这是一篇来自已证抗体库的有关人类 Src的综述,是根据179篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Src 抗体。
Src 同义词: ASV; SRC1; THC6; c-SRC; p60-Src

赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 3e
赛默飞世尔 Src抗体(Thermo Fisher Scientific, 44-660G)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3e). elife (2020) ncbi
小鼠 单克隆(184Q20)
  • 免疫印迹; 小鼠; 图 6b
赛默飞世尔 Src抗体(ThermoFisher, AHO1152)被用于被用于免疫印迹在小鼠样本上 (图 6b). Bone Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛默飞世尔 Src抗体(Thermo Fisher Scientific, 44-660G)被用于被用于免疫印迹在人类样本上 (图 3c). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:100; 图 2r
赛默飞世尔 Src抗体(Invitrogen, 44660G)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 2r). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4g
赛默飞世尔 Src抗体(Invitrogen, 44660G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). Am J Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4g
赛默飞世尔 Src抗体(Invitrogen, 44-655G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). Am J Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠
赛默飞世尔 Src抗体(Thermofisher, 44660G)被用于被用于免疫印迹在大鼠样本上. Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛默飞世尔 Src抗体(Biosource, 44-660G)被用于被用于免疫印迹在人类样本上 (图 6a). Am J Physiol Heart Circ Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 Src抗体(Invitrogen, 44660G)被用于被用于免疫印迹在人类样本上 (图 4a). J Cereb Blood Flow Metab (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛默飞世尔 Src抗体(Invitrogen, 44-662G)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Pharmacol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1g
赛默飞世尔 Src抗体(Invitrogen, 44660G)被用于被用于免疫印迹在人类样本上 (图 1g). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 2
赛默飞世尔 Src抗体(Invitrogen, 44-660A1)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 9
赛默飞世尔 Src抗体(Invitrogen, 44-660G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 图 3
赛默飞世尔 Src抗体(Invitrogen, 44660G)被用于被用于免疫组化在fruit fly 样本上 (图 3). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
赛默飞世尔 Src抗体(Invitrogen, 44-660G)被用于被用于免疫印迹在人类样本上 (图 7). Neoplasia (2016) ncbi
小鼠 单克隆(28)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 f1a
  • 免疫印迹; 人类; 1:1000; 图 f2
赛默飞世尔 Src抗体(生活技术, 28)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 f1a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 f2). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠
赛默飞世尔 Src抗体(Invitrogen, 44662G)被用于被用于免疫印迹在大鼠样本上. Glia (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200
  • 免疫印迹; 大鼠
赛默飞世尔 Src抗体(Invitrogen, 44660G)被用于被用于免疫组化在小鼠样本上浓度为1:200 和 被用于免疫印迹在大鼠样本上. Glia (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Src抗体(Invitrogen, 44660G)被用于. Cardiovasc Res (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Src抗体(生活技术, 44-660G)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Src抗体(Invitrogen, 44660G)被用于. Biochim Biophys Acta (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛默飞世尔 Src抗体(Invitrogen/Thermo Fisher, 44-660G)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Src抗体(生活技术, 44-660G)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Src抗体(Invitrogen, 44660G)被用于. Cancer Cell (2015) ncbi
小鼠 单克隆(28)
  • 免疫印迹; 小鼠
赛默飞世尔 Src抗体(Invitrogen, AHO0051)被用于被用于免疫印迹在小鼠样本上. Mol Reprod Dev (2014) ncbi
小鼠 单克隆(184Q20)
  • 免疫细胞化学; 小鼠; 1:200
赛默飞世尔 Src抗体(Invitrogen, AHO1152)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Cell (2014) ncbi
小鼠 单克隆(28)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Src抗体(Invitrogen, AHO0051)被用于被用于免疫印迹在人类样本上 (图 5). Cell Cycle (2013) ncbi
小鼠 单克隆(28)
  • 免疫印迹; 小鼠; 1:50,000; 图 3
赛默飞世尔 Src抗体(Invitrogen, AHO0051)被用于被用于免疫印迹在小鼠样本上浓度为1:50,000 (图 3). Genes Cells (2010) ncbi
小鼠 单克隆(184Q20)
  • 免疫印迹; 小鼠
赛默飞世尔 Src抗体(Biosource, AHO1152)被用于被用于免疫印迹在小鼠样本上. J Neuroimmunol (2009) ncbi
小鼠 单克隆(184Q20)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 Src抗体(BIOSOURCE, 184Q20)被用于被用于免疫印迹在小鼠样本上 (图 6). J Biol Chem (2009) ncbi
小鼠 单克隆(28)
  • 免疫印迹; 人类
赛默飞世尔 Src抗体(BioSource, AHO0051)被用于被用于免疫印迹在人类样本上. Chem Biol (2007) ncbi
小鼠 单克隆(184Q20)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 Src抗体(BioSource, 184Q20)被用于被用于免疫印迹在小鼠样本上 (图 2). Carcinogenesis (2007) ncbi
小鼠 单克隆(28)
  • 免疫组化-冰冻切片; 斑马鱼; 2.5 ug/ml
赛默飞世尔 Src抗体(Biosource, AHO0051)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为2.5 ug/ml. Dev Biol (2006) ncbi
圣克鲁斯生物技术
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 s9b
圣克鲁斯生物技术 Src抗体(Santa Cruz, B-12)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s9b). Nat Commun (2017) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 人类; 1:1000; 图 s9b
圣克鲁斯生物技术 Src抗体(Santa Cruz, B-12)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s9b). Nat Commun (2017) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Src抗体(Santa Cruz, Sc-8056)被用于被用于免疫印迹在大鼠样本上. Physiol Rep (2016) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Src抗体(Santa Cruz, sc8056)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Biochem (2017) ncbi
小鼠 单克隆(B-12)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
  • 免疫沉淀; 人类; 1:50; 图 4
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:200; 图 1
圣克鲁斯生物技术 Src抗体(Santa Cruz Biotechnology, sc-8056)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1), 被用于免疫沉淀在人类样本上浓度为1:50 (图 4), 被用于免疫细胞化学在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 人类; 1:200; 图 1
圣克鲁斯生物技术 Src抗体(Santa Cruz, sc-8056;)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 大鼠; 图 8a
圣克鲁斯生物技术 Src抗体(Santa Cruz, sc8056)被用于被用于免疫印迹在大鼠样本上 (图 8a). J Cell Mol Med (2016) ncbi
小鼠 单克隆(H-12)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Src抗体(Santa Cruz, SC5266)被用于被用于免疫印迹在人类样本上 (图 3). Front Endocrinol (Lausanne) (2015) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Src抗体(Santa Cruz, SC166860)被用于被用于免疫印迹在人类样本上 (图 3). Front Endocrinol (Lausanne) (2015) ncbi
小鼠 单克隆(H-12)
  • 免疫印迹; 小鼠; 图 s4
圣克鲁斯生物技术 Src抗体(santa Cruz, sc-5266)被用于被用于免疫印迹在小鼠样本上 (图 s4). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(9A6)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 Src抗体(Santa Cruz Biotechnology, sc-81521)被用于被用于免疫细胞化学在小鼠样本上. Am J Physiol Cell Physiol (2015) ncbi
小鼠 单克隆(B-12)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 Src抗体(Santa Cruz Biotechnology, sc-8056)被用于被用于免疫细胞化学在小鼠样本上. Am J Physiol Cell Physiol (2015) ncbi
小鼠 单克隆(H-12)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Src抗体(Santa Cruz, sc-5266)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Src抗体(Santa Cruz, sc-8056)被用于被用于免疫印迹在人类样本上. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术 Src抗体(Santa Cruz, sc-8056 B-12)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(H-8)
  • 免疫组化-石蜡切片; 人类; 1:50
圣克鲁斯生物技术 Src抗体(Santa Cruz, sc-166859)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Exp Dermatol (2015) ncbi
小鼠 单克隆(B-12)
  • 免疫组化-石蜡切片; 人类; 1:50
圣克鲁斯生物技术 Src抗体(Santa Cruz, sc8056)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Exp Dermatol (2015) ncbi
小鼠 单克隆(B-12)
  • 免疫细胞化学; 人类; 1:50
  • 免疫印迹; 人类; 1:200
圣克鲁斯生物技术 Src抗体(Santa Cruz, Sc-8056)被用于被用于免疫细胞化学在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:200. Cell Signal (2015) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 小鼠; 图 8
圣克鲁斯生物技术 Src抗体(Santa Cruz Biotechnology, sc-8056)被用于被用于免疫印迹在小鼠样本上 (图 8). J Neurosci (2015) ncbi
小鼠 单克隆(9A6)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Src抗体(Santa Cruz, SC-81521)被用于被用于免疫印迹在人类样本上 (图 2). Bone (2015) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Src抗体(Santa Cruz Biotechnology, sc-166860)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Cell Res (2015) ncbi
小鼠 单克隆(17AT28)
  • proximity ligation assay; 人类; 1:100; 图 9b
圣克鲁斯生物技术 Src抗体(Santa Cruz Biotechnology, sc-130124)被用于被用于proximity ligation assay在人类样本上浓度为1:100 (图 9b). Biomolecules (2012) ncbi
小鼠 单克隆(H-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Src抗体(Santa Cruz Biotechnology, sc-5266)被用于被用于免疫印迹在人类样本上. J Cell Mol Med (2014) ncbi
小鼠 单克隆(17AT28)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Src抗体(Santa Cruz Biotechnology, sc-130124)被用于被用于免疫印迹在人类样本上 (图 5). J Proteome Res (2014) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; pigs
圣克鲁斯生物技术 Src抗体(Santa Cruz Biotechnology, sc-8056)被用于被用于免疫印迹在pigs 样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(B-12)
  • 免疫组化-石蜡切片; 人类; 1:150
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Src抗体(Santa Cruz, sc-8056)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150, 被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000. Int J Cancer (2014) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Src抗体(Santa Cruz Biotechnology, sc-8056)被用于被用于免疫印迹在人类样本上. Eur J Cancer (2014) ncbi
小鼠 单克隆(H-12)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Src抗体(Santa Cruz, sc-5266)被用于被用于免疫印迹在人类样本上浓度为1:500. Stem Cell Rev (2014) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Src抗体(Santa Cruz, sc-8056)被用于被用于免疫印迹在小鼠样本上. J Hepatol (2014) ncbi
小鼠 单克隆(H-12)
  • 免疫印迹; 人类; 图 s2
圣克鲁斯生物技术 Src抗体(Santa Cruz Biotechnology, SC-5266)被用于被用于免疫印迹在人类样本上 (图 s2). Int J Biochem Cell Biol (2013) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3i
艾博抗(上海)贸易有限公司 Src抗体(Abcam, ab47405)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3i). BMC Cancer (2020) ncbi
domestic rabbit 单克隆(EP503Y)
  • 免疫印迹; 人类; 1:1000; 图 s3i
艾博抗(上海)贸易有限公司 Src抗体(Abcam, ab40660)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3i). BMC Cancer (2020) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 1:500; 图 1a
艾博抗(上海)贸易有限公司 Src抗体(Abcam, ab133460)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1a). BMC Ophthalmol (2019) ncbi
domestic rabbit 单克隆(EPR5496)
  • 免疫印迹; 人类; 1:1000; 图 2d
艾博抗(上海)贸易有限公司 Src抗体(Abcam, ab109381)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). BMC Ophthalmol (2019) ncbi
domestic rabbit 单克隆(Y232)
  • 免疫细胞化学; 人类; 1:100; 图 5c
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司 Src抗体(Abcam, ab32078)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5c) 和 被用于免疫印迹在人类样本上 (图 4a). J Cell Biol (2019) ncbi
domestic rabbit 单克隆(EP503Y)
  • 免疫印迹; 人类; 图 7a
艾博抗(上海)贸易有限公司 Src抗体(Abcam, ab40660)被用于被用于免疫印迹在人类样本上 (图 7a). Biochemistry (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 1:50; 图 4d
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 Src抗体(Abcam, ab47405)被用于被用于其他在人类样本上浓度为1:50 (图 4d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(EPR5496)
  • 免疫印迹; 人类; 图 5A
艾博抗(上海)贸易有限公司 Src抗体(Epitomics, 3795-1)被用于被用于免疫印迹在人类样本上 (图 5A). Sci Rep (2016) ncbi
domestic rabbit 单克隆(Y232)
  • 免疫印迹; 人类; 图 6e
艾博抗(上海)贸易有限公司 Src抗体(Abcam, ab32078)被用于被用于免疫印迹在人类样本上 (图 6e). Nat Genet (2016) ncbi
domestic rabbit 单克隆(Y232)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
  • 免疫细胞化学; 人类; 1:100; 图 2
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Src抗体(Abcam, ab32078)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1), 被用于免疫细胞化学在人类样本上浓度为1:100 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2500; 图 1a
艾博抗(上海)贸易有限公司 Src抗体(Abcam, ab4816)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 1a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司 Src抗体(Abcam, ab4816)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(327)
  • 免疫印迹; 大鼠; 1:500
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司 Src抗体(Abcam, ab16885)被用于被用于免疫印迹在大鼠样本上浓度为1:500 和 被用于免疫印迹在人类样本上浓度为1:500. Neurochem Int (2013) ncbi
LifeSpan Biosciences
小鼠 单克隆(5A18)
  • 免疫印迹; 人类; 图 2
LifeSpan Biosciences Src抗体(LSBio, LS-B3266)被用于被用于免疫印迹在人类样本上 (图 2). Bone (2015) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s12
西格玛奥德里奇 Src抗体(Sigma, SAB4504536)被用于被用于免疫细胞化学在人类样本上 (图 s12). Mol Biol Cell (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signalling, 2108)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3i). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, S473)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). J Hematol Oncol (2020) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 小鼠; 1:1000; 图 1a, 4b
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a, 4b). Front Neurosci (2020) ncbi
小鼠 单克隆(L4A1)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, clone L4A1; #2110;)被用于被用于免疫印迹在人类样本上 (图 2). Cells (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4i
赛信通(上海)生物试剂有限公司 Src抗体(Cell signaling Technology, 2108)被用于被用于免疫印迹在人类样本上 (图 4i). Mol Cancer (2020) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫沉淀; 人类; 图 s3c
  • 免疫印迹; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2123)被用于被用于免疫沉淀在人类样本上 (图 s3c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s3c). Nat Commun (2020) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, 2109)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Front Immunol (2019) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2123)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). elife (2019) ncbi
小鼠 单克隆(L4A1)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, 2110)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Int J Oncol (2019) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫沉淀; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2123)被用于被用于免疫沉淀在人类样本上浓度为1:1000 (图 6a). elife (2019) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 小鼠; 1:1000; 图 6b, 6c
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2123)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b, 6c). Nat Commun (2019) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 人类; 图 7f
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2123T)被用于被用于免疫印迹在人类样本上 (图 7f). Science (2019) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109S)被用于被用于免疫印迹在人类样本上 (图 3b). Cancer Cell (2019) ncbi
小鼠 单克隆(L4A1)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signalling Technology, 2110)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). EMBO Mol Med (2019) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在人类样本上 (图 2a). Cancer Cell Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Src抗体(CST, 2108)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Mol Biol Cell (2019) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 小鼠; 1:2000; 图 8b
  • 免疫印迹; 人类; 1:2000; 图 8a
赛信通(上海)生物试剂有限公司 Src抗体(CST, 2123T)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 8b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 8a). J Cell Sci (2019) ncbi
小鼠 单克隆(L4A1)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, L4A1 mAb 2110)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Biol Chem (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2108)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). J Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6i
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2108)被用于被用于免疫印迹在人类样本上 (图 6i). J Mol Cell Cardiol (2019) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2123)被用于被用于免疫印迹在小鼠样本上 (图 5c). Blood (2018) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, S473)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Exp Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, S473)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在人类样本上 (图 4d). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2105)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在人类样本上 (图 3a). J Cell Mol Med (2018) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 大鼠; 图 7a
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, 2109)被用于被用于免疫印迹在大鼠样本上 (图 7a). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2123)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Mol Med Rep (2018) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在人类样本上 (图 3a). Oncogene (2018) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 犬; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, 2109)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 7b). J Cell Sci (2018) ncbi
小鼠 单克隆(L4A1)
  • 免疫印迹; 小鼠; 1:2500; 图 3
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2110)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 3). Exp Neurol (2018) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technologies, 2109)被用于被用于免疫印迹在人类样本上 (图 4d). Oncoimmunology (2017) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 犬; 图 3a
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, 36D10)被用于被用于免疫印迹在犬样本上 (图 3a). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6k
赛信通(上海)生物试剂有限公司 Src抗体(CST, 2105)被用于被用于免疫印迹在人类样本上 (图 6k). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫细胞化学; 人类; 图 6h
  • 免疫印迹; 人类; 图 6k
  • 免疫组化; 小鼠; 图 s7c
  • 免疫印迹; 小鼠; 图 s7d
赛信通(上海)生物试剂有限公司 Src抗体(CST, 2123)被用于被用于免疫细胞化学在人类样本上 (图 6h), 被用于免疫印迹在人类样本上 (图 6k), 被用于免疫组化在小鼠样本上 (图 s7c) 和 被用于免疫印迹在小鼠样本上 (图 s7d). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2123)被用于被用于免疫印迹在人类样本上 (图 5b). Am J Physiol Lung Cell Mol Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2105)被用于被用于免疫印迹在人类样本上 (图 6c). Front Mol Neurosci (2017) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 1:50; 图 5b
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 5b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2123)被用于被用于免疫印迹在人类样本上 (图 3d). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 Src抗体(CST, 2105)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 小鼠; 图 s5c
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在小鼠样本上 (图 s5c). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, 2108)被用于被用于免疫印迹在人类样本上 (图 4d). Oncogene (2017) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在人类样本上 (图 3c). Cell Rep (2017) ncbi
小鼠 单克隆(L4A1)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 21010)被用于被用于免疫印迹在人类样本上 (图 3c). Cell Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Src抗体(cell signalling, S473)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 小鼠; 图 2c,2g
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在小鼠样本上 (图 2c,2g). Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, 2105)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, 2123)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 Src抗体(Cell signaling, 2109S)被用于被用于免疫印迹在人类样本上 (图 s5). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, 2105)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
小鼠 单克隆(L4A1)
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2110)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). JCI Insight (2016) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在小鼠样本上 (图 5e). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 1:2000; 图 4e
赛信通(上海)生物试剂有限公司 Src抗体(cell signalling, 2109)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4e). Oncotarget (2017) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(D7F2Q)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 12432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 12a
赛信通(上海)生物试剂有限公司 Src抗体(Cell signaling, 2108)被用于被用于免疫印迹在小鼠样本上 (图 12a). J Neurosci (2016) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 图 s7
赛信通(上海)生物试剂有限公司 Src抗体(cell signalling, 2109)被用于被用于免疫印迹在人类样本上 (图 s7). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在人类样本上 (图 1d). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2d
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2105)被用于被用于免疫细胞化学在小鼠样本上 (图 2d) 和 被用于免疫印迹在小鼠样本上 (图 2c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2108)被用于被用于免疫印迹在小鼠样本上 (图 6e). Oncogene (2017) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2123)被用于被用于免疫印迹在人类样本上 (图 2). BMC Res Notes (2016) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 1:1000; 图 s20a
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s20a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2105)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2105)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(36D10)
  • 流式细胞仪; 小鼠; 图 7c
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于流式细胞仪在小鼠样本上 (图 7c). J Immunol (2016) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2123)被用于被用于免疫印迹在小鼠样本上 (图 5e). Peptides (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2105)被用于被用于免疫印迹在小鼠样本上 (图 5e). Peptides (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, 2105)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2108S)被用于被用于免疫印迹在人类样本上 (图 7). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Src抗体(Cell signaling, 2109S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(L4A1)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2110)被用于被用于免疫印迹在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2123P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 32G6)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Src抗体(Cell signaling, 2123)被用于被用于免疫印迹在人类样本上 (图 1). FASEB J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, 2108)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2108)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2,109)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 人类; 1:2000; 图 5d
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2123)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5d). Cancer Res (2016) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2123)被用于被用于免疫印迹在人类样本上 (图 8). Sci Rep (2016) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 人类; 1:3000; 图 8
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, 2123BC)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 8). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D7F2Q)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Src抗体(cell signalling, 12432)被用于被用于免疫印迹在人类样本上 (图 6a). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Src抗体(cell signalling, 2108)被用于被用于免疫印迹在人类样本上 (图 6a). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在人类样本上 (图 7). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2105P)被用于被用于免疫印迹在人类样本上 (图 7). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2123P)被用于被用于免疫印迹在人类样本上 (图 7). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Src抗体(Cell signaling, 32G6)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, 2109)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(L4A1)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2110)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(L4A1)
  • 免疫印迹; 大鼠; 图 4
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2110)被用于被用于免疫印迹在大鼠样本上 (图 4). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2108BC)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2123)被用于被用于免疫印迹在人类样本上 (图 4). Cell Cycle (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, 2105)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, 2123)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 36D10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Proteomics (2016) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫沉淀; 人类; 图 3c
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, 2109)被用于被用于免疫沉淀在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫细胞化学; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 36D10)被用于被用于免疫细胞化学在人类样本上 (图 1a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 32G6)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(L4A1)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2110)被用于被用于免疫印迹在小鼠样本上 (图 5). Front Oncol (2015) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 1:100; 图 s7
赛信通(上海)生物试剂有限公司 Src抗体(Cell signaling, 2109)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 s7). Nature (2015) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, 2123)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, 32G6)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 人类; 1:500; 图 7a
赛信通(上海)生物试剂有限公司 Src抗体(Cell signaling, 2123)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫细胞化学; 人类; 2 ug/ml; 图 6
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signalling Technology, 36D10)被用于被用于免疫细胞化学在人类样本上浓度为2 ug/ml (图 6) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Hum Mol Genet (2015) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在人类样本上 (图 8). Neuroendocrinology (2016) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 小鼠; 1:8000
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在小鼠样本上浓度为1:8000. Neuroscience (2015) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signalling Technologies, 2109)被用于被用于免疫印迹在小鼠样本上. Cardiovasc Res (2015) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2123)被用于被用于免疫印迹在人类样本上 (图 4). EBioMedicine (2015) ncbi
domestic rabbit 单克隆(36D10)
赛信通(上海)生物试剂有限公司 Src抗体(CST, 2109)被用于. Mol Cancer (2015) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在人类样本上 (图 s1). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, 36D10)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫细胞化学; 人类; 图 2
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫细胞化学在人类样本上 (图 2). Cancer Lett (2015) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technology, 2109)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling Technologies, 2109)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 人类; 1:2000; 图 6
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2123)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). Nat Cell Biol (2014) ncbi
小鼠 单克隆(L4A1)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2110)被用于被用于免疫印迹在人类样本上 (图 6). Cardiovasc Res (2014) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫细胞化学; 人类
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫组化在人类样本上. Breast Cancer Res (2014) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2109)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2123)被用于被用于免疫印迹在人类样本上. Cancer Cell (2014) ncbi
domestic rabbit 单克隆(36D10)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 36D10)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 大鼠; 1:2000
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 32G6)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. Microcirculation (2014) ncbi
domestic rabbit 单克隆(32G6)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, 2123)被用于被用于免疫印迹在人类样本上 (图 2c). Sci Rep (2014) ncbi
小鼠 单克隆(L4A1)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 Src抗体(Cell Signaling, L4A1)被用于被用于免疫印迹在人类样本上 (图 1f). J Transl Med (2012) ncbi
MBL International
小鼠 单克隆(28)
  • 免疫印迹; 小鼠; 1:500; 图 5c
MBL International Src抗体(MBL, 28)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5c). Cell Commun Signal (2017) ncbi
文章列表
  1. Chen J, Liu X, Ke K, Zou J, Gao Z, Habuchi T, et al. LINC00992 contributes to the oncogenic phenotypes in prostate cancer via targeting miR-3935 and augmenting GOLM1 expression. BMC Cancer. 2020;20:749 pubmed 出版商
  2. Lechertier T, Reynolds L, Kim H, Pedrosa A, Gómez Escudero J, Muñoz Félix J, et al. Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth. Nat Commun. 2020;11:2810 pubmed 出版商
  3. Smith R, Ninchoji T, Gordon E, André H, Dejana E, Vestweber D, et al. Vascular permeability in retinopathy is regulated by VEGFR2 Y949 signaling to VE-cadherin. elife. 2020;9: pubmed 出版商
  4. Zheng S, Yang L, Zou Y, Liang J, Liu P, Gao G, et al. Long non-coding RNA HUMT hypomethylation promotes lymphangiogenesis and metastasis via activating FOXK1 transcription in triple-negative breast cancer. J Hematol Oncol. 2020;13:17 pubmed 出版商
  5. Yang H, Wang L, Zang C, Wang Y, Shang J, Zhang Z, et al. Src Inhibition Attenuates Neuroinflammation and Protects Dopaminergic Neurons in Parkinson's Disease Models. Front Neurosci. 2020;14:45 pubmed 出版商
  6. Leite M, Marques M, Melo J, Pinto M, Cavadas B, Aroso M, et al. Helicobacter Pylori Targets the EPHA2 Receptor Tyrosine Kinase in Gastric Cells Modulating Key Cellular Functions. Cells. 2020;9: pubmed 出版商
  7. Pothuraju R, Rachagani S, Krishn S, Chaudhary S, Nimmakayala R, Siddiqui J, et al. Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Mol Cancer. 2020;19:37 pubmed 出版商
  8. Kennedy S, Jarboui M, Srihari S, Raso C, Bryan K, Dernayka L, et al. Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRASG13D. Nat Commun. 2020;11:499 pubmed 出版商
  9. Liu T, Han S, Dai Q, Zheng J, Liu C, Li S, et al. IL-17A-Mediated Excessive Autophagy Aggravated Neuronal Ischemic Injuries via Src-PP2B-mTOR Pathway. Front Immunol. 2019;10:2952 pubmed 出版商
  10. Harde E, Nicholson L, Furones Cuadrado B, Bissen D, Wigge S, Urban S, et al. EphrinB2 regulates VEGFR2 during dendritogenesis and hippocampal circuitry development. elife. 2019;8: pubmed 出版商
  11. Yuan M, Xie F, Xia X, Zhong K, Lian L, Zhang S, et al. UNC5C‑knockdown enhances the growth and metastasis of breast cancer cells by potentiating the integrin α6/β4 signaling pathway. Int J Oncol. 2019;: pubmed 出版商
  12. Luxan G, Stewen J, Díaz N, Kato K, Maney S, Aravamudhan A, et al. Endothelial EphB4 maintains vascular integrity and transport function in adult heart. elife. 2019;8: pubmed 出版商
  13. Li X, Wang F, Ren M, Du M, Zhou J. The effects of c-Src kinase on EMT signaling pathway in human lens epithelial cells associated with lens diseases. BMC Ophthalmol. 2019;19:219 pubmed 出版商
  14. Reed M, Luissint A, Azcutia V, Fan S, O Leary M, Quirós M, et al. Epithelial CD47 is critical for mucosal repair in the murine intestine in vivo. Nat Commun. 2019;10:5004 pubmed 出版商
  15. Timms R, Zhang Z, Rhee D, Harper J, Koren I, Elledge S. A glycine-specific N-degron pathway mediates the quality control of protein N-myristoylation. Science. 2019;365: pubmed 出版商
  16. Chen P, Zhao D, Li J, Liang X, Li J, Chang A, et al. Symbiotic Macrophage-Glioma Cell Interactions Reveal Synthetic Lethality in PTEN-Null Glioma. Cancer Cell. 2019;35:868-884.e6 pubmed 出版商
  17. Singh R, Peng S, Viswanath P, Sambandam V, Shen L, Rao X, et al. Non-canonical cMet regulation by vimentin mediates Plk1 inhibitor-induced apoptosis. EMBO Mol Med. 2019;: pubmed 出版商
  18. Stock K, Borrink R, Mikesch J, Hansmeier A, Rehkämper J, Trautmann M, et al. Overexpression and Tyr421-phosphorylation of cortactin is induced by three-dimensional spheroid culturing and contributes to migration and invasion of pancreatic ductal adenocarcinoma (PDAC) cells. Cancer Cell Int. 2019;19:77 pubmed 出版商
  19. Wang M, Hinton J, Gard J, Garcia J, Knudsen B, Nagle R, et al. Integrin α6β4E variant is associated with actin and CD9 structures and modifies the biophysical properties of cell-cell and cell-extracellular matrix interactions. Mol Biol Cell. 2019;30:838-850 pubmed 出版商
  20. Zhang S, Liu W, Yang Y, Sun K, Li S, Xu H, et al. Tmem30a Deficiency in endothelial cells impairs cell proliferation and angiogenesis. J Cell Sci. 2019;: pubmed 出版商
  21. DeLalio L, Billaud M, Ruddiman C, Johnstone S, Butcher J, Wolpe A, et al. Constitutive SRC-mediated phosphorylation of pannexin 1 at tyrosine 198 occurs at the plasma membrane. J Biol Chem. 2019;294:6940-6956 pubmed 出版商
  22. Bergsma A, Ganguly S, Wiegand M, Dick D, Williams B, Miranti C. Regulation of cytoskeleton and adhesion signaling in osteoclasts by tetraspanin CD82. Bone Rep. 2019;10:100196 pubmed 出版商
  23. Niu F, Liao K, Hu G, Sil S, Callen S, Guo M, et al. Cocaine-induced release of CXCL10 from pericytes regulates monocyte transmigration into the CNS. J Cell Biol. 2019;218:700-721 pubmed 出版商
  24. Weng J, Yu L, Chen Z, Su H, Yu S, Zhang Y, et al. β-Catenin phosphorylation at Y654 and Y142 is crucial for high mobility group box-1 protein-induced pulmonary vascular hyperpermeability. J Mol Cell Cardiol. 2019;127:174-184 pubmed 出版商
  25. Chorzalska A, Morgan J, Ahsan N, Treaba D, Olszewski A, Petersen M, et al. Bone marrow-specific loss of ABI1 induces myeloproliferative neoplasm with features resembling human myelofibrosis. Blood. 2018;: pubmed 出版商
  26. Singh M, Ni M, Sullivan J, Hamerman J, Campbell D. B cell adaptor for PI3-kinase (BCAP) modulates CD8+ effector and memory T cell differentiation. J Exp Med. 2018;215:2429-2443 pubmed 出版商
  27. Anker J, Naseem A, Mok H, Schaeffer A, Abdulkadir S, Thumbikat P. Multi-faceted immunomodulatory and tissue-tropic clinical bacterial isolate potentiates prostate cancer immunotherapy. Nat Commun. 2018;9:1591 pubmed 出版商
  28. Pircher J, Czermak T, Ehrlich A, Eberle C, Gaitzsch E, Margraf A, et al. Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nat Commun. 2018;9:1523 pubmed 出版商
  29. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  30. Vl kov K, Vachtenheim J, R da J, Hor k P, Ondru ov L. Inducibly decreased MITF levels do not affect proliferation and phenotype switching but reduce differentiation of melanoma cells. J Cell Mol Med. 2018;22:2240-2251 pubmed 出版商
  31. De Pasquale V, Pezone A, Sarogni P, Tramontano A, Schiattarella G, Avvedimento V, et al. EGFR activation triggers cellular hypertrophy and lysosomal disease in NAGLU-depleted cardiomyoblasts, mimicking the hallmarks of mucopolysaccharidosis IIIB. Cell Death Dis. 2018;9:40 pubmed 出版商
  32. Wang Z, Kim M, Martinez Ferrando I, Koleske A, Pandey A, Cole P. Analysis of Cellular Tyrosine Phosphorylation via Chemical Rescue of Conditionally Active Abl Kinase. Biochemistry. 2018;57:1390-1398 pubmed 出版商
  33. Park G, Kim D. Cigarette smoke-induced EGFR activation promotes epithelial mesenchymal migration of human retinal pigment epithelial cells through regulation of the FAK-mediated Syk/Src pathway. Mol Med Rep. 2018;17:3563-3574 pubmed 出版商
  34. Han B, Zhou B, Qu Y, Gao B, Xu Y, Chung S, et al. FOXC1-induced non-canonical WNT5A-MMP7 signaling regulates invasiveness in triple-negative breast cancer. Oncogene. 2018;37:1399-1408 pubmed 出版商
  35. Van Itallie C, Tietgens A, Aponte A, Gucek M, Cartagena Rivera A, Chadwick R, et al. MARCKS-related protein regulates cytoskeletal organization at cell-cell and cell-substrate contacts in epithelial cells. J Cell Sci. 2018;131: pubmed 出版商
  36. Lu F, Shao G, Wang Y, Guan S, Burlingame A, Liu X, et al. Hypoxia-ischemia modifies postsynaptic GluN2B-containing NMDA receptor complexes in the neonatal mouse brain. Exp Neurol. 2018;299:65-74 pubmed 出版商
  37. Penafuerte C, Feldhammer M, Mills J, Vinette V, Pike K, Hall A, et al. Downregulation of PTP1B and TC-PTP phosphatases potentiate dendritic cell-based immunotherapy through IL-12/IFN? signaling. Oncoimmunology. 2017;6:e1321185 pubmed 出版商
  38. Zhang K, Myllymäki S, Gao P, Devarajan R, Kytölä V, Nykter M, et al. Oncogenic K-Ras upregulates ITGA6 expression via FOSL1 to induce anoikis resistance and synergizes with αV-Class integrins to promote EMT. Oncogene. 2017;36:5681-5694 pubmed 出版商
  39. Ran H, Kong S, Zhang S, Cheng J, Zhou C, He B, et al. Nuclear Shp2 directs normal embryo implantation via facilitating the ERα tyrosine phosphorylation by the Src kinase. Proc Natl Acad Sci U S A. 2017;114:4816-4821 pubmed 出版商
  40. Soni D, Regmi S, Wang D, Debroy A, Zhao Y, Vogel S, et al. Pyk2 phosphorylation of VE-PTP downstream of STIM1-induced Ca2+ entry regulates disassembly of adherens junctions. Am J Physiol Lung Cell Mol Physiol. 2017;312:L1003-L1017 pubmed 出版商
  41. Poulsen E, Iannuzzi F, Rasmussen H, Maier T, Enghild J, Jørgensen A, et al. An Aberrant Phosphorylation of Amyloid Precursor Protein Tyrosine Regulates Its Trafficking and the Binding to the Clathrin Endocytic Complex in Neural Stem Cells of Alzheimer's Disease Patients. Front Mol Neurosci. 2017;10:59 pubmed 出版商
  42. Heim J, Squirewell E, Neu A, Zocher G, Sominidi Damodaran S, Wyles S, et al. Myosin-1E interacts with FAK proline-rich region 1 to induce fibronectin-type matrix. Proc Natl Acad Sci U S A. 2017;114:3933-3938 pubmed 出版商
  43. Merhi A, Delree P, Marini A. The metabolic waste ammonium regulates mTORC2 and mTORC1 signaling. Sci Rep. 2017;7:44602 pubmed 出版商
  44. Grasso S, Chapelle J, Salemme V, Aramu S, Russo I, Vitale N, et al. The scaffold protein p140Cap limits ERBB2-mediated breast cancer progression interfering with Rac GTPase-controlled circuitries. Nat Commun. 2017;8:14797 pubmed 出版商
  45. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  46. Matsumoto Y, LaRose J, Kent O, Lim M, Changoor A, Zhang L, et al. RANKL coordinates multiple osteoclastogenic pathways by regulating expression of ubiquitin ligase RNF146. J Clin Invest. 2017;127:1303-1315 pubmed 出版商
  47. Jin L, Chun J, Pan C, Alesi G, Li D, Magliocca K, et al. Phosphorylation-mediated activation of LDHA promotes cancer cell invasion and tumour metastasis. Oncogene. 2017;36:3797-3806 pubmed 出版商
  48. Gonzalez M, Martin E, Anwar T, Arellano Garcia C, Medhora N, Lama A, et al. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth. Cell Rep. 2017;18:1215-1228 pubmed 出版商
  49. Osmanbeyoglu H, Toska E, Chan C, Baselga J, Leslie C. Pancancer modelling predicts the context-specific impact of somatic mutations on transcriptional programs. Nat Commun. 2017;8:14249 pubmed 出版商
  50. Luo Y, Duan H, Qian Y, Feng L, Wu Z, Wang F, et al. Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Res. 2017;27:352-372 pubmed 出版商
  51. Hurst L, Dunmore B, Long L, Crosby A, Al Lamki R, Deighton J, et al. TNFα drives pulmonary arterial hypertension by suppressing the BMP type-II receptor and altering NOTCH signalling. Nat Commun. 2017;8:14079 pubmed 出版商
  52. Shen X, Jia Z, D Alonzo D, Wang X, Bruder E, Emch F, et al. HECTD1 controls the protein level of IQGAP1 to regulate the dynamics of adhesive structures. Cell Commun Signal. 2017;15:2 pubmed 出版商
  53. Kozlova N, Wottawa M, Katschinski D, Kristiansen G, Kietzmann T. Hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) is a direct regulator of epidermal growth factor receptor (EGFR) signaling in breast cancer. Oncotarget. 2017;8:9885-9898 pubmed 出版商
  54. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  55. Yi J, Huang Y, Kwaczala A, Kuo I, Ehrlich B, Campbell S, et al. Low-dose dasatinib rescues cardiac function in Noonan syndrome. JCI Insight. 2016;1:e90220 pubmed 出版商
  56. Mukhopadhyay C, Triplett A, Bargar T, HECKMAN C, Wagner K, Naramura M. Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A. 2016;113:E8228-E8237 pubmed 出版商
  57. Bonan S, Albrengues J, Grasset E, Kuzet S, Nottet N, Bourget I, et al. Membrane-bound ICAM-1 contributes to the onset of proinvasive tumor stroma by controlling acto-myosin contractility in carcinoma-associated fibroblasts. Oncotarget. 2017;8:1304-1320 pubmed 出版商
  58. Bangi E, Murgia C, Teague A, Sansom O, Cagan R. Functional exploration of colorectal cancer genomes using Drosophila. Nat Commun. 2016;7:13615 pubmed 出版商
  59. Ji H, Li B, Zhang S, He Z, Zhou Y, Ouyang L. Crk-like adapter protein is overexpressed in cervical carcinoma, facilitates proliferation, invasion and chemoresistance, and regulates Src and Akt signaling. Oncol Lett. 2016;12:3811-3817 pubmed
  60. Sun L, Pan J, Yu L, Liu H, Shu X, Sun L, et al. Tumor endothelial cells promote metastasis and cancer stem cell-like phenotype through elevated Epiregulin in esophageal cancer. Am J Cancer Res. 2016;6:2277-2288 pubmed
  61. Yu W, Parakramaweera R, Teng S, Gowda M, Sharad Y, Thakker Varia S, et al. Oxidation of KCNB1 Potassium Channels Causes Neurotoxicity and Cognitive Impairment in a Mouse Model of Traumatic Brain Injury. J Neurosci. 2016;36:11084-11096 pubmed
  62. Matsumoto Y, La Rose J, Kent O, Wagner M, Narimatsu M, Levy A, et al. Reciprocal stabilization of ABL and TAZ regulates osteoblastogenesis through transcription factor RUNX2. J Clin Invest. 2016;126:4482-4496 pubmed 出版商
  63. Wang S, Chennupati R, Kaur H, Iring A, Wettschureck N, Offermanns S. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J Clin Invest. 2016;126:4527-4536 pubmed 出版商
  64. Kishi T, Mayanagi T, Iwabuchi S, Akasaka T, Sobue K. Myocardin-related transcription factor A (MRTF-A) activity-dependent cell adhesion is correlated to focal adhesion kinase (FAK) activity. Oncotarget. 2016;7:72113-72130 pubmed 出版商
  65. Yi J, Manna A, Barr V, Hong J, Neuman K, Samelson L. madSTORM: a superresolution technique for large-scale multiplexing at single-molecule accuracy. Mol Biol Cell. 2016;27:3591-3600 pubmed
  66. Belliard A, Gulati G, Duan Q, Alves R, Brewer S, Madan N, et al. Ischemia/reperfusion-induced alterations of enzymatic and signaling functions of the rat cardiac Na+/K+-ATPase: protection by ouabain preconditioning. Physiol Rep. 2016;4: pubmed
  67. Peng D, Ungewiss C, Tong P, Byers L, Wang J, Canales J, et al. ZEB1 induces LOXL2-mediated collagen stabilization and deposition in the extracellular matrix to drive lung cancer invasion and metastasis. Oncogene. 2017;36:1925-1938 pubmed 出版商
  68. Vallo S, Michaelis M, Gust K, Black P, Rothweiler F, Kvasnicka H, et al. Dasatinib enhances tumor growth in gemcitabine-resistant orthotopic bladder cancer xenografts. BMC Res Notes. 2016;9:454 pubmed
  69. Boo H, Min H, Jang H, Yun H, Smith J, Jin Q, et al. The tobacco-specific carcinogen-operated calcium channel promotes lung tumorigenesis via IGF2 exocytosis in lung epithelial cells. Nat Commun. 2016;7:12961 pubmed 出版商
  70. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  71. Johnson R, Finger E, Olcina M, Vilalta M, Aguilera T, Miao Y, et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol. 2016;18:1078-1089 pubmed 出版商
  72. Egholm C, Khammy M, Dalsgaard T, Mazur A, Tritsaris K, Hansen A, et al. GLP-1 inhibits VEGFA-mediated signaling in isolated human endothelial cells and VEGFA-induced dilation of rat mesenteric arteries. Am J Physiol Heart Circ Physiol. 2016;311:H1214-H1224 pubmed 出版商
  73. Gross S, Devraj K, Feng Y, Macas J, Liebner S, Wieland T. Nucleoside diphosphate kinase B regulates angiogenic responses in the endothelium via caveolae formation and c-Src-mediated caveolin-1 phosphorylation. J Cereb Blood Flow Metab. 2017;37:2471-2484 pubmed 出版商
  74. Wu Y, Ren D, Chen G. Siglec-E Negatively Regulates the Activation of TLR4 by Controlling Its Endocytosis. J Immunol. 2016;197:3336-3347 pubmed
  75. Wang Y, Han G, Guo B, Huang J. Hyaluronan oligosaccharides promote diabetic wound healing by increasing angiogenesis. Pharmacol Rep. 2016;68:1126-1132 pubmed 出版商
  76. Girola N, Matsuo A, Figueiredo C, Massaoka M, Farias C, Arruda D, et al. The Ig VH complementarity-determining region 3-containing Rb9 peptide, inhibits melanoma cells migration and invasion by interactions with Hsp90 and an adhesion G-protein coupled receptor. Peptides. 2016;85:1-15 pubmed 出版商
  77. Padhan N, Nordling T, Sundstrom M, Akerud P, Birgisson H, Nygren P, et al. High sensitivity isoelectric focusing to establish a signaling biomarker for the diagnosis of human colorectal cancer. BMC Cancer. 2016;16:683 pubmed 出版商
  78. Ayres Pereira M, Mandel Clausen T, Pehrson C, Mao Y, Resende M, Daugaard M, et al. Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1. PLoS Pathog. 2016;12:e1005831 pubmed 出版商
  79. Liu M, Feng L, Sun P, Liu W, Wu W, Jiang B, et al. A Novel Bufalin Derivative Exhibited Stronger Apoptosis-Inducing Effect than Bufalin in A549 Lung Cancer Cells and Lower Acute Toxicity in Mice. PLoS ONE. 2016;11:e0159789 pubmed 出版商
  80. Won S, Incontro S, Nicoll R, Roche K. PSD-95 stabilizes NMDA receptors by inducing the degradation of STEP61. Proc Natl Acad Sci U S A. 2016;113:E4736-44 pubmed 出版商
  81. Kumar R, Agrawal T, Khan N, Nakayama Y, Medigeshi G. Identification and characterization of the role of c-terminal Src kinase in dengue virus replication. Sci Rep. 2016;6:30490 pubmed 出版商
  82. Kreger B, Dougherty A, Greene K, Cerione R, Antonyak M. Microvesicle Cargo and Function Changes upon Induction of Cellular Transformation. J Biol Chem. 2016;291:19774-85 pubmed 出版商
  83. Monica V, Lo Iacono M, Bracco E, Busso S, di Blasio L, Primo L, et al. Dasatinib modulates sensitivity to pemetrexed in malignant pleural mesothelioma cell lines. Oncotarget. 2016;7:76577-76589 pubmed 出版商
  84. Subramaniam S, Ozdener M, Abdoul Azize S, Saito K, Malik B, Maquart G, et al. ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans. FASEB J. 2016;30:3489-3500 pubmed
  85. Barcus C, Keely P, Eliceiri K, Schuler L. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells. Oncotarget. 2016;7:48093-48106 pubmed 出版商
  86. Burger D, Turner M, Munkonda M, Touyz R. Endothelial Microparticle-Derived Reactive Oxygen Species: Role in Endothelial Signaling and Vascular Function. Oxid Med Cell Longev. 2016;2016:5047954 pubmed 出版商
  87. Jeong A, Han S, Lee S, Su Park J, Lu Y, Yu S, et al. Patient derived mutation W257G of PPP2R1A enhances cancer cell migration through SRC-JNK-c-Jun pathway. Sci Rep. 2016;6:27391 pubmed 出版商
  88. Barretta M, Spano D, D Ambrosio C, Cervigni R, Scaloni A, Corda D, et al. Aurora-A recruitment and centrosomal maturation are regulated by a Golgi-activated pool of Src during G2. Nat Commun. 2016;7:11727 pubmed 出版商
  89. DeRita R, Zerlanko B, Singh A, Lu H, Iozzo R, Benovic J, et al. c-Src, Insulin-Like Growth Factor I Receptor, G-Protein-Coupled Receptor Kinases and Focal Adhesion Kinase are Enriched Into Prostate Cancer Cell Exosomes. J Cell Biochem. 2017;118:66-73 pubmed 出版商
  90. Zheng J, Huang X, Tan W, Yu D, Du Z, Chang J, et al. Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat Genet. 2016;48:747-57 pubmed 出版商
  91. Cichon M, Moruzzi M, Shqau T, Miller E, Mehner C, Ethier S, et al. MYC Is a Crucial Mediator of TGF?-Induced Invasion in Basal Breast Cancer. Cancer Res. 2016;76:3520-30 pubmed 出版商
  92. Huang D, Zhao C, Ju R, Kumar A, Tian G, Huang L, et al. VEGF-B inhibits hyperglycemia- and Macugen-induced retinal apoptosis. Sci Rep. 2016;6:26059 pubmed 出版商
  93. Su L, Li X, Wu X, Hui B, Han S, Gao J, et al. Simultaneous deactivation of FAK and Src improves the pathology of hypertrophic scar. Sci Rep. 2016;6:26023 pubmed 出版商
  94. Perez M, Lucena Cacace A, Marín Gómez L, Padillo Ruiz J, Robles Frias M, Saez C, et al. Dasatinib, a Src inhibitor, sensitizes liver metastatic colorectal carcinoma to oxaliplatin in tumors with high levels of phospho-Src. Oncotarget. 2016;7:33111-24 pubmed 出版商
  95. Kii I, Sumida Y, Goto T, Sonamoto R, Okuno Y, Yoshida S, et al. Selective inhibition of the kinase DYRK1A by targeting its folding process. Nat Commun. 2016;7:11391 pubmed 出版商
  96. Wang X, Wang N, Li H, Liu M, Cao F, Yu X, et al. Up-Regulation of PAI-1 and Down-Regulation of uPA Are Involved in Suppression of Invasiveness and Motility of Hepatocellular Carcinoma Cells by a Natural Compound Berberine. Int J Mol Sci. 2016;17:577 pubmed 出版商
  97. Blas Rus N, Bustos Morán E, Perez de Castro I, de Carcer G, Borroto A, Camafeita E, et al. Aurora A drives early signalling and vesicle dynamics during T-cell activation. Nat Commun. 2016;7:11389 pubmed 出版商
  98. Rorsman C, Tsioumpekou M, Heldin C, Lennartsson J. The Ubiquitin Ligases c-Cbl and Cbl-b Negatively Regulate Platelet-derived Growth Factor (PDGF) BB-induced Chemotaxis by Affecting PDGF Receptor β (PDGFRβ) Internalization and Signaling. J Biol Chem. 2016;291:11608-18 pubmed 出版商
  99. Braley A, Kwak T, Jules J, Harja E, Landgraf R, Hudson B. Regulation of Receptor for Advanced Glycation End Products (RAGE) Ectodomain Shedding and Its Role in Cell Function. J Biol Chem. 2016;291:12057-73 pubmed 出版商
  100. Xiao J, Duan Q, Wang Z, Yan W, Sun H, Xue P, et al. Phosphorylation of TOPK at Y74, Y272 by Src increases the stability of TOPK and promotes tumorigenesis of colon. Oncotarget. 2016;7:24483-94 pubmed 出版商
  101. Roy J, Kim B, Hill E, Visconti P, Krapf D, Vinegoni C, et al. Tyrosine kinase-mediated axial motility of basal cells revealed by intravital imaging. Nat Commun. 2016;7:10666 pubmed 出版商
  102. West J, Carrier E, Bloodworth N, Schroer A, Chen P, Ryzhova L, et al. Serotonin 2B Receptor Antagonism Prevents Heritable Pulmonary Arterial Hypertension. PLoS ONE. 2016;11:e0148657 pubmed 出版商
  103. Weilinger N, Lohman A, Rakai B, Ma E, Bialecki J, Maslieieva V, et al. Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity. Nat Neurosci. 2016;19:432-42 pubmed 出版商
  104. Zhang J, Jiang Z, Bao C, Mei J, Zhu J. Cardiopulmonary bypass increases pulmonary microvascular permeability through the Src kinase pathway: Involvement of caveolin-1 and vascular endothelial cadherin. Mol Med Rep. 2016;13:2918-24 pubmed 出版商
  105. Horton E, Humphries J, Stutchbury B, Jacquemet G, Ballestrem C, Barry S, et al. Modulation of FAK and Src adhesion signaling occurs independently of adhesion complex composition. J Cell Biol. 2016;212:349-64 pubmed 出版商
  106. Levine B, Cagan R. Drosophila Lung Cancer Models Identify Trametinib plus Statin as Candidate Therapeutic. Cell Rep. 2016;14:1477-1487 pubmed 出版商
  107. Kourtidis A, Anastasiadis P. PLEKHA7 defines an apical junctional complex with cytoskeletal associations and miRNA-mediated growth implications. Cell Cycle. 2016;15:498-505 pubmed 出版商
  108. Wu X, Yang L, Zheng Z, Li Z, Shi J, Li Y, et al. Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway. Int J Mol Med. 2016;37:639-48 pubmed 出版商
  109. Couderc C, Boin A, Fuhrmann L, Vincent Salomon A, Mandati V, Kieffer Y, et al. AMOTL1 Promotes Breast Cancer Progression and Is Antagonized by Merlin. Neoplasia. 2016;18:10-24 pubmed 出版商
  110. Peng K, Tian X, Qian Y, Skibba M, Zou C, Liu Z, et al. Novel EGFR inhibitors attenuate cardiac hypertrophy induced by angiotensin II. J Cell Mol Med. 2016;20:482-94 pubmed 出版商
  111. Lee H, Kang J, Kim S, Ji S, Park S, Kim M, et al. Gene Silencing and Haploinsufficiency of Csk Increase Blood Pressure. PLoS ONE. 2016;11:e0146841 pubmed 出版商
  112. Clark D, Fondrie W, Yang A, Mao L. Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes. J Proteomics. 2016;133:161-169 pubmed 出版商
  113. da Silva P, Do Amaral V, Gabrielli V, Montt Guevara M, Mannella P, Baracat E, et al. Prolactin Promotes Breast Cancer Cell Migration through Actin Cytoskeleton Remodeling. Front Endocrinol (Lausanne). 2015;6:186 pubmed 出版商
  114. Cui H, Wang S, Miao J, Fu Z, Feng F, Wu J, et al. CD147 regulates cancer migration via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling. Oncotarget. 2016;7:5613-29 pubmed 出版商
  115. Paladino D, Yue P, Furuya H, Acoba J, Rosser C, Turkson J. A novel nuclear Src and p300 signaling axis controls migratory and invasive behavior in pancreatic cancer. Oncotarget. 2016;7:7253-67 pubmed 出版商
  116. Ortmann B, Bensaddek D, Carvalhal S, Moser S, Mudie S, Griffis E, et al. CDK-dependent phosphorylation of PHD1 on serine 130 alters its substrate preference in cells. J Cell Sci. 2016;129:191-205 pubmed 出版商
  117. Grindheim A, Hollås H, Raddum A, Saraste J, Vedeler A. Reactive oxygen species exert opposite effects on Tyr23 phosphorylation of the nuclear and cortical pools of annexin A2. J Cell Sci. 2016;129:314-28 pubmed 出版商
  118. De Mario A, Castellani A, Peggion C, Massimino M, Lim D, Hill A, et al. The prion protein constitutively controls neuronal store-operated Ca(2+) entry through Fyn kinase. Front Cell Neurosci. 2015;9:416 pubmed 出版商
  119. Yen Y, Hsiao J, Jiang S, Chang J, Wang S, Shen Y, et al. Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1. Oncotarget. 2015;6:41837-55 pubmed 出版商
  120. Nikonova A, Deneka A, Eckman L, Kopp M, Hensley H, Egleston B, et al. Opposing Effects of Inhibitors of Aurora-A and EGFR in Autosomal-Dominant Polycystic Kidney Disease. Front Oncol. 2015;5:228 pubmed 出版商
  121. Hoshino A, Costa Silva B, Shen T, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329-35 pubmed 出版商
  122. Kurozumi A, Goto Y, Matsushita R, Fukumoto I, Kato M, Nishikawa R, et al. Tumor-suppressive microRNA-223 inhibits cancer cell migration and invasion by targeting ITGA3/ITGB1 signaling in prostate cancer. Cancer Sci. 2016;107:84-94 pubmed 出版商
  123. Mello A, Leal M, Rey J, Pinto G, Lamarão L, Montenegro R, et al. Deregulated Expression of SRC, LYN and CKB Kinases by DNA Methylation and Its Potential Role in Gastric Cancer Invasiveness and Metastasis. PLoS ONE. 2015;10:e0140492 pubmed 出版商
  124. Fiore V, Strane P, Bryksin A, White E, Hagood J, Barker T. Conformational coupling of integrin and Thy-1 regulates Fyn priming and fibroblast mechanotransduction. J Cell Biol. 2015;211:173-90 pubmed 出版商
  125. Peckham H, Giuffrida L, Wood R, Gonsalvez D, Ferner A, Kilpatrick T, et al. Fyn is an intermediate kinase that BDNF utilizes to promote oligodendrocyte myelination. Glia. 2016;64:255-69 pubmed 出版商
  126. Gu Y, Li H, Zhao L, Zhao S, He W, Rui L, et al. GRP78 confers the resistance to 5-FU by activating the c-Src/LSF/TS axis in hepatocellular carcinoma. Oncotarget. 2015;6:33658-74 pubmed 出版商
  127. Zoppi N, Chiarelli N, Cinquina V, Ritelli M, Colombi M. GLUT10 deficiency leads to oxidative stress and non-canonical αvβ3 integrin-mediated TGFβ signalling associated with extracellular matrix disarray in arterial tortuosity syndrome skin fibroblasts. Hum Mol Genet. 2015;24:6769-87 pubmed 出版商
  128. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  129. Tang Y, Ye M, Du Y, Qiu X, Lv X, Yang W, et al. EGFR signaling upregulates surface expression of the GluN2B-containing NMDA receptor and contributes to long-term potentiation in the hippocampus. Neuroscience. 2015;304:109-21 pubmed 出版商
  130. Andersson L, Scharin Täng M, Lundqvist A, Lindbom M, Mardani I, Fogelstrand P, et al. Rip2 modifies VEGF-induced signalling and vascular permeability in myocardial ischaemia. Cardiovasc Res. 2015;107:478-86 pubmed 出版商
  131. Yang L, Li Y, Bhattacharya A, Zhang Y. Inhibition of ERBB2-overexpressing Tumors by Recombinant Human Prolidase and Its Enzymatically Inactive Mutant. EBioMedicine. 2015;2:396-405 pubmed
  132. Matsuoka H, Inoue M. Src mediates endocytosis of TWIK-related acid-sensitive K+ 1 channels in PC12 cells in response to nerve growth factor. Am J Physiol Cell Physiol. 2015;309:C251-63 pubmed 出版商
  133. Min H, Yun H, Lee J, Lee H, Cho J, Jang H, et al. Targeting the insulin-like growth factor receptor and Src signaling network for the treatment of non-small cell lung cancer. Mol Cancer. 2015;14:113 pubmed 出版商
  134. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  135. Chen P, Wu T, Cheng Y, Chen C, Lee H. NKX2-1-mediated p53 expression modulates lung adenocarcinoma progression via modulating IKKβ/NF-κB activation. Oncotarget. 2015;6:14274-89 pubmed
  136. Chien P, Lin C, Hsiao L, Yang C. c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction. Mol Cell Endocrinol. 2015;409:59-72 pubmed 出版商
  137. Fukumoto M, Kurisu S, Yamada T, Takenawa T. α-Actinin-4 enhances colorectal cancer cell invasion by suppressing focal adhesion maturation. PLoS ONE. 2015;10:e0120616 pubmed 出版商
  138. Carnesecchi J, Malbouyres M, de Mets R, Balland M, Beauchef G, Vié K, et al. Estrogens induce rapid cytoskeleton re-organization in human dermal fibroblasts via the non-classical receptor GPR30. PLoS ONE. 2015;10:e0120672 pubmed 出版商
  139. Spring K, Fournier P, Lapointe L, Chabot C, Roussy J, Pommey S, et al. The protein tyrosine phosphatase DEP-1/PTPRJ promotes breast cancer cell invasion and metastasis. Oncogene. 2015;34:5536-47 pubmed 出版商
  140. Choi C, Kim Y, Sohn J, Lee H, Kim W. Focal adhesion kinase and Src expression in premalignant and malignant skin lesions. Exp Dermatol. 2015;24:361-4 pubmed 出版商
  141. Tamilzhalagan S, Muthuswami M, Periasamy J, Lee M, Rha S, Tan P, et al. Upregulated, 7q21-22 amplicon candidate gene SHFM1 confers oncogenic advantage by suppressing p53 function in gastric cancer. Cell Signal. 2015;27:1075-86 pubmed 出版商
  142. Kwon H, Lee J, Jeong K, Jang D, Pak Y. Fatty acylated caveolin-2 is a substrate of insulin receptor tyrosine kinase for insulin receptor substrate-1-directed signaling activation. Biochim Biophys Acta. 2015;1853:1022-34 pubmed 出版商
  143. Kozlova N, Samoylenko A, Drobot L, Kietzmann T. Urokinase is a negative modulator of Egf-dependent proliferation and motility in the two breast cancer cell lines MCF-7 and MDA-MB-231. Mol Carcinog. 2016;55:170-81 pubmed 出版商
  144. Sheng L, Leshchyns ka I, Sytnyk V. Neural cell adhesion molecule 2 promotes the formation of filopodia and neurite branching by inducing submembrane increases in Ca2+ levels. J Neurosci. 2015;35:1739-52 pubmed 出版商
  145. Shaw A, Pickup M, Chytil A, Aakre M, Owens P, Moses H, et al. TGFβ signaling in myeloid cells regulates mammary carcinoma cell invasion through fibroblast interactions. PLoS ONE. 2015;10:e0117908 pubmed 出版商
  146. Cao H, Zheng L, Wang N, Wang L, Li Y, Li D, et al. Src blockage by siRNA inhibits VEGF-induced vascular hyperpemeability and osteoclast activity - an in vitro mechanism study for preventing destructive repair of osteonecrosis. Bone. 2015;74:58-68 pubmed 出版商
  147. Girotti M, Lopes F, Preece N, Niculescu Duvaz D, Zambon A, Davies L, et al. Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell. 2015;27:85-96 pubmed 出版商
  148. Ward J, Ha J, Jayaraman M, Dhanasekaran D. LPA-mediated migration of ovarian cancer cells involves translocalization of Gαi2 to invadopodia and association with Src and β-pix. Cancer Lett. 2015;356:382-91 pubmed 出版商
  149. Tang D, Yu Y, Zhao X, Schachner M, Zhao W. Single chain fragment variable antibodies developed by using as target the 3rd fibronectin type III homologous repeat fragment of human neural cell adhesion molecule L1 promote cell migration and neuritogenesis. Exp Cell Res. 2015;330:336-45 pubmed 出版商
  150. Wang S, Cui H, Liu Y, Zhao P, Zhang Y, Fu Z, et al. CD147 promotes Src-dependent activation of Rac1 signaling through STAT3/DOCK8 during the motility of hepatocellular carcinoma cells. Oncotarget. 2015;6:243-57 pubmed
  151. Hong Y, Kim J, Pectasides E, Fox C, Hong S, Ma Q, et al. Src mutation induces acquired lapatinib resistance in ERBB2-amplified human gastroesophageal adenocarcinoma models. PLoS ONE. 2014;9:e109440 pubmed 出版商
  152. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  153. McGinnis L, Pelech S, Kinsey W. Post-ovulatory aging of oocytes disrupts kinase signaling pathways and lysosome biogenesis. Mol Reprod Dev. 2014;81:928-45 pubmed 出版商
  154. Menhofer M, Bartel D, Liebl J, Kubisch R, Busse J, Wagner E, et al. In vitro and in vivo characterization of the actin polymerizing compound chondramide as an angiogenic inhibitor. Cardiovasc Res. 2014;104:303-14 pubmed 出版商
  155. Ghaffari A, Hoskin V, Szeto A, Hum M, Liaghati N, Nakatsu K, et al. A novel role for ezrin in breast cancer angio/lymphangiogenesis. Breast Cancer Res. 2014;16:438 pubmed 出版商
  156. Kupferman J, Basu J, Russo M, Guevarra J, Cheung S, Siegelbaum S. Reelin signaling specifies the molecular identity of the pyramidal neuron distal dendritic compartment. Cell. 2014;158:1335-1347 pubmed 出版商
  157. Guo W, Liu R, Bhardwaj G, Yang J, Changou C, Ma A, et al. Targeting Btk/Etk of prostate cancer cells by a novel dual inhibitor. Cell Death Dis. 2014;5:e1409 pubmed 出版商
  158. Lu G, Zhang Q, Huang Y, Song J, Tomaino R, Ehrenberger T, et al. Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor. Cancer Cell. 2014;26:222-34 pubmed 出版商
  159. Cunnick J, Kim S, Hadsell J, Collins S, Cerra C, Reiser P, et al. Actin filament-associated protein 1 is required for cSrc activity and secretory activation in the lactating mammary gland. Oncogene. 2015;34:2640-9 pubmed 出版商
  160. Brobeil A, Graf M, Eiber M, Wimmer M. Interaction of PTPIP51 with Tubulin, CGI-99 and Nuf2 During Cell Cycle Progression. Biomolecules. 2012;2:122-42 pubmed 出版商
  161. Yang N, Liu Y, Pan C, Sun K, Wei X, Mao X, et al. Pretreatment with andrographolide pills(®) attenuates lipopolysaccharide-induced pulmonary microcirculatory disturbance and acute lung injury in rats. Microcirculation. 2014;21:703-16 pubmed 出版商
  162. Shaiken T, Opekun A. Dissecting the cell to nucleus, perinucleus and cytosol. Sci Rep. 2014;4:4923 pubmed 出版商
  163. Flamini M, Gauna G, Sottile M, Nadin B, Sanchez A, Vargas Roig L. Retinoic acid reduces migration of human breast cancer cells: role of retinoic acid receptor beta. J Cell Mol Med. 2014;18:1113-23 pubmed 出版商
  164. Cypryk W, Ohman T, Eskelinen E, Matikainen S, Nyman T. Quantitative proteomics of extracellular vesicles released from human monocyte-derived macrophages upon ?-glucan stimulation. J Proteome Res. 2014;13:2468-77 pubmed 出版商
  165. Gable M, Abdallah S, Najjar S, Liu L, Askari A. Digitalis-induced cell signaling by the sodium pump: on the relation of Src to Na(+)/K(+)-ATPase. Biochem Biophys Res Commun. 2014;446:1151-4 pubmed 出版商
  166. Bouchekioua Bouzaghou K, Poulard C, Rambaud J, Lavergne E, Hussein N, Billaud M, et al. LKB1 when associated with methylatedER? is a marker of bad prognosis in breast cancer. Int J Cancer. 2014;135:1307-18 pubmed 出版商
  167. Cao M, Hou D, Liang H, Gong F, Wang Y, Yan X, et al. miR-150 promotes the proliferation and migration of lung cancer cells by targeting SRC kinase signalling inhibitor 1. Eur J Cancer. 2014;50:1013-24 pubmed 出版商
  168. Groenendyk J, Michalak M. Disrupted WNT signaling in mouse embryonic stem cells in the absence of calreticulin. Stem Cell Rev. 2014;10:191-206 pubmed 出版商
  169. Hou J, Xia Y, Jiang R, Chen D, Xu J, Deng L, et al. PTPRO plays a dual role in hepatic ischemia reperfusion injury through feedback activation of NF-?B. J Hepatol. 2014;60:306-12 pubmed 出版商
  170. Luo J, Xu T, Li C, Ba X, Wang X, Jiang Y, et al. p85-RhoGDI2, a novel complex, is required for PSGL-1-induced ?1 integrin-mediated lymphocyte adhesion to VCAM-1. Int J Biochem Cell Biol. 2013;45:2764-73 pubmed 出版商
  171. Yang W, Wang X, Duan C, Lu L, Yang H. Alpha-synuclein overexpression increases phospho-protein phosphatase 2A levels via formation of calmodulin/Src complex. Neurochem Int. 2013;63:180-94 pubmed 出版商
  172. Lee Y, Chung S, Baek I, Lee T, Paik S, Lee J. UNC119a bridges the transmission of Fyn signals to Rab11, leading to the completion of cytokinesis. Cell Cycle. 2013;12:1303-15 pubmed 出版商
  173. Fan C, Chen C, Chen K, Shen C, Kuo Y, Chen Y, et al. Blockade of phospholipid scramblase 1 with its N-terminal domain antibody reduces tumorigenesis of colorectal carcinomas in vitro and in vivo. J Transl Med. 2012;10:254 pubmed 出版商
  174. Tremper Wells B, Resnick R, Zheng X, Holsinger L, Shalloway D. Extracellular domain dependence of PTPalpha transforming activity. Genes Cells. 2010;15:711-724 pubmed 出版商
  175. Spulber S, Mateos L, Oprica M, Cedazo Minguez A, Bartfai T, Winblad B, et al. Impaired long term memory consolidation in transgenic mice overexpressing the human soluble form of IL-1ra in the brain. J Neuroimmunol. 2009;208:46-53 pubmed 出版商
  176. Waschbüsch D, Born S, Niediek V, Kirchgessner N, Tamboli I, Walter J, et al. Presenilin 1 affects focal adhesion site formation and cell force generation via c-Src transcriptional and posttranslational regulation. J Biol Chem. 2009;284:10138-49 pubmed 出版商
  177. Hu X, Dang Y, Tenney K, Crews P, Tsai C, Sixt K, et al. Regulation of c-Src nonreceptor tyrosine kinase activity by bengamide A through inhibition of methionine aminopeptidases. Chem Biol. 2007;14:764-74 pubmed
  178. Honda K, Sakaguchi T, Sakai K, Schmedt C, Ramirez A, Jorcano J, et al. Epidermal hyperplasia and papillomatosis in mice with a keratinocyte-restricted deletion of csk. Carcinogenesis. 2007;28:2074-81 pubmed
  179. Sharma D, Kinsey W. Fertilization triggers localized activation of Src-family protein kinases in the zebrafish egg. Dev Biol. 2006;295:604-14 pubmed