这是一篇来自已证抗体库的有关人类 Sp1转录因子 (Sp1) 的综述,是根据67篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Sp1转录因子 抗体。
圣克鲁斯生物技术
小鼠 单克隆(E-3)
  • 免疫印迹; 小鼠; 1:300; 图 4h
圣克鲁斯生物技术Sp1转录因子抗体(Santa Cruz, sc-17824)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 4h). elife (2021) ncbi
小鼠 单克隆(E-3)
  • 其他; 人类; 1:50; 图 s4-1f
圣克鲁斯生物技术Sp1转录因子抗体(Santa Cruz, Sc-17824)被用于被用于其他在人类样本上浓度为1:50 (图 s4-1f). elife (2020) ncbi
小鼠 单克隆(E-3)
  • ChIP-Seq; 人类; ; 图 2a
圣克鲁斯生物技术Sp1转录因子抗体(Santa Cruz, sc-17824)被用于被用于ChIP-Seq在人类样本上浓度为 (图 2a). elife (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术Sp1转录因子抗体(Santa Cruze, 1C6)被用于被用于免疫印迹在人类样本上 (图 1b). J Cell Mol Med (2019) ncbi
小鼠 单克隆(1C6)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术Sp1转录因子抗体(Santa Cruze, 1C6)被用于被用于免疫印迹在人类样本上 (图 1b). J Cell Mol Med (2019) ncbi
小鼠 单克隆(1C6)
  • 免疫印迹; 人类; 图 s2
圣克鲁斯生物技术Sp1转录因子抗体(SantaCruz, sc-420)被用于被用于免疫印迹在人类样本上 (图 s2). Biomed Pharmacother (2018) ncbi
小鼠 单克隆(1C6)
  • 免疫印迹; 小鼠; 图 6b
圣克鲁斯生物技术Sp1转录因子抗体(Santa Cruz Biotechnology, sc-420)被用于被用于免疫印迹在小鼠样本上 (图 6b). Stem Cells Int (2017) ncbi
小鼠 单克隆(E-3)
  • ChIP-Seq; 人类; 表 1
圣克鲁斯生物技术Sp1转录因子抗体(SantaCruz, SC-17824)被用于被用于ChIP-Seq在人类样本上 (表 1). Biochim Biophys Acta Gene Regul Mech (2017) ncbi
小鼠 单克隆(E-3)
  • 染色质免疫沉淀 ; 人类; 图 1
圣克鲁斯生物技术Sp1转录因子抗体(Santa Cruz, sc-17824)被用于被用于染色质免疫沉淀 在人类样本上 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(1C6)
  • 免疫印迹; 小鼠; 1:100; 图 4
圣克鲁斯生物技术Sp1转录因子抗体(santa Cruz, sc-420)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 4). Front Aging Neurosci (2015) ncbi
小鼠 单克隆(1C6)
  • 免疫印迹; 人类
圣克鲁斯生物技术Sp1转录因子抗体(Santa Cruz, sc-420)被用于被用于免疫印迹在人类样本上. Nat Commun (2015) ncbi
小鼠 单克隆(1C6)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术Sp1转录因子抗体(Santa Cruz Biotechnology, sc-420)被用于被用于免疫印迹在人类样本上 (图 2). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(E-3)
  • EMSA; 小鼠
  • EMSA; 大鼠
圣克鲁斯生物技术Sp1转录因子抗体(Santa Cruz Biotechnology, sc-17824X)被用于被用于EMSA在小鼠样本上 和 被用于EMSA在大鼠样本上. Am J Hum Genet (2014) ncbi
小鼠 单克隆(E-3)
圣克鲁斯生物技术Sp1转录因子抗体(Santa Cruz, sc-17824)被用于. Oncogene (2014) ncbi
小鼠 单克隆(1C6)
  • 免疫印迹; 人类
圣克鲁斯生物技术Sp1转录因子抗体(Santa Cruz Biotechnology, sc-420)被用于被用于免疫印迹在人类样本上. Mol Oncol (2013) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR6662(B))
  • 免疫组化; 人类; 1:150; 图 5d
艾博抗(上海)贸易有限公司Sp1转录因子抗体(Abcam, ab124804)被用于被用于免疫组化在人类样本上浓度为1:150 (图 5d). Cell Biosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司Sp1转录因子抗体(Abcam, ab13370)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 s1g
艾博抗(上海)贸易有限公司Sp1转录因子抗体(Abcam, ab13370)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s1g). Cell Death Differ (2021) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 5d
艾博抗(上海)贸易有限公司Sp1转录因子抗体(Abcam, ab13370)被用于被用于染色质免疫沉淀 在人类样本上 (图 5d). Biol Open (2019) ncbi
domestic rabbit 多克隆
  • 核糖核酸免疫沉淀; 人类; 图 6b
艾博抗(上海)贸易有限公司Sp1转录因子抗体(Abcam, ab13370)被用于被用于核糖核酸免疫沉淀在人类样本上 (图 6b). Nucleic Acids Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
艾博抗(上海)贸易有限公司Sp1转录因子抗体(Abcam, ab59257)被用于被用于免疫印迹在小鼠样本上 (图 2a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司Sp1转录因子抗体(Abcam, ab13370)被用于被用于免疫印迹在人类样本上 (图 3c). Oncogene (2017) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5c
  • 免疫印迹; 人类; 图 5b
Novus BiologicalsSp1转录因子抗体(NOVUS, NB600-233)被用于被用于免疫细胞化学在人类样本上 (图 5c) 和 被用于免疫印迹在人类样本上 (图 5b). Biomed Pharmacother (2019) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(48G2)
  • 免疫印迹; 小鼠; 图 4l
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling Technology, 3726S)被用于被用于免疫印迹在小鼠样本上 (图 4l). Clin Transl Med (2022) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(CST, 4223)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7c). iScience (2022) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(CST, 4223S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(48G2)
  • 免疫细胞化学; 人类; 图 4a
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling Technology, 3726)被用于被用于免疫细胞化学在人类样本上 (图 4a). Cell Rep Med (2021) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling, 4223T)被用于被用于免疫印迹在人类样本上 (图 4a). Front Immunol (2021) ncbi
domestic rabbit 单克隆(D4C3)
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling, 9389)被用于被用于免疫印迹在人类样本上 (图 6f). Sci Adv (2021) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上 (图 3f). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:100; 图 5b
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling Technology, 4223)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 5b). Int J Oral Sci (2021) ncbi
domestic rabbit 单克隆(D4C3)
  • 免疫印迹; 人类; 1:1000; 图 s3e
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling Technology, 9389)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3e). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling, 4223)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). elife (2020) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling Technology, 4223)被用于被用于免疫印迹在人类样本上 (图 2a). BMC Complement Med Ther (2020) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Death Differ (2020) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(CST, 4223)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Exp Ther Med (2020) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling, 4223)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Biosci Rep (2020) ncbi
domestic rabbit 单克隆(D4C3)
  • 染色质免疫沉淀 ; 人类; 图 4n
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling, 9389)被用于被用于染色质免疫沉淀 在人类样本上 (图 4n) 和 被用于免疫印迹在人类样本上 (图 4f). Mol Cancer (2020) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(CST, 4223S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Biol Open (2019) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上 (图 2c). Biomed Res Int (2019) ncbi
domestic rabbit 单克隆(48G2)
  • 免疫细胞化学; 人类; 1:200; 图 4c
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling, 3726S)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4c). Cell Mol Gastroenterol Hepatol (2019) ncbi
domestic rabbit 单克隆(D4C3)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(cell signaling, 9389)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Sci Rep (2019) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上 (图 4c). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(48G2)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6a
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling Technology, 3726)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6a). Mol Biol Cell (2019) ncbi
domestic rabbit 单克隆(D4C3)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling Technology, D4C3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). PLoS Genet (2017) ncbi
domestic rabbit 单克隆(48G2)
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling Technology, 3726)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D4C3)
  • 免疫沉淀; 人类; 图 3b
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell signaling, D4C3)被用于被用于免疫沉淀在人类样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 3b). Biochem Biophys Res Commun (2017) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(cell signalling, 4223)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). Am J Transl Res (2017) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(cell signalling, 4223)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8a). Int J Oncol (2017) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling Technology, 4223)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncol Lett (2017) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:3000; 图 5a
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D4C3)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling, 9389)被用于被用于免疫印迹在人类样本上 (图 s2). J Immunol (2016) ncbi
domestic rabbit 单克隆(D4C3)
  • 染色质免疫沉淀 ; 人类; 图 2d
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling, D4C3)被用于被用于染色质免疫沉淀 在人类样本上 (图 2d). J Virol (2016) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling, D55G8)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D4C3)
  • 染色质免疫沉淀 ; 人类; 1:1000; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling, 9389)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling, D55G8)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 大鼠; 图 6e
  • 免疫印迹; 大鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell signaling, 5931)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 6e) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5c). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D4C3)
  • 染色质免疫沉淀 ; 人类; 图 5
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell signaling, 9389S)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling Technology, 4223)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(D81B12)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling, 4193)被用于被用于免疫印迹在人类样本上 (图 s1). Nature (2015) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫沉淀; 人类; 图 6
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell signaling, 4223)被用于被用于免疫沉淀在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 6). Leukemia (2016) ncbi
domestic rabbit 单克隆(48G2)
  • 免疫印迹; 大鼠; 图 5a
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(cst, 3726)被用于被用于免疫印迹在大鼠样本上 (图 5a). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling Technologies, 4223)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Sp1转录因子抗体(Cell Signaling, D55G8)被用于被用于免疫印迹在小鼠样本上. Mol Cancer Ther (2013) ncbi
西格玛奥德里奇
小鼠 单克隆(4C8)
  • 免疫印迹; 人类; 1:500; 图 3e
西格玛奥德里奇Sp1转录因子抗体(Millipore-Sigma, SAB140397)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3e). EMBO Mol Med (2021) ncbi
文章列表
  1. Zhu Y, Gu H, Yang L, Li N, Chen Q, Kang D, et al. Involvement of MST1/mTORC1/STAT1 activity in the regulation of B-cell receptor signalling by chemokine receptor 2. Clin Transl Med. 2022;12:e887 pubmed 出版商
  2. Narayan S, Raza A, Mahmud I, Koo N, Garrett T, LAW M, et al. Sensitization of FOLFOX-resistant colorectal cancer cells via the modulation of a novel pathway involving protein phosphatase 2A. iScience. 2022;25:104518 pubmed 出版商
  3. Xu Y, Chen X, Pan S, Wang Z, Zhu X. TM7SF2 regulates cell proliferation and apoptosis by activation of C-Raf/ERK pathway in cervical cancer. Cell Death Discov. 2021;7:299 pubmed 出版商
  4. Dong X, Chen C, Deng X, Liu Y, Duan Q, Peng Z, et al. A novel mechanism for C1GALT1 in the regulation of gastric cancer progression. Cell Biosci. 2021;11:166 pubmed 出版商
  5. Clark A, Kugathasan U, Baskozos G, Priestman D, Fugger N, Lone M, et al. An iPSC model of hereditary sensory neuropathy-1 reveals L-serine-responsive deficits in neuronal ganglioside composition and axoglial interactions. Cell Rep Med. 2021;2:100345 pubmed 出版商
  6. Lassiter R, Merchen T, Fang X, Wang Y. Protective Role of Kynurenine 3-Monooxygenase in Allograft Rejection and Tubular Injury in Kidney Transplantation. Front Immunol. 2021;12:671025 pubmed 出版商
  7. Berthelet J, Wimmer V, Whitfield H, Serrano A, Boudier T, Mangiola S, et al. The site of breast cancer metastases dictates their clonal composition and reversible transcriptomic profile. Sci Adv. 2021;7: pubmed 出版商
  8. Citron F, Segatto I, Musco L, Pellarin I, Rampioni Vinciguerra G, Franchin G, et al. miR-9 modulates and predicts the response to radiotherapy and EGFR inhibition in HNSCC. EMBO Mol Med. 2021;13:e12872 pubmed 出版商
  9. Ma X, Zhao T, Yan H, Guo K, Liu Z, Wei L, et al. Fatostatin reverses progesterone resistance by inhibiting the SREBP1-NF-κB pathway in endometrial carcinoma. Cell Death Dis. 2021;12:544 pubmed 出版商
  10. Shin S, Zhou H, He C, Wei Y, Wang Y, Shingu T, et al. Qki activates Srebp2-mediated cholesterol biosynthesis for maintenance of eye lens transparency. Nat Commun. 2021;12:3005 pubmed 出版商
  11. Chen W, Wu C, Chen Y, Guo Y, Qiu L, Liu Z, et al. Downregulation of ceramide synthase 1 promotes oral cancer through endoplasmic reticulum stress. Int J Oral Sci. 2021;13:10 pubmed 出版商
  12. Tapias A, Lazaro D, Yin B, Rasa S, Krepelova A, Kelmer Sacramento E, et al. HAT cofactor TRRAP modulates microtubule dynamics via SP1 signaling to prevent neurodegeneration. elife. 2021;10: pubmed 出版商
  13. Zhang H, Gui T, Liu R, Tong K, Wu C, Li Z, et al. Sequential targeting of YAP1 and p21 enhances the elimination of senescent cells induced by the BET inhibitor JQ1. Cell Death Dis. 2021;12:121 pubmed 出版商
  14. Pal A, Leung J, Ang G, Rao V, Pignata L, Lim H, et al. EHMT2 epigenetically suppresses Wnt signaling and is a potential target in embryonal rhabdomyosarcoma. elife. 2020;9: pubmed 出版商
  15. Zhang Y, Xu X, Hu M, Wang X, Cheng H, Zhou R. SPATA33 is an autophagy mediator for cargo selectivity in germline mitophagy. Cell Death Differ. 2021;28:1076-1090 pubmed 出版商
  16. Au C, Furness J, Britt K, Oshchepkova S, Ladumor H, Soo K, et al. Three-dimensional growth of breast cancer cells potentiates the anti-tumor effects of unacylated ghrelin and AZP-531. elife. 2020;9: pubmed 出版商
  17. Gu J, Zhang Y, Wang X, Xiang J, Deng S, Wu D, et al. Matrine inhibits the growth of natural killer/T-cell lymphoma cells by modulating CaMKIIγ-c-Myc signaling pathway. BMC Complement Med Ther. 2020;20:214 pubmed 出版商
  18. Simula L, Corrado M, Accordi B, Di Rita A, Nazio F, Antonucci Y, et al. JNK1 and ERK1/2 modulate lymphocyte homeostasis via BIM and DRP1 upon AICD induction. Cell Death Differ. 2020;: pubmed 出版商
  19. Bajpai R, Sharma A, Achreja A, Edgar C, Wei C, Siddiqa A, et al. Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma. Nat Commun. 2020;11:1228 pubmed 出版商
  20. Chen Y, Liu Z, Wang Y, Zhuang J, Peng Y, Mo X, et al. FKBP51 induces p53-dependent apoptosis and enhances drug sensitivity of human non-small-cell lung cancer cells. Exp Ther Med. 2020;19:2236-2242 pubmed 出版商
  21. Wan G, An Y, Tao J, Wang Y, Zhou Q, Yang R, et al. MicroRNA-129-5p alleviates spinal cord injury in mice via suppressing the apoptosis and inflammatory response through HMGB1/TLR4/NF-κB pathway. Biosci Rep. 2020;40: pubmed 出版商
  22. Lu C, Wei Y, Wang X, Zhang Z, Yin J, Li W, et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer. 2020;19:28 pubmed 出版商
  23. Dremel S, DeLuca N. Herpes simplex viral nucleoprotein creates a competitive transcriptional environment facilitating robust viral transcription and host shut off. elife. 2019;8: pubmed 出版商
  24. Tian M, Gong W, Guo J. Long non-coding RNA SNHG1 indicates poor prognosis and facilitates disease progression in acute myeloid leukemia. Biol Open. 2019;8: pubmed 出版商
  25. Hou N, He X, Yang Y, Fu J, Zhang W, Guo Z, et al. TRPV1 Induced Apoptosis of Colorectal Cancer Cells by Activating Calcineurin-NFAT2-p53 Signaling Pathway. Biomed Res Int. 2019;2019:6712536 pubmed 出版商
  26. Song T, Spillmann D. Transcriptomic analysis reveals cell apoptotic signature modified by heparanase in melanoma cells. J Cell Mol Med. 2019;23:4559-4568 pubmed 出版商
  27. Chang Graham A, Danhof H, Engevik M, Tomaro Duchesneau C, Karandikar U, Estes M, et al. Human Intestinal Enteroids With Inducible Neurogenin-3 Expression as a Novel Model of Gut Hormone Secretion. Cell Mol Gastroenterol Hepatol. 2019;: pubmed 出版商
  28. Tsai C, Tsai C, Yi J, Kao H, Huang Y, Wang C, et al. Activin A regulates the epidermal growth factor receptor promoter by activating the PI3K/SP1 pathway in oral squamous cell carcinoma cells. Sci Rep. 2019;9:5197 pubmed 出版商
  29. Liu Y, Wang X, Deng L, Ping L, Shi Y, Zheng W, et al. ITK inhibition induced in vitro and in vivo anti-tumor activity through downregulating TCR signaling pathway in malignant T cell lymphoma. Cancer Cell Int. 2019;19:32 pubmed 出版商
  30. Hassan A, Bagu E, Lévesque M, Patten S, Benhadjeba S, Edjekouane L, et al. The 17β-estradiol induced upregulation of the adhesion G-protein coupled receptor (ADGRG7) is modulated by ESRα and SP1 complex. Biol Open. 2019;8: pubmed 出版商
  31. Zhang P, Liu Y, Su J, Bai J, Zhao S, Zhao S. Resistin impairs activation of protein C by suppressing EPCR and increasing SP1 expression. Biomed Pharmacother. 2019;109:930-937 pubmed 出版商
  32. Pinette J, Mao S, Millis B, Krystofiak E, Faust J, Tyska M. Brush border protocadherin CDHR2 promotes the elongation and maximized packing of microvilli in vivo. Mol Biol Cell. 2019;30:108-118 pubmed 出版商
  33. Yu Y, Shang R, Chen Y, Li J, Liang Z, Hu J, et al. Tumor suppressive ZBTB4 inhibits cell growth by regulating cell cycle progression and apoptosis in Ewing sarcoma. Biomed Pharmacother. 2018;100:108-115 pubmed 出版商
  34. Zhang X, Huang G, Xie Y, He J, Guo J, Xu X, et al. The interaction of lncRNA EZR-AS1 with SMYD3 maintains overexpression of EZR in ESCC cells. Nucleic Acids Res. 2018;46:1793-1809 pubmed 出版商
  35. Scott C, Marsden A, Rebagliati M, Zhang Q, Chamling X, Searby C, et al. Nuclear/cytoplasmic transport defects in BBS6 underlie congenital heart disease through perturbation of a chromatin remodeling protein. PLoS Genet. 2017;13:e1006936 pubmed 出版商
  36. Nandi S, Mishra P. H2S and homocysteine control a novel feedback regulation of cystathionine beta synthase and cystathionine gamma lyase in cardiomyocytes. Sci Rep. 2017;7:3639 pubmed 出版商
  37. Nardone G, Oliver De La Cruz J, Vrbsky J, Martini C, Pribyl J, Skladal P, et al. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat Commun. 2017;8:15321 pubmed 出版商
  38. Okuda T. PUGNAc treatment provokes globotetraosylceramide accumulation in human umbilical vein endothelial cells. Biochem Biophys Res Commun. 2017;487:76-82 pubmed 出版商
  39. Gao Y, Zhuang Z, Gao S, Li X, Zhang Z, Ye Z, et al. Tetrahydrocurcumin reduces oxidative stress-induced apoptosis via the mitochondrial apoptotic pathway by modulating autophagy in rats after traumatic brain injury. Am J Transl Res. 2017;9:887-899 pubmed
  40. Yokoyama T, Kohn E, Brill E, Lee J. Apoptosis is augmented in high-grade serous ovarian cancer by the combined inhibition of Bcl-2/Bcl-xL and PARP. Int J Oncol. 2017;: pubmed 出版商
  41. Po A, Begalli F, Abballe L, Alfano V, Besharat Z, Catanzaro G, et al. ?-Arrestin1/miR-326 Transcription Unit Is Epigenetically Regulated in Neural Stem Cells Where It Controls Stemness and Growth Arrest. Stem Cells Int. 2017;2017:5274171 pubmed 出版商
  42. Dong Q, Fu L, Zhao Y, Tan S, Wang E. Derlin-1 overexpression confers poor prognosis in muscle invasive bladder cancer and contributes to chemoresistance and invasion through PI3K/AKT and ERK/MMP signaling. Oncotarget. 2017;8:17059-17069 pubmed 出版商
  43. Cai L, Wang H, Yang Q. CRKL overexpression promotes cell proliferation and inhibits apoptosis in endometrial carcinoma. Oncol Lett. 2017;13:51-56 pubmed 出版商
  44. Ren Z, Aerts J, Vandenplas H, Wang J, Gorbenko O, Chen J, et al. Phosphorylated STAT5 regulates p53 expression via BRCA1/BARD1-NPM1 and MDM2. Cell Death Dis. 2016;7:e2560 pubmed 出版商
  45. He X, Liu Z, Xia Y, Xu J, Lv G, Wang L, et al. HOXB7 overexpression promotes cell proliferation and correlates with poor prognosis in gastric cancer patients by inducing expression of both AKT and MARKs. Oncotarget. 2017;8:1247-1261 pubmed 出版商
  46. Suske G. NF-Y and SP transcription factors - New insights in a long-standing liaison. Biochim Biophys Acta Gene Regul Mech. 2017;1860:590-597 pubmed 出版商
  47. Lund P, Elias J, Davis M. Global Analysis of O-GlcNAc Glycoproteins in Activated Human T Cells. J Immunol. 2016;197:3086-3098 pubmed
  48. Bethge T, Ajuh E, Hirsch H. Imperfect Symmetry of Sp1 and Core Promoter Sequences Regulates Early and Late Virus Gene Expression of the Bidirectional BK Polyomavirus Noncoding Control Region. J Virol. 2016;90:10083-10101 pubmed 出版商
  49. Deng X, Shao G, Zhang H, Li C, Zhang D, Cheng L, et al. Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth. Oncogene. 2017;36:1223-1231 pubmed 出版商
  50. Ma T, Fan B, Zhang C, Zhao H, Han C, Gao C, et al. Metabonomics applied in exploring the antitumour mechanism of physapubenolide on hepatocellular carcinoma cells by targeting glycolysis through the Akt-p53 pathway. Sci Rep. 2016;6:29926 pubmed 出版商
  51. Zheng C, Yang K, Zhang M, Zou M, Bai E, Ma Q, et al. Specific protein 1 depletion attenuates glucose uptake and proliferation of human glioma cells by regulating GLUT3 expression. Oncol Lett. 2016;12:125-131 pubmed
  52. Kaushik A, Shojaie A, Panzitt K, Sonavane R, Venghatakrishnan H, Manikkam M, et al. Inhibition of the hexosamine biosynthetic pathway promotes castration-resistant prostate cancer. Nat Commun. 2016;7:11612 pubmed 出版商
  53. Hein A, Post C, Sheinin Y, Lakshmanan I, Natarajan A, Enke C, et al. RAC1 GTPase promotes the survival of breast cancer cells in response to hyper-fractionated radiation treatment. Oncogene. 2016;35:6319-6329 pubmed 出版商
  54. Bai D, Zhang Y, Shen M, Sun Y, Xia Q, Zhang Y, et al. Hyperglycemia and hyperlipidemia blunts the Insulin-Inpp5f negative feedback loop in the diabetic heart. Sci Rep. 2016;6:22068 pubmed 出版商
  55. Liu L, Tong Q, Liu S, Cui J, Zhang Q, Sun W, et al. ZEB1 Upregulates VEGF Expression and Stimulates Angiogenesis in Breast Cancer. PLoS ONE. 2016;11:e0148774 pubmed 出版商
  56. Zhang Y, Zou C, Yang S, Fu J. P120 catenin attenuates the angiotensin II-induced apoptosis of human umbilical vein endothelial cells by suppressing the mitochondrial pathway. Int J Mol Med. 2016;37:623-30 pubmed 出版商
  57. Hou X, Adeosun S, Zhang Q, Barlow B, Brents M, Zheng B, et al. Differential contributions of ApoE4 and female sex to BACE1 activity and expression mediate Aβ deposition and learning and memory in mouse models of Alzheimer's disease. Front Aging Neurosci. 2015;7:207 pubmed 出版商
  58. Werner A, Iwasaki S, McGourty C, Medina Ruiz S, Teerikorpi N, Fedrigo I, et al. Cell-fate determination by ubiquitin-dependent regulation of translation. Nature. 2015;525:523-7 pubmed 出版商
  59. Akahane K, Sanda T, Mansour M, Radimerski T, DeAngelo D, Weinstock D, et al. HSP90 inhibition leads to degradation of the TYK2 kinase and apoptotic cell death in T-cell acute lymphoblastic leukemia. Leukemia. 2016;30:219-28 pubmed 出版商
  60. Tan K, Fujimoto M, Takii R, Takaki E, Hayashida N, Nakai A. Mitochondrial SSBP1 protects cells from proteotoxic stresses by potentiating stress-induced HSF1 transcriptional activity. Nat Commun. 2015;6:6580 pubmed 出版商
  61. Wu Z, Wang C, Bai M, Li X, Mei Q, Li X, et al. An LRP16-containing preassembly complex contributes to NF-κB activation induced by DNA double-strand breaks. Nucleic Acids Res. 2015;43:3167-79 pubmed 出版商
  62. Colombelli C, Palmisano M, Eshed Eisenbach Y, Zambroni D, Pavoni E, Ferri C, et al. Perlecan is recruited by dystroglycan to nodes of Ranvier and binds the clustering molecule gliomedin. J Cell Biol. 2015;208:313-29 pubmed 出版商
  63. Yoon H, Choi Y, Song J, Do I, Kang S, Ko Y, et al. Targeted inhibition of FAK, PYK2 and BCL-XL synergistically enhances apoptosis in ovarian clear cell carcinoma cell lines. PLoS ONE. 2014;9:e88587 pubmed 出版商
  64. Kulzer J, Stitzel M, Morken M, Huyghe J, Fuchsberger C, Kuusisto J, et al. A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell. Am J Hum Genet. 2014;94:186-97 pubmed 出版商
  65. Zhu Y, Yao Z, Wu Z, Mei Y, Wu M. Role of tumor necrosis factor alpha-induced protein 1 in paclitaxel resistance. Oncogene. 2014;33:3246-55 pubmed 出版商
  66. Ma T, Galimberti F, Erkmen C, Memoli V, Chinyengetere F, SEMPERE L, et al. Comparing histone deacetylase inhibitor responses in genetically engineered mouse lung cancer models and a window of opportunity trial in patients with lung cancer. Mol Cancer Ther. 2013;12:1545-55 pubmed 出版商
  67. Li L, Yang G, Ren C, Tanimoto R, Hirayama T, Wang J, et al. Glioma pathogenesis-related protein 1 induces prostate cancer cell death through Hsc70-mediated suppression of AURKA and TPX2. Mol Oncol. 2013;7:484-96 pubmed 出版商