这是一篇来自已证抗体库的有关人类 SnoN的综述,是根据12篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合SnoN 抗体。
SnoN 同义词: SNO; SnoA; SnoI; SnoN

赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D2U8Y)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7a
赛信通(上海)生物试剂有限公司 SnoN抗体(Cell Signaling, 19807)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7a). Int J Biol Sci (2022) ncbi
小鼠 单克隆(7G9)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 SnoN抗体(Cell Signaling, 7G9)被用于被用于免疫印迹在小鼠样本上 (图 2a). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D2U8Y)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 SnoN抗体(Cell Signaling, 19807)被用于被用于免疫印迹在人类样本上 (图 2a). Int J Mol Sci (2020) ncbi
domestic rabbit 单克隆(D2U8Y)
  • 免疫印迹; 人类; 1:1000; 图 s5-1a
赛信通(上海)生物试剂有限公司 SnoN抗体(CST, 19807S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5-1a). elife (2020) ncbi
domestic rabbit 单克隆(D2U8Y)
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 SnoN抗体(Cell signaling, 19807)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). elife (2020) ncbi
domestic rabbit 单克隆(D2U8Y)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 SnoN抗体(cell signalling technology, 19807)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D2U8Y)
  • 免疫细胞化学; 人类; 1:100; 图 4d
赛信通(上海)生物试剂有限公司 SnoN抗体(Cell Signaling, 19807)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4d). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D2U8Y)
  • 免疫印迹; 小鼠; 图 6g
赛信通(上海)生物试剂有限公司 SnoN抗体(Cell Signaling, 19807)被用于被用于免疫印迹在小鼠样本上 (图 6g). PLoS ONE (2016) ncbi
小鼠 单克隆(7G9)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 SnoN抗体(Cell signaling, 2102)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(7G9)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 SnoN抗体(Cell Signaling Technologies, 2102S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(7G9)
  • 免疫印迹; 人类; 图 s21
赛信通(上海)生物试剂有限公司 SnoN抗体(Cell Signaling Technology, 2102)被用于被用于免疫印迹在人类样本上 (图 s21). PLoS ONE (2015) ncbi
小鼠 单克隆(7G9)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 SnoN抗体(Cell Signaling, 2102)被用于被用于免疫印迹在小鼠样本上 (图 3). Oncogene (2015) ncbi
文章列表
  1. Tang Y, Dong L, Zhang C, Li X, Li R, Lin H, et al. PRMT5 acts as a tumor suppressor by inhibiting Wnt/β-catenin signaling in murine gastric tumorigenesis. Int J Biol Sci. 2022;18:4329-4340 pubmed 出版商
  2. Kashima D, Kawahara M. Evolution of KIPPIS as a versatile platform for evaluating intracellularly functional peptide aptamers. Sci Rep. 2021;11:11758 pubmed 出版商
  3. Nam B, Park H, Lee Y, Oh Y, Park J, Kim S, et al. TGFβ1 Suppressed Matrix Mineralization of Osteoblasts Differentiation by Regulating SMURF1-C/EBPβ-DKK1 Axis. Int J Mol Sci. 2020;21: pubmed 出版商
  4. Li M, Xie Z, Li J, Lin J, Zheng G, Liu W, et al. GAS5 protects against osteoporosis by targeting UPF1/SMAD7 axis in osteoblast differentiation. elife. 2020;9: pubmed 出版商
  5. Prodromidou K, Vlachos I, Gaitanou M, Kouroupi G, Hatzigeorgiou A, Matsas R. MicroRNA-934 is a novel primate-specific small non-coding RNA with neurogenic function during early development. elife. 2020;9: pubmed 出版商
  6. Inda M, Joshi S, Wang T, Bolaender A, Gandu S, Koren Iii J, et al. The epichaperome is a mediator of toxic hippocampal stress and leads to protein connectivity-based dysfunction. Nat Commun. 2020;11:319 pubmed 出版商
  7. Mangolini M, Götte F, Moore A, Ammon T, Oelsner M, Lutzny Geier G, et al. Notch2 controls non-autonomous Wnt-signalling in chronic lymphocytic leukaemia. Nat Commun. 2018;9:3839 pubmed 出版商
  8. Li X, Zhou Z, Zhang Y, Yang H. IL-6 Contributes to the Defective Osteogenesis of Bone Marrow Stromal Cells from the Vertebral Body of the Glucocorticoid-Induced Osteoporotic Mouse. PLoS ONE. 2016;11:e0154677 pubmed 出版商
  9. Agarwal S, Ghosh R, Chen Z, Lakoma A, Gunaratne P, Kim E, et al. Transmembrane adaptor protein PAG1 is a novel tumor suppressor in neuroblastoma. Oncotarget. 2016;7:24018-26 pubmed 出版商
  10. Brigidi G, Santyr B, Shimell J, Jovellar B, Bamji S. Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5. Nat Commun. 2015;6:8200 pubmed 出版商
  11. Kawada M, Inoue H, Ohba S, Yoshida J, Masuda T, Yamasaki M, et al. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction. PLoS ONE. 2015;10:e0119415 pubmed 出版商
  12. Song J, An N, Chatterjee S, Kistner Griffin E, Mahajan S, Mehrotra S, et al. Deletion of Pim kinases elevates the cellular levels of reactive oxygen species and sensitizes to K-Ras-induced cell killing. Oncogene. 2015;34:3728-36 pubmed 出版商