这是一篇来自已证抗体库的有关人类 T的综述,是根据25篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合T 抗体。
T 同义词: SAVA; TFT; brachyury protein; T, brachyury homolog; protein T

安迪生物R&D
山羊 多克隆
  • 免疫组化-F; 猪; 1:300; 图s5a
安迪生物R&D T抗体(R&D Systems, AF2085)被用于免疫组化-冰冻切片在猪样品上浓度为1:300 (图s5a). Nature (2017) ncbi
山羊 多克隆
  • 细胞化学; 小鼠; 图6
安迪生物R&D T抗体(R&D Systems, AF2085)被用于免疫细胞化学在小鼠样品上 (图6). Acta Biomater (2017) ncbi
山羊 多克隆
  • 细胞化学; 人类; 1:100; 表1
安迪生物R&D T抗体(R&D Systems, AF2085)被用于免疫细胞化学在人类样品上浓度为1:100 (表1). Methods Mol Biol (2016) ncbi
山羊 多克隆
  • 免疫组化-P; 小鼠; 1:200; 图3a
安迪生物R&D T抗体(R&D Systems, AF2085)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图3a). PLoS ONE (2016) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1 ug/ml; 图3b
安迪生物R&D T抗体(R&D, AF2085)被用于免疫组化在小鼠样品上浓度为1 ug/ml (图3b). elife (2016) ncbi
山羊 多克隆
  • 免疫印迹; 人类; 1:500; 图1
  • 细胞化学; 人类; 1:500; 图2
安迪生物R&D T抗体(R&D systems, AF2085)被用于免疫印迹在人类样品上浓度为1:500 (图1) 和 免疫细胞化学在人类样品上浓度为1:500 (图2). Heliyon (2015) ncbi
山羊 多克隆
  • FC; 人类; 1:20; 图1
安迪生物R&D T抗体(R&D Systems, IC2085P)被用于流式细胞仪在人类样品上浓度为1:20 (图1). Heliyon (2015) ncbi
山羊 多克隆
  • 细胞化学; 人类; 图4
安迪生物R&D T抗体(R&D systems, AF2085)被用于免疫细胞化学在人类样品上 (图4). Stem Cell Reports (2015) ncbi
山羊 多克隆
  • 免疫印迹; 人类; 图1d
  • 细胞化学; 人类; 1:50; 图1f
安迪生物R&D T抗体(R&D systems, AF2085)被用于免疫印迹在人类样品上 (图1d) 和 免疫细胞化学在人类样品上浓度为1:50 (图1f). Nat Commun (2015) ncbi
山羊 多克隆
  • 细胞化学; 人类; 1:300; 图5
  • 细胞化学; 小鼠; 1:300; 图2
安迪生物R&D T抗体(R&D, AF2085)被用于免疫细胞化学在人类样品上浓度为1:300 (图5) 和 在小鼠样品上浓度为1:300 (图2). Nature (2015) ncbi
山羊 多克隆
  • 细胞化学; 人类; 1:50; 图s6
安迪生物R&D T抗体(R&D, AF2085)被用于免疫细胞化学在人类样品上浓度为1:50 (图s6). BMC Genomics (2015) ncbi
山羊 多克隆
  • 细胞化学; 人类
安迪生物R&D T抗体(R&D systems, AF2085)被用于免疫细胞化学在人类样品上. Biomaterials (2015) ncbi
山羊 多克隆
  • 细胞化学; 人类; 1:100
安迪生物R&D T抗体(R&D, AF2085)被用于免疫细胞化学在人类样品上浓度为1:100. Stem Cells (2015) ncbi
山羊 多克隆
  • 免疫组化-F; 人类; 1:500; 图4a
安迪生物R&D T抗体(R&D, AF2085)被用于免疫组化-冰冻切片在人类样品上浓度为1:500 (图4a). Cell (2015) ncbi
山羊 多克隆
  • 免疫组化; 小鼠
安迪生物R&D T抗体(R&D, AF2085)被用于免疫组化在小鼠样品上. PLoS ONE (2014) ncbi
山羊 多克隆
  • 细胞化学; 小鼠; 1:100; 图2f
安迪生物R&D T抗体(R&D, AF2085)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图2f). Stem Cell Reports (2013) ncbi
艾博抗(上海)贸易有限公司
兔 多克隆
  • 免疫印迹; 小鼠; 图6
艾博抗(上海)贸易有限公司 T抗体(Abcam, ab20680)被用于免疫印迹在小鼠样品上 (图6). PLoS ONE (2016) ncbi
兔 多克隆
  • FC; 小鼠; 1:50; 图1
艾博抗(上海)贸易有限公司 T抗体(Abcam, ab20680)被用于流式细胞仪在小鼠样品上浓度为1:50 (图1). Cell Reprogram (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 图6
艾博抗(上海)贸易有限公司 T抗体(Abcam, ab20680)被用于免疫组化-石蜡切片在人类样品上 (图6). J Orthop Res (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:200; 图2
艾博抗(上海)贸易有限公司 T抗体(Abcam, ab20680)被用于免疫细胞化学在人类样品上浓度为1:200 (图2). Nat Commun (2016) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:100; 图1
艾博抗(上海)贸易有限公司 T抗体(Abcam, ab20680)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图1). Stem Cell Reports (2015) ncbi
兔 多克隆
  • 细胞化学; African green monkey; 1:100; 图1d
  • 细胞化学; 人类; 1:100; 图1i
艾博抗(上海)贸易有限公司 T抗体(Abcam, ab20680)被用于免疫细胞化学在African green monkey样品上浓度为1:100 (图1d) 和 在人类样品上浓度为1:100 (图1i). Stem Cell Res Ther (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:200
艾博抗(上海)贸易有限公司 T抗体(Abcam, ab20680)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200. Cell Reprogram (2013) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司 T抗体(Abcam, ab20680)被用于免疫细胞化学在人类样品上浓度为1:100. J Biol Chem (2013) ncbi
兔 多克隆
  • 细胞化学; 人类
艾博抗(上海)贸易有限公司 T抗体(Abcam, ab20680)被用于免疫细胞化学在人类样品上. J Biosci Bioeng (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-10)
  • 细胞化学; 人类
圣克鲁斯生物技术 T抗体(Santa Cruz, sc-166962)被用于免疫细胞化学在人类样品上. Biomaterials (2014) ncbi
文章列表
  1. Toshihiro Kobayashi et al. (2017). "Principles of early human development and germ cell program from conserved model systems".PMID 28607482
  2. Jiayin Fu et al. (2017). "Real-time and non-invasive monitoring of embryonic stem cell survival during the development of embryoid bodies with smart nanosensor".PMID 27845273
  3. Xiaoping Bao et al. (2016). "Directed Endothelial Progenitor Differentiation from Human Pluripotent Stem Cells Via Wnt Activation Under Defined Conditions".PMID 27590162
  4. Le Tran Phuc Khoa et al. (2016). "Visualization of the Epiblast and Visceral Endodermal Cells Using Fgf5-P2A-Venus BAC Transgenic Mice and Epiblast Stem Cells".PMID 27409080
  5. Jana Kudová et al. (2016). "HIF-1alpha Deficiency Attenuates the Cardiomyogenesis of Mouse Embryonic Stem Cells".PMID 27355368
  6. Yasumasa Shirouzu et al. (2016). "Effects of Activin in Embryoid Bodies Expressing Fibroblast Growth Factor 5".PMID 27253628
  7. Ricardo Rodrigues-Pinto et al. (2016). "Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord-specific markers during early human intervertebral disc development".PMID 26910849
  8. Filip J Wymeersch et al. (2016). "Position-dependent plasticity of distinct progenitor types in the primitive streak".PMID 26780186
  9. Patrick Guye et al. (2016). "Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6".PMID 26732624
  10. Yijie Geng et al. (2015). "Mesendogen, a novel inhibitor of TRPM6, promotes mesoderm and definitive endoderm differentiation of human embryonic stem cells through alteration of magnesium homeostasis".PMID 26705539
  11. Chukwuma A Agu et al. (2015). "Successful Generation of Human Induced Pluripotent Stem Cell Lines from Blood Samples Held at Room Temperature for up to 48 hr".PMID 26388286
  12. Tui Neri et al. (2015). "Targeted Gene Correction in Osteopetrotic-Induced Pluripotent Stem Cells for the Generation of Functional Osteoclasts".PMID 26344905
  13. Olena Pogozhykh et al. (2015). "Molecular and cellular characteristics of human and non-human primate multipotent stromal cells from the amnion and bone marrow during long term culture".PMID 26297012
  14. Jason S L Yu et al. (2015). "PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation".PMID 25998442
  15. Jun Wu et al. (2015). "An alternative pluripotent state confers interspecies chimaeric competency".PMID 25945737
  16. Amir M Hossini et al. (2015). "Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks".PMID 25765079
  17. Yi Chin Toh et al. (2015). "Modulation of integrin and E-cadherin-mediated adhesions to spatially control heterogeneity in human pluripotent stem cell differentiation".PMID 25736499
  18. Miao Zhang et al. (2015). "Universal cardiac induction of human pluripotent stem cells in two and three-dimensional formats: implications for in vitro maturation".PMID 25639979
  19. Naoko Irie et al. (2015). "SOX17 is a critical specifier of human primordial germ cell fate".PMID 25543152
  20. Tamara Winkler et al. (2014). "Wnt signaling activates Shh signaling in early postnatal intervertebral discs, and re-activates Shh signaling in old discs in the mouse".PMID 24892825
  21. Marina V Pryzhkova et al. (2014). "Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate".PMID 24690530
  22. Clair E Weidgang et al. (2013). "TBX3 Directs Cell-Fate Decision toward Mesendoderm".PMID 24319661
  23. Sasitorn Rungarunlert et al. (2013). "Slow turning lateral vessel bioreactor improves embryoid body formation and cardiogenic differentiation of mouse embryonic stem cells".PMID 24020697
  24. Masayo Sakaki-Yumoto et al. (2013). "Smad2 is essential for maintenance of the human and mouse primed pluripotent stem cell state".PMID 23649632
  25. Rajarshi Pal et al. (2013). "Comparative analysis of cardiomyocyte differentiation from human embryonic stem cells under 3-D and 2-D culture conditions".PMID 23040993