这是一篇来自已证抗体库的有关人类 T大脑1 (T brain 1) 的综述,是根据65篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合T大脑1 抗体。
T大脑1 同义词: IDDAS; TBR-1; TES-56

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 3c
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3c). Front Cell Dev Biol (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 s1f
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, AB31940)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 s1f). iScience (2022) ncbi
domestic rabbit 单克隆(EPR8138(2))
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 3h
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab183032)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 3h). Cell Rep (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 人类; 1:1000; 图 4d
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, Ab31940)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:1000 (图 4d). Front Neuroanat (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300; 图 s1-6a
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 s1-6a). elife (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 s1g
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, Ab31940)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s1g). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 7a
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫细胞化学在人类样本上 (图 7a). Methods Protoc (2021) ncbi
domestic rabbit 单克隆(EPR8138(2))
  • 免疫组化; 小鼠; 1:400; 图 3c
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab183032)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3c). Development (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2a
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a). Development (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:250; 图 s6
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:250 (图 s6). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a, 1c
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1a, 1c). Front Neuroanat (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4e
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4e). Front Immunol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2f
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化在小鼠样本上 (图 2f). Genes Dev (2021) ncbi
domestic rabbit 单克隆(EPR8138(2))
  • 免疫细胞化学; 人类; 1:200; 图 4d
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab183032)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4d). Nat Neurosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:800; 图 3j
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 3j). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 1i
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 1i). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:5000; 图 3f
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:5000 (图 3f). Front Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 7s1a
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7s1a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2c
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2c). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3e
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化在小鼠样本上 (图 3e). Sci Rep (2020) ncbi
domestic rabbit 单克隆(EPR8138(2))
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2e
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab183032)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2e). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 s18b
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化在人类样本上浓度为1:500 (图 s18b). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:400; 图 6b
艾博抗(上海)贸易有限公司T大脑1抗体(AbCam, AB31940)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:400 (图 6b). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:400; 图 s1g
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:400 (图 s1g). Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6e
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6e). Nat Commun (2020) ncbi
domestic rabbit 单克隆(EPR8138(2))
  • 免疫组化-冰冻切片; 小鼠; 图 1c
艾博抗(上海)贸易有限公司T大脑1抗体(abcam, ab183032)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c). Neuron (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5d
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5d). Development (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:320; 图 1d
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, 31940)被用于被用于免疫组化在小鼠样本上浓度为1:320 (图 1d). PLoS ONE (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s4c
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫细胞化学在人类样本上 (图 s4c). Genome Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:500; 图 ex2d
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, AB31940)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 ex2d). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 1a1
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 1a1). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1c
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1c). Cell Death Differ (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s4a
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s4a). Front Mol Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 s1b
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化在人类样本上浓度为1:500 (图 s1b). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 s17
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s17). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:800; 图 2m
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800 (图 2m). Development (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4b
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4b). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1a
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1a). Front Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2a
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化在小鼠样本上 (图 2a). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 2c
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2c). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 e7i
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 e7i). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 6b
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6b). Eneuro (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 1e
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1e). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s1i
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, AB31940)被用于被用于免疫组化在小鼠样本上 (图 s1i). Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 s5o
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, AB31940)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s5o). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 4a). Neuron (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3f
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3f). Mol Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1e
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1e). J Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5). Genes (Basel) (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:150; 图 s4a
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化在小鼠样本上浓度为1:150 (图 s4a). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司T大脑1抗体(abcam, ab31940)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s1m
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, AB31940)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s1m). Front Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 2d
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 5
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 2
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, 31940)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 表 2
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, AB31940)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (表 2). Methods Mol Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 6
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 3g
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 3g). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s1
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 7
  • 免疫组化; 小鼠; 1:300
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 7) 和 被用于免疫组化在小鼠样本上浓度为1:300. Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 3
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫组化在大鼠样本上 (图 3). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5
艾博抗(上海)贸易有限公司T大脑1抗体(Abcam, ab31940)被用于被用于免疫细胞化学在人类样本上 (图 5). J Neurosci (2016) ncbi
文章列表
  1. Natalwala A, Behbehani R, Yapom R, Kunath T. An Isogenic Collection of Pluripotent Stem Cell Lines With Elevated α-Synuclein Expression Validated for Neural Induction and Cortical Neuron Differentiation. Front Cell Dev Biol. 2022;10:898560 pubmed 出版商
  2. Dentel B, Angeles Perez L, Ren C, Jakkamsetti V, Holley A, Caballero D, et al. Increased glycine contributes to synaptic dysfunction and early mortality in Nprl2 seizure model. iScience. 2022;25:104334 pubmed 出版商
  3. Schr xf6 tter S, Yuskaitis C, MacArthur M, Mitchell S, Hosios A, Osipovich M, et al. The non-essential TSC complex component TBC1D7 restricts tissue mTORC1 signaling and brain and neuron growth. Cell Rep. 2022;39:110824 pubmed 出版商
  4. Coviello S, Gramuntell Y, Klimczak P, Varea E, Blasco Iba xf1 ez J, Crespo C, et al. Phenotype and Distribution of Immature Neurons in the Human Cerebral Cortex Layer II. Front Neuroanat. 2022;16:851432 pubmed 出版商
  5. Harb K, Richter M, Neelagandan N, Magrinelli E, Harfoush H, Kuechler K, et al. Pum2 and TDP-43 refine area-specific cytoarchitecture post-mitotically and modulate translation of Sox5, Bcl11b, and Rorb mRNAs in developing mouse neocortex. elife. 2022;11: pubmed 出版商
  6. de Jong J, Llapashtica C, Genestine M, Strauss K, Provenzano F, Sun Y, et al. Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated autism spectrum disorder. Nat Commun. 2021;12:4087 pubmed 出版商
  7. Chen C, Abdian N, Maussion G, Thomas R, Demirova I, Cai E, et al. A Multistep Workflow to Evaluate Newly Generated iPSCs and Their Ability to Generate Different Cell Types. Methods Protoc. 2021;4: pubmed 出版商
  8. Ichinose M, Suzuki N, Wang T, Kobayashi H, Vrbanac L, Ng J, et al. The BMP antagonist gremlin 1 contributes to the development of cortical excitatory neurons, motor balance and fear responses. Development. 2021;148: pubmed 出版商
  9. Wittmann M, Katada S, Sock E, Kirchner P, Ekici A, Wegner M, et al. scRNA sequencing uncovers a TCF4-dependent transcription factor network regulating commissure development in mouse. Development. 2021;148: pubmed 出版商
  10. Park J, Kam T, Lee S, Park H, Oh Y, Kwon S, et al. Blocking microglial activation of reactive astrocytes is neuroprotective in models of Alzheimer's disease. Acta Neuropathol Commun. 2021;9:78 pubmed 出版商
  11. Kement D, Reumann R, Schostak K, Vo xdf H, Douceau S, Dottermusch M, et al. Neuroserpin Is Strongly Expressed in the Developing and Adult Mouse Neocortex but Its Absence Does Not Perturb Cortical Lamination and Synaptic Proteome. Front Neuroanat. 2021;15:627896 pubmed 出版商
  12. Pozo Rodrig xe1 lvarez A, Ollaranta R, Skoog J, Pekny M, Pekna M. Hyperactive Behavior and Altered Brain Morphology in Adult Complement C3a Receptor Deficient Mice. Front Immunol. 2021;12:604812 pubmed 出版商
  13. Braun S, Petrova R, Tang J, Krokhotin A, Miller E, Tang Y, et al. BAF subunit switching regulates chromatin accessibility to control cell cycle exit in the developing mammalian cortex. Genes Dev. 2021;35:335-353 pubmed 出版商
  14. GUTTIKONDA S, Sikkema L, Tchieu J, Saurat N, Walsh R, Harschnitz O, et al. Fully defined human pluripotent stem cell-derived microglia and tri-culture system model C3 production in Alzheimer's disease. Nat Neurosci. 2021;24:343-354 pubmed 出版商
  15. Atkins A, Xu M, Li M, Rogers N, Pryzhkova M, Jordan P. SMC5/6 is required for replication fork stability and faithful chromosome segregation during neurogenesis. elife. 2020;9: pubmed 出版商
  16. Hasenpusch Theil K, Laclef C, Colligan M, Fitzgerald E, Howe K, Carroll E, et al. A transient role of the ciliary gene Inpp5e in controlling direct versus indirect neurogenesis in cortical development. elife. 2020;9: pubmed 出版商
  17. Iacomino M, Baldassari S, Tochigi Y, Kosla K, Buffelli F, Torella A, et al. Loss of Wwox Perturbs Neuronal Migration and Impairs Early Cortical Development. Front Neurosci. 2020;14:644 pubmed 出版商
  18. Guven A, Kalebic N, Long K, Florio M, Vaid S, Brandl H, et al. Extracellular matrix-inducing Sox9 promotes both basal progenitor proliferation and gliogenesis in developing neocortex. elife. 2020;9: pubmed 出版商
  19. Mukhtar T, Breda J, Grison A, Karimaddini Z, Grobecker P, Iber D, et al. Tead transcription factors differentially regulate cortical development. Sci Rep. 2020;10:4625 pubmed 出版商
  20. Okugawa E, Ogino H, Shigenobu T, Yamakage Y, Tsuiji H, Oishi H, et al. Physiological significance of proteolytic processing of Reelin revealed by cleavage-resistant Reelin knock-in mice. Sci Rep. 2020;10:4471 pubmed 出版商
  21. Wakhloo D, Scharkowski F, Curto Y, Javed Butt U, Bansal V, Steixner Kumar A, et al. Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin. Nat Commun. 2020;11:1313 pubmed 出版商
  22. Kielkowski P, Buchsbaum I, Kirsch V, Bach N, Drukker M, Cappello S, et al. FICD activity and AMPylation remodelling modulate human neurogenesis. Nat Commun. 2020;11:517 pubmed 出版商
  23. Marin Navarro A, Pronk R, van der Geest A, Oliynyk G, Nordgren A, Arsenian Henriksson M, et al. p53 controls genomic stability and temporal differentiation of human neural stem cells and affects neural organization in human brain organoids. Cell Death Dis. 2020;11:52 pubmed 出版商
  24. Trevino A, Sinnott Armstrong N, Andersen J, Yoon S, Huber N, Pritchard J, et al. Chromatin accessibility dynamics in a model of human forebrain development. Science. 2020;367: pubmed 出版商
  25. Laukoter S, Beattie R, Pauler F, Amberg N, Nakayama K, Hippenmeyer S. Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development. Nat Commun. 2020;11:195 pubmed 出版商
  26. Linaro D, Vermaercke B, Iwata R, Ramaswamy A, Libé Philippot B, Boubakar L, et al. Xenotransplanted Human Cortical Neurons Reveal Species-Specific Development and Functional Integration into Mouse Visual Circuits. Neuron. 2019;104:972-986.e6 pubmed 出版商
  27. Meier S, Alfonsi F, Kurniawan N, Milne M, Kasherman M, Delogu A, et al. The p75 neurotrophin receptor is required for the survival of neuronal progenitors and normal formation of the basal forebrain, striatum, thalamus and neocortex. Development. 2019;146: pubmed 出版商
  28. Jin J, Ravindran P, Di Meo D, Püschel A. Igf1R/InsR function is required for axon extension and corpus callosum formation. PLoS ONE. 2019;14:e0219362 pubmed 出版商
  29. Wegmann R, Neri M, Schuierer S, Bilican B, Hartkopf H, Nigsch F, et al. CellSIUS provides sensitive and specific detection of rare cell populations from complex single-cell RNA-seq data. Genome Biol. 2019;20:142 pubmed 出版商
  30. Velasco S, Kedaigle A, Simmons S, Nash A, Rocha M, Quadrato G, et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature. 2019;: pubmed 出版商
  31. Nguyen U, Imamura F. Regional differences in mitral cell development in mouse olfactory bulb. J Comp Neurol. 2019;: pubmed 出版商
  32. Liu J, Liu Y, Shao J, Li Y, Qin L, Shen H, et al. Zeb1 is important for proper cleavage plane orientation of dividing progenitors and neuronal migration in the mouse neocortex. Cell Death Differ. 2019;: pubmed 出版商
  33. Upadhyay A, Hosseinibarkooie S, Schneider S, Kaczmarek A, Torres Benito L, Mendoza Ferreira N, et al. Neurocalcin Delta Knockout Impairs Adult Neurogenesis Whereas Half Reduction Is Not Pathological. Front Mol Neurosci. 2019;12:19 pubmed 出版商
  34. Pollen A, Bhaduri A, Andrews M, Nowakowski T, Meyerson O, Mostajo Radji M, et al. Establishing Cerebral Organoids as Models of Human-Specific Brain Evolution. Cell. 2019;176:743-756.e17 pubmed 出版商
  35. Real R, Peter M, Trabalza A, Khan S, Smith M, Dopp J, et al. In vivo modeling of human neuron dynamics and Down syndrome. Science. 2018;362: pubmed 出版商
  36. Han S, Dennis D, Balakrishnan A, Dixit R, Britz O, Zinyk D, et al. A non-canonical role for the proneural gene Neurog1 as a negative regulator of neocortical neurogenesis. Development. 2018;145: pubmed 出版商
  37. Segarra M, Aburto M, Cop F, Llaó Cid C, Härtl R, Damm M, et al. Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system. Science. 2018;361: pubmed 出版商
  38. Robbins J, Perfect L, Ribe E, Maresca M, Dangla Valls A, Foster E, et al. Clusterin Is Required for β-Amyloid Toxicity in Human iPSC-Derived Neurons. Front Neurosci. 2018;12:504 pubmed 出版商
  39. Wang B, Joo J, Mount R, Teubner B, Krenzer A, Ward A, et al. The COPII cargo adapter SEC24C is essential for neuronal homeostasis. J Clin Invest. 2018;128:3319-3332 pubmed 出版商
  40. Birger A, Ottolenghi M, Perez L, Reubinoff B, Behar O. ALS-related human cortical and motor neurons survival is differentially affected by Sema3A. Cell Death Dis. 2018;9:256 pubmed 出版商
  41. Escamilla C, Filonova I, Walker A, Xuan Z, Holehonnur R, Espinosa F, et al. Kctd13 deletion reduces synaptic transmission via increased RhoA. Nature. 2017;551:227-231 pubmed 出版商
  42. Tseng K, Danilova T, Domanskyi A, Saarma M, Lindahl M, Airavaara M. MANF Is Essential for Neurite Extension and Neuronal Migration in the Developing Cortex. Eneuro. 2017;4: pubmed 出版商
  43. Young F, Keruzore M, Nan X, Gennet N, Bellefroid E, Li M. The doublesex-related Dmrta2 safeguards neural progenitor maintenance involving transcriptional regulation of Hes1. Proc Natl Acad Sci U S A. 2017;114:E5599-E5607 pubmed 出版商
  44. del Toro D, Ruff T, Cederfjäll E, Villalba A, Seyit Bremer G, Borrell V, et al. Regulation of Cerebral Cortex Folding by Controlling Neuronal Migration via FLRT Adhesion Molecules. Cell. 2017;169:621-635.e16 pubmed 出版商
  45. Birey F, Andersen J, Makinson C, Islam S, Wei W, Huber N, et al. Assembly of functionally integrated human forebrain spheroids. Nature. 2017;545:54-59 pubmed 出版商
  46. Subashini C, Dhanesh S, Chen C, Riya P, Meera V, Divya T, et al. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep. 2017;7:42523 pubmed 出版商
  47. Fu H, Rodriguez G, Herman M, Emrani S, Nahmani E, Barrett G, et al. Tau Pathology Induces Excitatory Neuron Loss, Grid Cell Dysfunction, and Spatial Memory Deficits Reminiscent of Early Alzheimer's Disease. Neuron. 2017;93:533-541.e5 pubmed 出版商
  48. Yamauchi T, Nishiyama M, Moroishi T, Kawamura A, Nakayama K. FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Mol Cell Biol. 2017;37: pubmed 出版商
  49. Muralidharan B, Khatri Z, Maheshwari U, Gupta R, Roy B, Pradhan S, et al. LHX2 Interacts with the NuRD Complex and Regulates Cortical Neuron Subtype Determinants Fezf2 and Sox11. J Neurosci. 2017;37:194-203 pubmed 出版商
  50. Hu H, Liu Y, Bampoe K, He Y, Yu M. Postnatal Gene Therapy Improves Spatial Learning Despite the Presence of Neuronal Ectopia in a Model of Neuronal Migration Disorder. Genes (Basel). 2016;7: pubmed
  51. Lian G, Dettenhofer M, Lu J, Downing M, Chenn A, Wong T, et al. Filamin A- and formin 2-dependent endocytosis regulates proliferation via the canonical Wnt pathway. Development. 2016;143:4509-4520 pubmed
  52. Doobin D, Kemal S, Dantas T, Vallee R. Severe NDE1-mediated microcephaly results from neural progenitor cell cycle arrests at multiple specific stages. Nat Commun. 2016;7:12551 pubmed 出版商
  53. Zhang H, Kang E, Wang Y, Yang C, Yu H, Wang Q, et al. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun. 2016;7: pubmed 出版商
  54. Figueres Oñate M, López Mascaraque L. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors. Front Neurosci. 2016;10:194 pubmed 出版商
  55. Itoh Y, Higuchi M, Oishi K, Kishi Y, Okazaki T, Sakai H, et al. PDK1-Akt pathway regulates radial neuronal migration and microtubules in the developing mouse neocortex. Proc Natl Acad Sci U S A. 2016;113:E2955-64 pubmed 出版商
  56. Chen P, Hsiao J, Sirois C, Chamberlain S. RBFOX1 and RBFOX2 are dispensable in iPSCs and iPSC-derived neurons and do not contribute to neural-specific paternal UBE3A silencing. Sci Rep. 2016;6:25368 pubmed 出版商
  57. Shah B, Lutter D, Bochenek M, Kato K, Tsytsyura Y, Glyvuk N, et al. C3G/Rapgef1 Is Required in Multipolar Neurons for the Transition to a Bipolar Morphology during Cortical Development. PLoS ONE. 2016;11:e0154174 pubmed 出版商
  58. Cutts J, Brookhouser N, Brafman D. Generation of Regionally Specific Neural Progenitor Cells (NPCs) and Neurons from Human Pluripotent Stem Cells (hPSCs). Methods Mol Biol. 2016;1516:121-144 pubmed 出版商
  59. Okamoto M, Miyata T, Konno D, Ueda H, Kasukawa T, Hashimoto M, et al. Cell-cycle-independent transitions in temporal identity of mammalian neural progenitor cells. Nat Commun. 2016;7:11349 pubmed 出版商
  60. Nagao M, Ogata T, Sawada Y, Gotoh Y. Zbtb20 promotes astrocytogenesis during neocortical development. Nat Commun. 2016;7:11102 pubmed 出版商
  61. Wang W, Jossin Y, Chai G, Lien W, Tissir F, Goffinet A. Feedback regulation of apical progenitor fate by immature neurons through Wnt7-Celsr3-Fzd3 signalling. Nat Commun. 2016;7:10936 pubmed 出版商
  62. Wu X, Fleming A, Ricketts T, Pavel M, Virgin H, Menzies F, et al. Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat Commun. 2016;7:10533 pubmed 出版商
  63. Wang Y, Wu Q, Yang P, Wang C, Liu J, Ding W, et al. LSD1 co-repressor Rcor2 orchestrates neurogenesis in the developing mouse brain. Nat Commun. 2016;7:10481 pubmed 出版商
  64. Carabalona A, Hu D, Vallee R. KIF1A inhibition immortalizes brain stem cells but blocks BDNF-mediated neuronal migration. Nat Neurosci. 2016;19:253-62 pubmed 出版商
  65. Rooney G, Goodwin A, Depeille P, Sharir A, Schofield C, Yeh E, et al. Human iPS Cell-Derived Neurons Uncover the Impact of Increased Ras Signaling in Costello Syndrome. J Neurosci. 2016;36:142-52 pubmed 出版商