74 pubmed 出版商
  180. Li Q, Zou J, Wang M, Ding X, Chepelev I, Zhou X, et al. Critical role of histone demethylase Jmjd3 in the regulation of CD4+ T-cell differentiation. Nat Commun. 2014;5:5780 pubmed 出版商
  181. Rutz S, Kayagaki N, Phung Q, Eidenschenk C, Noubade R, Wang X, et al. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature. 2015;518:417-21 pubmed 出版商
  182. Menon M, Chuang P, Li Z, Wei C, Zhang W, Luan Y, et al. Intronic locus determines SHROOM3 expression and potentiates renal allograft fibrosis. J Clin Invest. 2015;125:208-21 pubmed 出版商
  183. Huang W, Li L, Tian X, Yan J, Yang X, Wang X, et al. Astragalus and Paeoniae radix rubra extract inhibits liver fibrosis by modulating the transforming growth factor‑β/Smad pathway in rats. Mol Med Rep. 2015;11:805-14 pubmed 出版商
  184. Chen R, Xu B, Chen S, Chen S, Zhang T, Ren J, et al. Effect of oridonin-mediated hallmark changes on inflammatory pathways in human pancreatic cancer (BxPC-3) cells. World J Gastroenterol. 2014;20:14895-903 pubmed 出版商
  185. Oujo B, Muñoz Félix J, Arévalo M, Núñez Gómez E, Pérez Roque L, Pericacho M, et al. L-Endoglin overexpression increases renal fibrosis after unilateral ureteral obstruction. PLoS ONE. 2014;9:e110365 pubmed 出版商
  186. Zhang M, Zhang J, Liu S, Wang Q, Lin G, Qiu R, et al. NS5ATP9 suppresses activation of human hepatic stellate cells, possibly via inhibition of Smad3/phosphorylated-Smad3 expression. Inflammation. 2015;38:278-89 pubmed 出版商
  187. Zhou X, Tao Y, Wang J, Liang C, Wang J, Li H, et al. Roles of FGF-2 and TGF-beta/FGF-2 on differentiation of human mesenchymal stem cells towards nucleus pulposus-like phenotype. Growth Factors. 2015;33:23-30 pubmed 出版商
  188. Matsuyama M, Nomori A, Nakakuni K, Shimono A, Fukushima M. Secreted Frizzled-related protein 1 (Sfrp1) regulates the progression of renal fibrosis in a mouse model of obstructive nephropathy. J Biol Chem. 2014;289:31526-33 pubmed 出版商
  189. Zhang X, Ma Y, You T, Tian X, Zhang H, Zhu Q, et al. Roles of TGF-β/Smad signaling pathway in pathogenesis and development of gluteal muscle contracture. Connect Tissue Res. 2015;56:9-17 pubmed 出版商
  190. Marino F, Risbridger G, Gold E. The inhibin/activin signalling pathway in human gonadal and adrenal cancers. Mol Hum Reprod. 2014;20:1223-37 pubmed 出版商
  191. Tobar N, Toyos M, Urra C, Méndez N, Arancibia R, Smith P, et al. c-Jun N terminal kinase modulates NOX-4 derived ROS production and myofibroblasts differentiation in human breast stromal cells. BMC Cancer. 2014;14:640 pubmed 出版商
  192. Flanders K, Heger C, Conway C, Tang B, Sato M, Dengler S, et al. Brightfield proximity ligation assay reveals both canonical and mixed transforming growth factor-β/bone morphogenetic protein Smad signaling complexes in tissue sections. J Histochem Cytochem. 2014;62:846-63 pubmed 出版商
  193. Goldstein J, Bogdanovich S, Beiriger A, Wren L, Rossi A, Gao Q, et al. Excess SMAD signaling contributes to heart and muscle dysfunction in muscular dystrophy. Hum Mol Genet. 2014;23:6722-31 pubmed 出版商
  194. Isogaya K, Koinuma D, Tsutsumi S, Saito R, Miyazawa K, Aburatani H, et al. A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression. Cell Res. 2014;24:994-1008 pubmed 出版商
  195. Kapur N, Qiao X, Paruchuri V, Mackey E, Daly G, Ughreja K, et al. Reducing endoglin activity limits calcineurin and TRPC-6 expression and improves survival in a mouse model of right ventricular pressure overload. J Am Heart Assoc. 2014;3: pubmed 出版商
  196. Watatani H, Maeshima Y, Hinamoto N, Yamasaki H, Ujike H, Tanabe K, et al. Vasohibin-1 deficiency enhances renal fibrosis and inflammation after unilateral ureteral obstruction. Physiol Rep. 2014;2: pubmed 出版商
  197. Shaikhibrahim Z, Offermann A, Braun M, Menon R, Syring I, Nowak M, et al. MED12 overexpression is a frequent event in castration-resistant prostate cancer. Endocr Relat Cancer. 2014;21:663-75 pubmed 出版商
  198. Yi X, Li X, Zhou Y, Ren S, Wan W, Feng G, et al. Hepatocyte growth factor regulates the TGF-?1-induced proliferation, differentiation and secretory function of cardiac fibroblasts. Int J Mol Med. 2014;34:381-90 pubmed 出版商
  199. Edwards J, Bruno J, Key P, Cheng Y. Absence of chloride intracellular channel 4 (CLIC4) predisposes to acute kidney injury but has minimal impact on recovery. BMC Nephrol. 2014;15:54 pubmed 出版商
  200. Feuerborn A, Mathow D, Srivastava P, Gretz N, Grone H. Basonuclin-1 modulates epithelial plasticity and TGF-?1-induced loss of epithelial cell integrity. Oncogene. 2015;34:1185-95 pubmed 出版商
  201. Chapnick D, Liu X. Leader cell positioning drives wound-directed collective migration in TGF?-stimulated epithelial sheets. Mol Biol Cell. 2014;25:1586-93 pubmed 出版商
  202. Ikeda Y, Ozono I, Tajima S, Imao M, Horinouchi Y, Izawa Ishizawa Y, et al. Iron chelation by deferoxamine prevents renal interstitial fibrosis in mice with unilateral ureteral obstruction. PLoS ONE. 2014;9:e89355 pubmed 出版商
  203. Beaudoin M, Snook L, Arkell A, Stefanson A, Wan Z, Simpson J, et al. Novel effects of rosiglitazone on SMAD2 and SMAD3 signaling in white adipose tissue of diabetic rats. Obesity (Silver Spring). 2014;22:1632-42 pubmed 出版商
  204. Borkham Kamphorst E, Schaffrath C, Van De Leur E, Haas U, Tihaa L, Meurer S, et al. The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-? signaling. Biochim Biophys Acta. 2014;1843:902-14 pubmed 出版商
  205. Feng Y, Wu H, Xu Y, Zhang Z, Liu T, Lin X, et al. Zinc finger protein 451 is a novel Smad corepressor in transforming growth factor-? signaling. J Biol Chem. 2014;289:2072-83 pubmed 出版商
  206. Holtzhausen A, Golzio C, How T, Lee Y, Schiemann W, Katsanis N, et al. Novel bone morphogenetic protein signaling through Smad2 and Smad3 to regulate cancer progression and development. FASEB J. 2014;28:1248-67 pubmed 出版商
  207. Das R, Xu S, Quan X, Nguyen T, Kong I, Chung C, et al. Upregulation of mitochondrial Nox4 mediates TGF-?-induced apoptosis in cultured mouse podocytes. Am J Physiol Renal Physiol. 2014;306:F155-67 pubmed 出版商
  208. Mitchell K, Shah J, Tsytsikova L, Campbell A, Affram K, Symes A. LPS antagonism of TGF-? signaling results in prolonged survival and activation of rat primary microglia. J Neurochem. 2014;129:155-68 pubmed 出版商
  209. Sun J, He H, Pillai S, Xiong Y, Challa S, Xu L, et al. GATA3 transcription factor abrogates Smad4 transcription factor-mediated fascin overexpression, invadopodium formation, and breast cancer cell invasion. J Biol Chem. 2013;288:36971-82 pubmed 出版商
  210. Hall B, Wankhade U, Konkel J, Cherukuri K, Nagineni C, Flanders K, et al. Transforming growth factor-?3 (TGF-?3) knock-in ameliorates inflammation due to TGF-?1 deficiency while promoting glucose tolerance. J Biol Chem. 2013;288:32074-92 pubmed 出版商
  211. Zeng L, Wang G, Ummarino D, Margariti A, Xu Q, Xiao Q, et al. Histone deacetylase 3 unconventional splicing mediates endothelial-to-mesenchymal transition through transforming growth factor ?2. J Biol Chem. 2013;288:31853-66 pubmed 出版商
  212. Chai Z, Dai A, Tu Y, Li J, Wu T, Wang Y, et al. Genetic deletion of cell division autoantigen 1 retards diabetes-associated renal injury. J Am Soc Nephrol. 2013;24:1782-92 pubmed 出版商
  213. Bahammam M, Black S, Sume S, Assaggaf M, Faibish M, Trackman P. Requirement for active glycogen synthase kinase-3? in TGF-?1 upregulation of connective tissue growth factor (CCN2/CTGF) levels in human gingival fibroblasts. Am J Physiol Cell Physiol. 2013;305:C581-90 pubmed 出版商
  214. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013;498:492-6 pubmed 出版商
  215. Harazono Y, Muramatsu T, Endo H, Uzawa N, Kawano T, Harada K, et al. miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PLoS ONE. 2013;8:e62757 pubmed 出版商
  216. Chatterjee S, Wang Y, Duncan M, Naik U. Junctional adhesion molecule-A regulates vascular endothelial growth factor receptor-2 signaling-dependent mouse corneal wound healing. PLoS ONE. 2013;8:e63674 pubmed 出版商
  217. Sakaki Yumoto M, Liu J, Ramalho Santos M, Yoshida N, Derynck R. Smad2 is essential for maintenance of the human and mouse primed pluripotent stem cell state. J Biol Chem. 2013;288:18546-60 pubmed 出版商
  218. Lessard S, Rivas D, Alves Wagner A, Hirshman M, Gallagher I, Constantin Teodosiu D, et al. Resistance to aerobic exercise training causes metabolic dysfunction and reveals novel exercise-regulated signaling networks. Diabetes. 2013;62:2717-27 pubmed 出版商
  219. Soofi A, Zhang P, Dressler G. Kielin/chordin-like protein attenuates both acute and chronic renal injury. J Am Soc Nephrol. 2013;24:897-905 pubmed 出版商
  220. Yuan H, Reddy M, Sun G, Lanting L, Wang M, Kato M, et al. Involvement of p300/CBP and epigenetic histone acetylation in TGF-?1-mediated gene transcription in mesangial cells. Am J Physiol Renal Physiol. 2013;304:F601-13 pubmed 出版商
  221. Matsubara T, Tanaka N, Sato M, Kang D, Krausz K, Flanders K, et al. TGF-?-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury. J Lipid Res. 2012;53:2698-707 pubmed 出版商
  222. Cigna N, Farrokhi Moshai E, Brayer S, Marchal Sommé J, Wemeau Stervinou L, Fabre A, et al. The hedgehog system machinery controls transforming growth factor-?-dependent myofibroblastic differentiation in humans: involvement in idiopathic pulmonary fibrosis. Am J Pathol. 2012;181:2126-37 pubmed 出版商
  223. Chablais F, Jazwinska A. The regenerative capacity of the zebrafish heart is dependent on TGF? signaling. Development. 2012;139:1921-30 pubmed 出版商
  224. Yang Y, Ahn Y, Gibbons D, Zang Y, Lin W, Thilaganathan N, et al. The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200-dependent pathway in mice. J Clin Invest. 2011;121:1373-85 pubmed 出版商