这是一篇来自已证抗体库的有关人类 TBXT的综述,是根据28篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合TBXT 抗体。
TBXT 同义词: SAVA; TFT; brachyury protein; T brachyury transcription factor; T, brachyury homolog; protein T

安迪生物R&D
山羊 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 1d
安迪生物R&D TBXT抗体(Thermo Fisher, AF2085)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 1d). Proc Natl Acad Sci U S A (2019) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 1h
安迪生物R&D TBXT抗体(R&D Systems, AF2085)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1h). Stem Cell Res (2018) ncbi
山羊 多克隆
  • 免疫组化-冰冻切片; 猪; 1:300; 图 s5a
安迪生物R&D TBXT抗体(R&D Systems, AF2085)被用于被用于免疫组化-冰冻切片在猪样本上浓度为1:300 (图 s5a). Nature (2017) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 s1c
安迪生物R&D TBXT抗体(R&D Systems, AF2085)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1c). Nat Cell Biol (2017) ncbi
山羊 多克隆
  • 免疫细胞化学; 小鼠; 图 6
安迪生物R&D TBXT抗体(R&D Systems, AF2085)被用于被用于免疫细胞化学在小鼠样本上 (图 6). Acta Biomater (2017) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:100; 表 1
安迪生物R&D TBXT抗体(R&D Systems, AF2085)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 1). Methods Mol Biol (2016) ncbi
山羊 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3a
安迪生物R&D TBXT抗体(R&D Systems, AF2085)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3a). PLoS ONE (2016) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1 ug/ml; 图 3b
安迪生物R&D TBXT抗体(R&D, AF2085)被用于被用于免疫组化在小鼠样本上浓度为1 ug/ml (图 3b). elife (2016) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 2
  • 免疫印迹; 人类; 1:500; 图 1
安迪生物R&D TBXT抗体(R&D systems, AF2085)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1). Heliyon (2015) ncbi
山羊 多克隆
  • 流式细胞仪; 人类; 1:20; 图 1
安迪生物R&D TBXT抗体(R&D Systems, IC2085P)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 1). Heliyon (2015) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 图 4
安迪生物R&D TBXT抗体(R&D systems, AF2085)被用于被用于免疫细胞化学在人类样本上 (图 4). Stem Cell Reports (2015) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 1f
  • 免疫印迹; 人类; 图 1d
安迪生物R&D TBXT抗体(R&D systems, AF2085)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1f) 和 被用于免疫印迹在人类样本上 (图 1d). Nat Commun (2015) ncbi
山羊 多克隆
  • 免疫细胞化学; 小鼠; 1:300; 图 2
  • 免疫细胞化学; 人类; 1:300; 图 5
安迪生物R&D TBXT抗体(R&D, AF2085)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 2) 和 被用于免疫细胞化学在人类样本上浓度为1:300 (图 5). Nature (2015) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 s6
安迪生物R&D TBXT抗体(R&D, AF2085)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s6). BMC Genomics (2015) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类
安迪生物R&D TBXT抗体(R&D systems, AF2085)被用于被用于免疫细胞化学在人类样本上. Biomaterials (2015) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 4
安迪生物R&D TBXT抗体(R&D, AF2085)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Stem Cells (2015) ncbi
山羊 多克隆
  • 免疫组化-冰冻切片; 人类; 1:500; 图 4a
安迪生物R&D TBXT抗体(R&D, AF2085)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 4a). Cell (2015) ncbi
山羊 多克隆
  • 免疫组化; 小鼠
安迪生物R&D TBXT抗体(R&D, AF2085)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
山羊 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 2f
安迪生物R&D TBXT抗体(R&D, AF2085)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2f). Stem Cell Reports (2013) ncbi
艾博抗(上海)贸易有限公司
兔 多克隆
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司 TBXT抗体(Abcam, ab20680)被用于被用于免疫印迹在小鼠样本上 (图 6). PLoS ONE (2016) ncbi
兔 多克隆
  • 流式细胞仪; 小鼠; 1:50; 图 1
艾博抗(上海)贸易有限公司 TBXT抗体(Abcam, ab20680)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 1). Cell Reprogram (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 6
艾博抗(上海)贸易有限公司 TBXT抗体(Abcam, ab20680)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6). J Orthop Res (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2
艾博抗(上海)贸易有限公司 TBXT抗体(Abcam, ab20680)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 1
艾博抗(上海)贸易有限公司 TBXT抗体(Abcam, ab20680)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1). Stem Cell Reports (2015) ncbi
兔 多克隆
  • 免疫细胞化学; African green monkey; 1:100; 图 1d
  • 免疫细胞化学; 人类; 1:100; 图 1i
艾博抗(上海)贸易有限公司 TBXT抗体(Abcam, ab20680)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:100 (图 1d) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 1i). Stem Cell Res Ther (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司 TBXT抗体(Abcam, ab20680)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Cell Reprogram (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 3
艾博抗(上海)贸易有限公司 TBXT抗体(Abcam, ab20680)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). J Biol Chem (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 TBXT抗体(Abcam, ab20680)被用于被用于免疫细胞化学在人类样本上. J Biosci Bioeng (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-10)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 TBXT抗体(Santa Cruz, sc-166962)被用于被用于免疫细胞化学在人类样本上. Biomaterials (2014) ncbi
文章列表
  1. Massey J, Liu Y, Alvarenga O, Saez T, Schmerer M, Warmflash A. Synergy with TGFβ ligands switches WNT pathway dynamics from transient to sustained during human pluripotent cell differentiation. Proc Natl Acad Sci U S A. 2019;116:4989-4998 pubmed 出版商
  2. Gao Y, Wilson G, Bozaoglu K, Elefanty A, Stanley E, Dottori M, et al. Generation of RAB39B knockout isogenic human embryonic stem cell lines to model RAB39B-mediated Parkinson's disease. Stem Cell Res. 2018;28:161-164 pubmed 出版商
  3. Kobayashi T, Zhang H, Tang W, Irie N, Withey S, Klisch D, et al. Principles of early human development and germ cell program from conserved model systems. Nature. 2017;546:416-420 pubmed 出版商
  4. Cha Y, Han M, Cha H, Zoldan J, Burkart A, Jung J, et al. Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c-SIRT2 axis. Nat Cell Biol. 2017;19:445-456 pubmed 出版商
  5. Fu J, Wiraja C, Chong R, Xu C, Wang D. Real-time and non-invasive monitoring of embryonic stem cell survival during the development of embryoid bodies with smart nanosensor. Acta Biomater. 2017;49:358-367 pubmed 出版商
  6. Bao X, Lian X, Palecek S. Directed Endothelial Progenitor Differentiation from Human Pluripotent Stem Cells Via Wnt Activation Under Defined Conditions. Methods Mol Biol. 2016;1481:183-96 pubmed 出版商
  7. Khoa L, Azami T, Tsukiyama T, Matsushita J, Tsukiyama Fujii S, Takahashi S, et al. Visualization of the Epiblast and Visceral Endodermal Cells Using Fgf5-P2A-Venus BAC Transgenic Mice and Epiblast Stem Cells. PLoS ONE. 2016;11:e0159246 pubmed 出版商
  8. Kudová J, Prochazkova J, Vašíček O, Perecko T, Sedláčková M, Pesl M, et al. HIF-1alpha Deficiency Attenuates the Cardiomyogenesis of Mouse Embryonic Stem Cells. PLoS ONE. 2016;11:e0158358 pubmed 出版商
  9. Shirouzu Y, Yanai G, Yang K, Sumi S. Effects of Activin in Embryoid Bodies Expressing Fibroblast Growth Factor 5. Cell Reprogram. 2016;18:171-86 pubmed 出版商
  10. Rodrigues Pinto R, Berry A, Piper Hanley K, Hanley N, Richardson S, Hoyland J. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord-specific markers during early human intervertebral disc development. J Orthop Res. 2016;34:1327-40 pubmed 出版商
  11. Wymeersch F, Huang Y, Blin G, Cambray N, Wilkie R, Wong F, et al. Position-dependent plasticity of distinct progenitor types in the primitive streak. elife. 2016;5:e10042 pubmed 出版商
  12. Guye P, Ebrahimkhani M, Kipniss N, Velazquez J, Schoenfeld E, Kiani S, et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat Commun. 2016;7:10243 pubmed 出版商
  13. Geng Y, Feng B. Mesendogen, a novel inhibitor of TRPM6, promotes mesoderm and definitive endoderm differentiation of human embryonic stem cells through alteration of magnesium homeostasis. Heliyon. 2015;1:e00046 pubmed
  14. Agu C, Soares F, Alderton A, Patel M, Ansari R, Patel S, et al. Successful Generation of Human Induced Pluripotent Stem Cell Lines from Blood Samples Held at Room Temperature for up to 48 hr. Stem Cell Reports. 2015;5:660-71 pubmed 出版商
  15. Neri T, Muggeo S, Paulis M, Caldana M, Crisafulli L, Strina D, et al. Targeted Gene Correction in Osteopetrotic-Induced Pluripotent Stem Cells for the Generation of Functional Osteoclasts. Stem Cell Reports. 2015;5:558-68 pubmed 出版商
  16. Pogozhykh O, Pogozhykh D, Neehus A, Hoffmann A, Blasczyk R, Müller T. Molecular and cellular characteristics of human and non-human primate multipotent stromal cells from the amnion and bone marrow during long term culture. Stem Cell Res Ther. 2015;6:150 pubmed 出版商
  17. Yu J, Ramasamy T, Murphy N, Holt M, Czapiewski R, Wei S, et al. PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation. Nat Commun. 2015;6:7212 pubmed 出版商
  18. Wu J, Okamura D, Li M, Suzuki K, Luo C, Ma L, et al. An alternative pluripotent state confers interspecies chimaeric competency. Nature. 2015;521:316-21 pubmed 出版商
  19. Hossini A, Megges M, Prigione A, Lichtner B, Toliat M, Wruck W, et al. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics. 2015;16:84 pubmed 出版商
  20. Toh Y, Xing J, Yu H. Modulation of integrin and E-cadherin-mediated adhesions to spatially control heterogeneity in human pluripotent stem cell differentiation. Biomaterials. 2015;50:87-97 pubmed 出版商
  21. Zhang M, Schulte J, Heinick A, Piccini I, Rao J, Quaranta R, et al. Universal cardiac induction of human pluripotent stem cells in two and three-dimensional formats: implications for in vitro maturation. Stem Cells. 2015;33:1456-69 pubmed 出版商
  22. Irie N, Weinberger L, Tang W, Kobayashi T, Viukov S, Manor Y, et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell. 2015;160:253-68 pubmed 出版商
  23. Winkler T, Mahoney E, Sinner D, Wylie C, Dahia C. Wnt signaling activates Shh signaling in early postnatal intervertebral discs, and re-activates Shh signaling in old discs in the mouse. PLoS ONE. 2014;9:e98444 pubmed 出版商
  24. Pryzhkova M, Aria I, Cheng Q, Harris G, Zan X, Gharib M, et al. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate. Biomaterials. 2014;35:5098-109 pubmed 出版商
  25. Weidgang C, Russell R, Tata P, Kühl S, Illing A, Muller M, et al. TBX3 Directs Cell-Fate Decision toward Mesendoderm. Stem Cell Reports. 2013;1:248-65 pubmed 出版商
  26. Rungarunlert S, Klincumhom N, Tharasanit T, Techakumphu M, Pirity M, Dinnyes A. Slow turning lateral vessel bioreactor improves embryoid body formation and cardiogenic differentiation of mouse embryonic stem cells. Cell Reprogram. 2013;15:443-58 pubmed 出版商
  27. Sakaki Yumoto M, Liu J, Ramalho Santos M, Yoshida N, Derynck R. Smad2 is essential for maintenance of the human and mouse primed pluripotent stem cell state. J Biol Chem. 2013;288:18546-60 pubmed 出版商
  28. Pal R, Mamidi M, Das A, Bhonde R. Comparative analysis of cardiomyocyte differentiation from human embryonic stem cells under 3-D and 2-D culture conditions. J Biosci Bioeng. 2013;115:200-6 pubmed 出版商