这是一篇来自已证抗体库的有关人类 TGF-乙一 (TGF-beta1) 的综述,是根据97篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合TGF-乙一 抗体。
TGF-乙一 同义词: CED; DPD1; IBDIMDE; LAP; TGF-beta1; TGFB; TGFbeta

艾博抗(上海)贸易有限公司
小鼠 单克隆(TB21)
  • 免疫印迹; 人类; 1:2000; 图 2a
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab27969)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). Sci Rep (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 2j
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2j). Cell Death Dis (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 8b
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8b). Cells (2022) ncbi
domestic rabbit 单克隆(EPR18163)
  • 免疫印迹; 人类; 图 5c
  • 免疫印迹; 小鼠; 图 4c, 5b
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab179695)被用于被用于免疫印迹在人类样本上 (图 5c) 和 被用于免疫印迹在小鼠样本上 (图 4c, 5b). iScience (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 2a
  • 免疫印迹; 人类; 图 2e
  • 免疫印迹; 小鼠; 图 4h
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫组化在人类样本上 (图 2a), 被用于免疫印迹在人类样本上 (图 2e) 和 被用于免疫印迹在小鼠样本上 (图 4h). Clin Transl Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:400; 图 1b
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 1b). Dis Model Mech (2021) ncbi
domestic rabbit 单克隆(EPR18163)
  • 免疫印迹; 小鼠; 1:5000; 图 6e
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab179695)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6e). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2d
艾博抗(上海)贸易有限公司TGF-乙一抗体(abcam, ab92486)被用于被用于免疫组化在小鼠样本上 (图 2d). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 0.25 ug/ml; 图 4b, 5b
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫印迹在小鼠样本上浓度为0.25 ug/ml (图 4b, 5b). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6b
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 8f
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫组化在小鼠样本上 (图 8f). Front Immunol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 14g
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 14g). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2f
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫印迹在小鼠样本上 (图 2f). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3g
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 3a
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3a). J Am Heart Assoc (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:3000; 图 6a
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫印迹在大鼠样本上浓度为1:3000 (图 6a). Antioxidants (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5b
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab9758)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Sci Rep (2020) ncbi
domestic rabbit 单克隆(EPR18163)
  • 免疫印迹; 小鼠; 图 e5e
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab179695)被用于被用于免疫印迹在小鼠样本上 (图 e5e). Nature (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6d
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫印迹在小鼠样本上 (图 6d). JACC Basic Transl Sci (2020) ncbi
domestic rabbit 多克隆
  • 其他; 小鼠; 1:100; 图 1c
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, Ab92486)被用于被用于其他在小鼠样本上浓度为1:100 (图 1c). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:250; 图 4b
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab9248)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 4b). J Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1a
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫组化在人类样本上 (图 1a). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Front Physiol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 4 ug/ml; 图 3d
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫印迹在人类样本上浓度为4 ug/ml (图 3d). BMC Mol Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 4f
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4f). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EPR18163)
  • 免疫印迹; 人类; 0.5 ug/ml; 图 s3a
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab179695)被用于被用于免疫印迹在人类样本上浓度为0.5 ug/ml (图 s3a). Arterioscler Thromb Vasc Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 7d
艾博抗(上海)贸易有限公司TGF-乙一抗体(abcam, ab92486)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7d). Kidney Int (2019) ncbi
domestic rabbit 单克隆(EPR18163)
  • 免疫印迹; 小鼠; 图 2a
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab179695)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4c
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫印迹在小鼠样本上 (图 4c). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6c
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫印迹在小鼠样本上 (图 6c). Basic Res Cardiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:400; 图 11c
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫组化在大鼠样本上浓度为1:400 (图 11c). Am J Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2i
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2i). Nat Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4c
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4c). Pharmacol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2k
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab9758)被用于被用于免疫印迹在人类样本上 (图 2k). Oncotarget (2016) ncbi
小鼠 单克隆(TB21)
  • 免疫印迹; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab190503)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Int J Mol Med (2016) ncbi
小鼠 单克隆(TB21)
  • 抑制或激活实验; 人类; 图 6
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab27969)被用于被用于抑制或激活实验在人类样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(TB21)
  • 免疫印迹; 大鼠; 1:500; 图 2c
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab27969)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2c). Eur J Pharmacol (2015) ncbi
小鼠 单克隆(TB21)
  • 免疫组化; 大鼠
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab27969)被用于被用于免疫组化在大鼠样本上. Biomed Mater (2014) ncbi
小鼠 单克隆(TB21)
  • 免疫印迹; 大鼠; 1:2000
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam plc, ab27969)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. PLoS ONE (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(3C11)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 2f
  • 免疫印迹; 大鼠; 图 2c
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz Biotechnology, sc-130348)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 2f) 和 被用于免疫印迹在大鼠样本上 (图 2c). Exp Ther Med (2021) ncbi
小鼠 单克隆(3C11)
  • 免疫印迹; 大鼠; 图 1d
圣克鲁斯生物技术TGF-乙一抗体(Santa, sc-130348)被用于被用于免疫印迹在大鼠样本上 (图 1d). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(3C11)
  • 免疫印迹; 大鼠; 图 1a
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz Biotechnology, sc-130348)被用于被用于免疫印迹在大鼠样本上 (图 1a). Mol Med Rep (2020) ncbi
小鼠 单克隆(3C11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2
圣克鲁斯生物技术TGF-乙一抗体(Thermo, sc-130348)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2). Physiol Rep (2020) ncbi
小鼠 单克隆(3C11)
  • 免疫组化; 大鼠; 图 8
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz, 3C11)被用于被用于免疫组化在大鼠样本上 (图 8). Int J Mol Sci (2020) ncbi
小鼠 单克隆
  • 免疫组化; 大鼠; 图 8
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz, 3C11)被用于被用于免疫组化在大鼠样本上 (图 8). Int J Mol Sci (2020) ncbi
小鼠 单克隆(3C11)
  • 免疫印迹; 小鼠; 1:500; 图 2i
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz, sc-130348)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2i). Sci Rep (2020) ncbi
小鼠 单克隆(3C11)
  • 免疫组化; 小鼠; 1:25; 图 2g
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz, sc-130348)被用于被用于免疫组化在小鼠样本上浓度为1:25 (图 2g). Sci Adv (2019) ncbi
小鼠 单克隆(500-M66)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz, sc-65378)被用于被用于免疫印迹在人类样本上 (图 1c). BMC Cancer (2017) ncbi
小鼠 单克隆(TB21)
  • 免疫印迹; 人类; 1:1000; 图 6c
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz, sc-52893)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). Oncotarget (2016) ncbi
小鼠 单克隆(TB21)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 5
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz, sc-52893)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 5). Mol Med Rep (2016) ncbi
小鼠 单克隆(TB21)
  • 免疫印迹; 人类
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz Biotechnology, sc-52893)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(3C11)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz, sc-130348)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Med Rep (2015) ncbi
小鼠 单克隆(3C11)
  • 免疫印迹; 大鼠; 图 4a
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz Biotechnology, sc-130348)被用于被用于免疫印迹在大鼠样本上 (图 4a). Mol Med Rep (2015) ncbi
小鼠 单克隆(3C11)
  • 免疫组化; 人类; 图 3c
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz, sc-130348)被用于被用于免疫组化在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 3a). Connect Tissue Res (2015) ncbi
小鼠 单克隆(3C11)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz, sc-130348)被用于被用于免疫细胞化学在人类样本上. Colloids Surf B Biointerfaces (2014) ncbi
安迪生物R&D
小鼠 单克隆(1D11)
  • 抑制或激活实验; 小鼠; 5 ug/ml; 图 5f
安迪生物R&DTGF-乙一抗体(R&D Systems, 1D11)被用于被用于抑制或激活实验在小鼠样本上浓度为5 ug/ml (图 5f). Adv Sci (Weinh) (2022) ncbi
小鼠 单克隆(27232)
  • 流式细胞仪; 人类
安迪生物R&DTGF-乙一抗体(R&D Systems, 27232)被用于被用于流式细胞仪在人类样本上. Arthritis Res Ther (2021) ncbi
小鼠 单克隆(1D11)
  • 流式细胞仪; 人类; 图 2
安迪生物R&DTGF-乙一抗体(RnD Systems, 1D11)被用于被用于流式细胞仪在人类样本上 (图 2). Aging Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500
安迪生物R&DTGF-乙一抗体(R&D Systems, AB-100NA)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 抑制或激活实验; 小鼠; 图 s4
安迪生物R&DTGF-乙一抗体(R&D Systems, AB-100-NA)被用于被用于抑制或激活实验在小鼠样本上 (图 s4). Sci Rep (2016) ncbi
BioLegend
小鼠 单克隆(19D8)
  • 流式细胞仪; 小鼠
BioLegendTGF-乙一抗体(Biolegend, 521707)被用于被用于流式细胞仪在小鼠样本上. elife (2021) ncbi
小鼠 单克隆(TW7-28G11)
  • 流式细胞仪; 人类; 图 4c
BioLegendTGF-乙一抗体(Biolegend, 146704)被用于被用于流式细胞仪在人类样本上 (图 4c). Nature (2017) ncbi
小鼠 单克隆(19D8)
  • 流式细胞仪; 小鼠; 图 4
BioLegendTGF-乙一抗体(BioLegend, 521705)被用于被用于流式细胞仪在小鼠样本上 (图 4). Sci Rep (2016) ncbi
赛默飞世尔
鸡 多克隆
  • 免疫组化-石蜡切片; 大鼠; 图 5
赛默飞世尔TGF-乙一抗体(Thermo Fisher Scientific, PA1-9574)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 5). Naunyn Schmiedebergs Arch Pharmacol (2016) ncbi
domestic rabbit 单克隆(F.888.7)
  • 免疫印迹; 人类
赛默飞世尔TGF-乙一抗体(Pierce Biotechnology, MA5-15065)被用于被用于免疫印迹在人类样本上. Acta Biomater (2014) ncbi
小鼠 单克隆(TB21)
  • 抑制或激活实验; 人类
赛默飞世尔TGF-乙一抗体(Biosource, TB21)被用于被用于抑制或激活实验在人类样本上. Microbes Infect (2007) ncbi
小鼠 单克隆(TB21)
  • 抑制或激活实验; 人类
赛默飞世尔TGF-乙一抗体(Biosource, TB21)被用于被用于抑制或激活实验在人类样本上. Infect Immun (2005) ncbi
小鼠 单克隆(TB21)
  • 抑制或激活实验; 人类; 10 ug/ml
赛默飞世尔TGF-乙一抗体(Biosource, clone TB21)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml. Am J Respir Crit Care Med (2002) ncbi
Bio X Cell
小鼠 单克隆(1D11.16.8)
  • 抑制或激活实验; 小鼠; 图 1l
Bio X CellTGF-乙一抗体(BioXcell, 1D11.16.8)被用于被用于抑制或激活实验在小鼠样本上 (图 1l). J Exp Med (2017) ncbi
小鼠 单克隆(1D11.16.8)
  • 抑制或激活实验; 小鼠
Bio X CellTGF-乙一抗体(BioXcell, 1D11.16.8)被用于被用于抑制或激活实验在小鼠样本上. Infect Immun (2016) ncbi
小鼠 单克隆(1D11.16.8)
  • 流式细胞仪; 小鼠; 图 5c
Bio X CellTGF-乙一抗体(Bioxcell, 1D11.16.8)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Nat Commun (2014) ncbi
Novus Biologicals
小鼠 单克隆(7F6)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
  • 免疫印迹; 小鼠; 1:1000; 图 2f
Novus BiologicalsTGF-乙一抗体(Novus, 7F6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Cancer Manag Res (2020) ncbi
小鼠 单克隆(7F6)
  • 免疫印迹; 小鼠; 1:250; 图 7a
Novus BiologicalsTGF-乙一抗体(Novus, NBP2-22114)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 7a). Nat Commun (2019) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(TB21)
  • 免疫组化; 人类; 1:100; 图 1c
伯乐(Bio-Rad)公司TGF-乙一抗体(AbD Serotec, MCA797)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1c). BMC Cancer (2015) ncbi
北京傲锐东源
小鼠 单克隆(OTI3B6)
  • 免疫印迹; 人类; 1:2000; 图 3d
北京傲锐东源TGF-乙一抗体(OriGene, OTI3B6)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3d). Tumour Biol (2016) ncbi
亚诺法生技股份有限公司
domestic rabbit 多克隆
  • 抑制或激活实验; 人类
亚诺法生技股份有限公司TGF-乙一抗体(Abnova, PAB 12738)被用于被用于抑制或激活实验在人类样本上. Am J Sports Med (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(56E4)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling, 3709)被用于被用于免疫印迹在人类样本上 (图 3a). World J Gastrointest Oncol (2022) ncbi
domestic rabbit 单克隆(56E4)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling Technology, 3709S)被用于被用于免疫印迹在人类样本上 (图 6e). J Immunother Cancer (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司TGF-乙一抗体(CST, 3711s)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). Front Pharmacol (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling Technology, 3711S)被用于被用于免疫印迹在小鼠样本上 (图 4a). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5i
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling, 3711)被用于被用于免疫印迹在小鼠样本上 (图 5i). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling, 3711S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling Technology, 3711)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6e). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6i
  • 免疫印迹; 小鼠; 图 5a, s5b
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling, 3711s)被用于被用于免疫印迹在人类样本上 (图 6i) 和 被用于免疫印迹在小鼠样本上 (图 5a, s5b). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling, 3711)被用于被用于免疫印迹在小鼠样本上 (图 s2a). PLoS Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signalling Technology, 3711)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Brain Pathol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 4b
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling Technology, 3711)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4b) 和 被用于免疫印迹在小鼠样本上 (图 4d). Int J Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3e
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling, 3711)被用于被用于免疫印迹在大鼠样本上 (图 3e). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(56E4)
  • 免疫组化; 小鼠; 1:100; 图 2a
  • 免疫印迹; 小鼠; 1:1000; 图 2h, 4c
赛信通(上海)生物试剂有限公司TGF-乙一抗体(CST, 3709)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2h, 4c). Sci Adv (2019) ncbi
domestic rabbit 单克隆(56E4)
  • 免疫印迹; 大鼠; 1:100; 图 1d
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling, 3709)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 1d). Mol Cell Endocrinol (2018) ncbi
domestic rabbit 单克隆(56E4)
  • 免疫印迹; 人类; 1:2000; 图 8a
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling Technology Inc., 3709)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 8a). Oncol Lett (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling, 3711)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1c). World J Gastroenterol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b, 6j
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling, 3711)被用于被用于免疫印迹在人类样本上 (图 4b, 6j). Exp Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling Technology, 3711)被用于被用于免疫印迹在小鼠样本上 (图 7). Physiol Rep (2016) ncbi
domestic rabbit 单克隆(56E4)
  • 免疫印迹; 人类; 1:500; 图 2b
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell signaling, 3709)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司TGF-乙一抗体(ell Signaling Technology, 3711)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling Technology, 3711)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
domestic rabbit 单克隆(56E4)
  • 免疫印迹; 小鼠; 图 3d, 4a
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling, 3709S)被用于被用于免疫印迹在小鼠样本上 (图 3d, 4a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(56E4)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling Technology, 3709)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Med Rep (2014) ncbi
文章列表
  1. Feng M, Wu C, Zhang H, Zhou H, Jiao T, Liu M, et al. Overexpression of ELL-associated factor 2 suppresses invasion, migration, and angiogenesis in colorectal cancer. World J Gastrointest Oncol. 2022;14:1949-1967 pubmed 出版商
  2. Wei T, Richter G, Zhang H, Sun R, Smith C, STRUB G. Extracranial arteriovenous malformations demonstrate dysregulated TGF-β/BMP signaling and increased circulating TGF-β1. Sci Rep. 2022;12:16612 pubmed 出版商
  3. Ni H, Zhang H, Li L, Huang H, Guo H, Zhang L, et al. T cell-intrinsic STING signaling promotes regulatory T cell induction and immunosuppression by upregulating FOXP3 transcription in cervical cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  4. Wu T, Wang W, Shi G, Hao M, Wang Y, Yao M, et al. Targeting HIC1/TGF-β axis-shaped prostate cancer microenvironment restrains its progression. Cell Death Dis. 2022;13:624 pubmed 出版商
  5. Mancinelli R, Ceci L, Kennedy L, Francis H, Meadows V, Chen L, et al. The Effects of Taurocholic Acid on Biliary Damage and Liver Fibrosis Are Mediated by Calcitonin-Gene-Related Peptide Signaling. Cells. 2022;11: pubmed 出版商
  6. Zheng C, Xuan W, Chen Z, Zhang R, Huang X, Zhu Y, et al. CX3CL1 Worsens Cardiorenal Dysfunction and Serves as a Therapeutic Target of Canagliflozin for Cardiorenal Syndrome. Front Pharmacol. 2022;13:848310 pubmed 出版商
  7. Wang X, Liu S, Yu T, An S, Deng R, Tan X, et al. Inhibition of Integrin αvβ6 Activation of TGF-β Attenuates Tendinopathy. Adv Sci (Weinh). 2022;9:e2104469 pubmed 出版商
  8. Li Z, Chiang Y, He M, Worgall T, Zhou H, Jiang X. Liver sphingomyelin synthase 1 deficiency causes steatosis, steatohepatitis, fibrosis, and tumorigenesis: An effect of glucosylceramide accumulation. iScience. 2021;24:103449 pubmed 出版商
  9. Liang L, Li S, Liu H, Mao Y, Liu L, Zhang X, et al. Blood glucose control contributes to protein stability of Ski-related novel protein N in a rat model of diabetes. Exp Ther Med. 2021;22:1341 pubmed 出版商
  10. Sun W, Byon C, Kim D, Choi H, Park J, Joo S, et al. Renoprotective Effects of Maslinic Acid on Experimental Renal Fibrosis in Unilateral Ureteral Obstruction Model via Targeting MyD88. Front Pharmacol. 2021;12:708575 pubmed 出版商
  11. Rajendran R, Rajendran V, Giraldo Velasquez M, Megalofonou F, Gurski F, Stadelmann C, et al. Oligodendrocyte-Specific Deletion of FGFR1 Reduces Cerebellar Inflammation and Neurodegeneration in MOG35-55-Induced EAE. Int J Mol Sci. 2021;22: pubmed 出版商
  12. Gu P, Wang D, Zhang J, Wang X, Chen Z, Gu L, et al. Protective function of interleukin-22 in pulmonary fibrosis. Clin Transl Med. 2021;11:e509 pubmed 出版商
  13. Escasany E, Lanzón B, García Carrasco A, Izquierdo Lahuerta A, Torres L, Corrales P, et al. Transforming growth factor β3 deficiency promotes defective lipid metabolism and fibrosis in murine kidney. Dis Model Mech. 2021;14: pubmed 出版商
  14. Cao Y, Huang W, Wu F, Shang J, Ping F, Wang W, et al. ZFP36 protects lungs from intestinal I/R-induced injury and fibrosis through the CREBBP/p53/p21/Bax pathway. Cell Death Dis. 2021;12:685 pubmed 出版商
  15. Cai C, Zeng D, Gao Q, Ma L, Zeng B, Zhou Y, et al. Decreased ferroportin in hepatocytes promotes macrophages polarize towards an M2-like phenotype and liver fibrosis. Sci Rep. 2021;11:13386 pubmed 出版商
  16. Wu X, Shu L, Zhang Z, Li J, Zong J, Cheong L, et al. Adipocyte Fatty Acid Binding Protein Promotes the Onset and Progression of Liver Fibrosis via Mediating the Crosstalk between Liver Sinusoidal Endothelial Cells and Hepatic Stellate Cells. Adv Sci (Weinh). 2021;8:e2003721 pubmed 出版商
  17. Zhang Z, Lin M, Wang J, Yang F, Yang P, Liu Y, et al. Calycosin inhibits breast cancer cell migration and invasion by suppressing EMT via BATF/TGF-β1. Aging (Albany NY). 2021;13:16009-16023 pubmed 出版商
  18. Li J, Sun Z, Luo G, Wang S, Cui H, Yao Z, et al. Quercetin Attenuates Trauma-Induced Heterotopic Ossification by Tuning Immune Cell Infiltration and Related Inflammatory Insult. Front Immunol. 2021;12:649285 pubmed 出版商
  19. Hsieh Y, Lee K, Lei H, Lan K, Huo T, Lin Y, et al. (Pro)renin Receptor Knockdown Attenuates Liver Fibrosis Through Inactivation of ERK/TGF-β1/SMAD3 Pathway. Cell Mol Gastroenterol Hepatol. 2021;12:813-838 pubmed 出版商
  20. Palau V, Nugraha B, Benito D, Pascual J, Emmert M, Hoerstrup S, et al. Both Specific Endothelial and Proximal Tubular Adam17 Deletion Protect against Diabetic Nephropathy. Int J Mol Sci. 2021;22: pubmed 出版商
  21. Ye S, Su L, Shan P, Ye B, Wu S, Liang G, et al. LCZ696 Attenuated Doxorubicin-Induced Chronic Cardiomyopathy Through the TLR2-MyD88 Complex Formation. Front Cell Dev Biol. 2021;9:654051 pubmed 出版商
  22. Wang Y, Xu Z, Wang X, Zheng J, Peng L, Zhou Y, et al. Extracellular-vesicle containing miRNA-503-5p released by macrophages contributes to atherosclerosis. Aging (Albany NY). 2021;13:12239-12257 pubmed 出版商
  23. Meng K, Cai H, Cai S, Hong Y, Zhang X. Adiponectin Modified BMSCs Alleviate Heart Fibrosis via Inhibition TGF-beta1/Smad in Diabetic Rats. Front Cell Dev Biol. 2021;9:644160 pubmed 出版商
  24. Jeong J, Choi S, Ahn S, Oh J, Kim Y, Lee C, et al. Neutrophil extracellular trap clearance by synovial macrophages in gout. Arthritis Res Ther. 2021;23:88 pubmed 出版商
  25. Weinstock A, RAHMAN K, Yaacov O, Nishi H, Menon P, Nikain C, et al. Wnt signaling enhances macrophage responses to IL-4 and promotes resolution of atherosclerosis. elife. 2021;10: pubmed 出版商
  26. Sharma N, Hans C. Interleukin 12p40 Deficiency Promotes Abdominal Aortic Aneurysm by Activating CCN2/MMP2 Pathways. J Am Heart Assoc. 2021;10:e017633 pubmed 出版商
  27. Feng Y, Liu S, Zha R, Sun X, Li K, ROBLING A, et al. Mechanical Loading-Driven Tumor Suppression Is Mediated by Lrp5-Dependent and Independent Mechanisms. Cancers (Basel). 2021;13: pubmed 出版商
  28. Webb L, Fra Bido S, Innocentin S, Matheson L, Attaf N, Bignon A, et al. Ageing promotes early T follicular helper cell differentiation by modulating expression of RBPJ. Aging Cell. 2021;20:e13295 pubmed 出版商
  29. Mia M, Cibi D, Abdul Ghani S, Song W, Tee N, Ghosh S, et al. YAP/TAZ deficiency reprograms macrophage phenotype and improves infarct healing and cardiac function after myocardial infarction. PLoS Biol. 2020;18:e3000941 pubmed 出版商
  30. He F, Li L, Li P, Deng Y, Yang Y, Deng Y, et al. Cyclooxygenase-2/sclerostin mediates TGF-β1-induced calcification in vascular smooth muscle cells and rats undergoing renal failure. Aging (Albany NY). 2020;12:21220-21235 pubmed 出版商
  31. Kamali S, Rajendran R, Stadelmann C, Karnati S, Rajendran V, Giraldo Velasquez M, et al. Oligodendrocyte-specific deletion of FGFR2 ameliorates MOG35-55 -induced EAE through ERK and Akt signalling. Brain Pathol. 2021;31:297-311 pubmed 出版商
  32. Chen Y, Chen H, Fan H, Tung Y, Kuo C, Tu M, et al. Anti-Inflammatory, Antioxidant, and Antifibrotic Effects of Kefir Peptides on Salt-Induced Renal Vascular Damage and Dysfunction in Aged Stroke-Prone Spontaneously Hypertensive Rats. Antioxidants (Basel). 2020;9: pubmed 出版商
  33. Hu D, Dong R, Zhang Y, Yang Y, Chen Z, Tang Y, et al. Age‑related changes in mineralocorticoid receptors in rat hearts. Mol Med Rep. 2020;22:1859-1867 pubmed 出版商
  34. Kong Y, Xu S. Juglanin administration protects skin against UVB‑induced injury by reducing Nrf2‑dependent ROS generation. Int J Mol Med. 2020;46:67-82 pubmed 出版商
  35. Hreha T, Collins C, Daugherty A, Twentyman J, Paluri N, Hunstad D. TGFβ1 orchestrates renal fibrosis following Escherichia coli pyelonephritis. Physiol Rep. 2020;8:e14401 pubmed 出版商
  36. Singh S, Adam M, Matkar P, Bugyei Twum A, Desjardins J, Chen H, et al. Endothelial-specific Loss of IFT88 Promotes Endothelial-to-Mesenchymal Transition and Exacerbates Bleomycin-induced Pulmonary Fibrosis. Sci Rep. 2020;10:4466 pubmed 出版商
  37. Prado N, Muñoz E, Farias Altamirano L, Aguiar F, Ponce Zumino A, Sánchez F, et al. Reperfusion Arrhythmias Increase after Superior Cervical Ganglionectomy Due to Conduction Disorders and Changes in Repolarization. Int J Mol Sci. 2020;21: pubmed 出版商
  38. Reventun P, Sanchez Esteban S, Cook A, Cuadrado I, Roza C, Moreno Gómez Toledano R, et al. Bisphenol A induces coronary endothelial cell necroptosis by activating RIP3/CamKII dependent pathway. Sci Rep. 2020;10:4190 pubmed 出版商
  39. Lu Z, Zou J, Li S, Topper M, Tao Y, Zhang H, et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature. 2020;579:284-290 pubmed 出版商
  40. Wang X, Jian X, Dou J, Wei Z, Zhao F. Decreasing Microtubule Actin Cross-Linking Factor 1 Inhibits Melanoma Metastasis by Decreasing Epithelial to Mesenchymal Transition. Cancer Manag Res. 2020;12:663-673 pubmed 出版商
  41. Guo X, Kolpakov M, Hooshdaran B, Schappell W, Wang T, Eguchi S, et al. Cardiac Expression of Factor X Mediates Cardiac Hypertrophy and Fibrosis in Pressure Overload. JACC Basic Transl Sci. 2020;5:69-83 pubmed 出版商
  42. Voisin A, Damon Soubeyrand C, Bravard S, Saez F, Drevet J, Guiton R. Differential expression and localisation of TGF-β isoforms and receptors in the murine epididymis. Sci Rep. 2020;10:995 pubmed 出版商
  43. Ye D, Zhu J, Zhao Q, Ma W, Xiao Y, Xu G, et al. LMP1 Up-regulates Calreticulin to Induce Epithelial-mesenchymal Transition via TGF-β/Smad3/NRP1 Pathway in Nasopharyngeal Carcinoma Cells. J Cancer. 2020;11:1257-1269 pubmed 出版商
  44. Sarker M, Lee J, Lee D, Chun K, Jun H. Attenuation of diabetic kidney injury in DPP4-deficient rats; role of GLP-1 on the suppression of AGE formation by inducing glyoxalase 1. Aging (Albany NY). 2020;12:593-610 pubmed 出版商
  45. Zhou S, da Silva S, Siegel P, Philip A. CD109 acts as a gatekeeper of the epithelial trait by suppressing epithelial to mesenchymal transition in squamous cell carcinoma cells in vitro. Sci Rep. 2019;9:16317 pubmed 出版商
  46. Reed M, Luissint A, Azcutia V, Fan S, O Leary M, Quirós M, et al. Epithelial CD47 is critical for mucosal repair in the murine intestine in vivo. Nat Commun. 2019;10:5004 pubmed 出版商
  47. Wang X, Zhao L, Ajay A, Jiao B, Zhang X, Wang C, et al. QiDiTangShen Granules Activate Renal Nutrient-Sensing Associated Autophagy in db/db Mice. Front Physiol. 2019;10:1224 pubmed 出版商
  48. Shen J, Xing W, Liu R, Zhang Y, Xie C, Gong F. MiR-32-5p influences high glucose-induced cardiac fibroblast proliferation and phenotypic alteration by inhibiting DUSP1. BMC Mol Biol. 2019;20:21 pubmed 出版商
  49. Wang H, Shen L, Sun X, Liu F, Feng W, Jiang C, et al. Adipose group 1 innate lymphoid cells promote adipose tissue fibrosis and diabetes in obesity. Nat Commun. 2019;10:3254 pubmed 出版商
  50. van de Vlekkert D, Demmers J, Nguyen X, Campos Y, Machado E, Annunziata I, et al. Excessive exosome release is the pathogenic pathway linking a lysosomal deficiency to generalized fibrosis. Sci Adv. 2019;5:eaav3270 pubmed 出版商
  51. Yin 殷晓科 X, Wanga S, Fellows A, Barallobre Barreiro J, Lu R, Davaapil H, et al. Glycoproteomic Analysis of the Aortic Extracellular Matrix in Marfan Patients. Arterioscler Thromb Vasc Biol. 2019;39:1859-1873 pubmed 出版商
  52. HASAN A, von Websky K, Reichetzeder C, Tsuprykov O, Gaballa M, Guo J, et al. Mechanisms of GLP-1 receptor-independent renoprotective effects of the dipeptidyl peptidase type 4 inhibitor linagliptin in GLP-1 receptor knockout mice with 5/6 nephrectomy. Kidney Int. 2019;95:1373-1388 pubmed 出版商
  53. MacFarlane E, Parker S, Shin J, Kang B, Ziegler S, Creamer T, et al. Lineage-specific events underlie aortic root aneurysm pathogenesis in Loeys-Dietz syndrome. J Clin Invest. 2019;129:659-675 pubmed 出版商
  54. Yin J, Wang Y, Chang J, Li B, Zhang J, Liu Y, et al. Apelin inhibited epithelial-mesenchymal transition of podocytes in diabetic mice through downregulating immunoproteasome subunits β5i. Cell Death Dis. 2018;9:1031 pubmed 出版商
  55. Hoa N, Ge L, Korach K, Levin E. Estrogen receptor beta maintains expression of KLF15 to prevent cardiac myocyte hypertrophy in female rodents. Mol Cell Endocrinol. 2018;470:240-250 pubmed 出版商
  56. Wang Q, Yu Y, Zhang P, Chen Y, Li C, Chen J, et al. The crucial role of activin A/ALK4 pathway in the pathogenesis of Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation. Basic Res Cardiol. 2017;112:47 pubmed 出版商
  57. Wu K, Zhao Z, Ma J, Chen J, Peng J, Yang S, et al. Deregulation of miR-193b affects the growth of colon cancer cells via transforming growth factor-? and regulation of the SMAD3 pathway. Oncol Lett. 2017;13:2557-2562 pubmed 出版商
  58. Daley D, Mani V, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711-1724 pubmed 出版商
  59. Wang Y, Shen R, Han B, Li Z, Xiong L, Zhang F, et al. Notch signaling mediated by TGF-?/Smad pathway in concanavalin A-induced liver fibrosis in rats. World J Gastroenterol. 2017;23:2330-2336 pubmed 出版商
  60. Manzanares M, Usui A, Campbell D, Dumur C, Maldonado G, Fausther M, et al. Transforming Growth Factors α and β Are Essential for Modeling Cholangiocarcinoma Desmoplasia and Progression in a Three-Dimensional Organotypic Culture Model. Am J Pathol. 2017;187:1068-1092 pubmed 出版商
  61. Seo G, Lim Y, Koh D, Huh J, Hyun C, Kim Y, et al. TMF and glycitin act synergistically on keratinocytes and fibroblasts to promote wound healing and anti-scarring activity. Exp Mol Med. 2017;49:e302 pubmed 出版商
  62. de la Mare J, Jurgens T, Edkins A. Extracellular Hsp90 and TGFβ regulate adhesion, migration and anchorage independent growth in a paired colon cancer cell line model. BMC Cancer. 2017;17:202 pubmed 出版商
  63. Dong X, Zhao B, Iacob R, Zhu J, Koksal A, Lu C, et al. Force interacts with macromolecular structure in activation of TGF-?. Nature. 2017;542:55-59 pubmed 出版商
  64. Oller J, Méndez Barbero N, Ruiz E, Villahoz S, Renard M, Canelas L, et al. Nitric oxide mediates aortic disease in mice deficient in the metalloprotease Adamts1 and in a mouse model of Marfan syndrome. Nat Med. 2017;23:200-212 pubmed 出版商
  65. Miroshnychenko O, Chang W, Dragoo J. The Use of Platelet-Rich and Platelet-Poor Plasma to Enhance Differentiation of Skeletal Myoblasts: Implications for the Use of Autologous Blood Products for Muscle Regeneration. Am J Sports Med. 2017;45:945-953 pubmed 出版商
  66. Li L, Byrd M, Doh K, Dixon P, Lee H, Tiwari S, et al. Absence of renal enlargement in fructose-fed proximal-tubule-select insulin receptor (IR), insulin-like-growth factor receptor (IGF1R) double knockout mice. Physiol Rep. 2016;4: pubmed
  67. Wang Y, Han G, Guo B, Huang J. Hyaluronan oligosaccharides promote diabetic wound healing by increasing angiogenesis. Pharmacol Rep. 2016;68:1126-1132 pubmed 出版商
  68. Zeng Y, Yao X, Chen L, Yan Z, Liu J, Zhang Y, et al. Sphingosine-1-phosphate induced epithelial-mesenchymal transition of hepatocellular carcinoma via an MMP-7/ syndecan-1/TGF-β autocrine loop. Oncotarget. 2016;7:63324-63337 pubmed 出版商
  69. Matkar P, Singh K, Rudenko D, Kim Y, Kuliszewski M, Prud homme G, et al. Novel regulatory role of neuropilin-1 in endothelial-to-mesenchymal transition and fibrosis in pancreatic ductal adenocarcinoma. Oncotarget. 2016;7:69489-69506 pubmed 出版商
  70. Hoare M, Ito Y, Kang T, Weekes M, Matheson N, Patten D, et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol. 2016;18:979-92 pubmed 出版商
  71. Lund A, Wagner M, Fankhauser M, Steinskog E, Broggi M, Spranger S, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126:3389-402 pubmed 出版商
  72. Hou C, Wu Q, Ouyang C, Huang T. Effects of an intravitreal injection of interleukin-35-expressing plasmid on pro-inflammatory and anti-inflammatory cytokines. Int J Mol Med. 2016;38:713-20 pubmed 出版商
  73. Giusti I, Delle Monache S, Di Francesco M, Sanità P, D Ascenzo S, Gravina G, et al. From glioblastoma to endothelial cells through extracellular vesicles: messages for angiogenesis. Tumour Biol. 2016;37:12743-12753 pubmed
  74. Stifter K, Schuster C, Schlosser M, Boehm B, Schirmbeck R. Exploring the induction of preproinsulin-specific Foxp3(+) CD4(+) Treg cells that inhibit CD8(+) T cell-mediated autoimmune diabetes by DNA vaccination. Sci Rep. 2016;6:29419 pubmed 出版商
  75. Liu B, Shi Y, Peng W, Zhang Q, Liu J, Chen N, et al. Diosmetin induces apoptosis by upregulating p53 via the TGF-? signal pathway in HepG2 hepatoma cells. Mol Med Rep. 2016;14:159-64 pubmed 出版商
  76. Zhang M, Huang W, Bai J, Nie X, Wang W. Chymase inhibition protects diabetic rats from renal lesions. Mol Med Rep. 2016;14:121-8 pubmed 出版商
  77. Abuelezz S, Hendawy N, Osman W. Aliskiren attenuates bleomycin-induced pulmonary fibrosis in rats: focus on oxidative stress, advanced glycation end products, and matrix metalloproteinase-9. Naunyn Schmiedebergs Arch Pharmacol. 2016;389:897-909 pubmed 出版商
  78. Wang S, Gao X, Shen G, Wang W, Li J, Zhao J, et al. Interleukin-10 deficiency impairs regulatory T cell-derived neuropilin-1 functions and promotes Th1 and Th17 immunity. Sci Rep. 2016;6:24249 pubmed 出版商
  79. Choi S, Chen Z, Tang L, Fang Y, Shin S, Panarelli N, et al. Bcl-xL promotes metastasis independent of its anti-apoptotic activity. Nat Commun. 2016;7:10384 pubmed 出版商
  80. Zhao C, Zhang W, Zhao Y, Yang Y, Luo H, Ji G, et al. Endothelial Cords Promote Tumor Initial Growth prior to Vascular Function through a Paracrine Mechanism. Sci Rep. 2016;6:19404 pubmed 出版商
  81. Villegas Mendez A, Shaw T, Inkson C, Strangward P, de Souza J, Couper K. Parasite-Specific CD4+ IFN-γ+ IL-10+ T Cells Distribute within Both Lymphoid and Nonlymphoid Compartments and Are Controlled Systemically by Interleukin-27 and ICOS during Blood-Stage Malaria Infection. Infect Immun. 2016;84:34-46 pubmed 出版商
  82. Kassem L, Deygas M, Fattet L, Lopez J, Goulvent T, Lavergne E, et al. TIF1γ interferes with TGFβ1/SMAD4 signaling to promote poor outcome in operable breast cancer patients. BMC Cancer. 2015;15:453 pubmed 出版商
  83. Yi H, Eun H, Lee Y, Jung J, Park S, Park K, et al. Treatment with 4-methylpyrazole modulated stellate cells and natural killer cells and ameliorated liver fibrosis in mice. PLoS ONE. 2015;10:e0127946 pubmed 出版商
  84. Ueda K, Yoshimura K, Yamashita O, Harada T, Morikage N, Hamano K. Possible dual role of decorin in abdominal aortic aneurysm. PLoS ONE. 2015;10:e0120689 pubmed 出版商
  85. Li X, Wu Y, Li X, Li D, Du J, Hu C, et al. Role of eukaryotic translation initiation factor 3a in bleomycin-induced pulmonary fibrosis. Eur J Pharmacol. 2015;749:89-97 pubmed 出版商
  86. Huang W, Li L, Tian X, Yan J, Yang X, Wang X, et al. Astragalus and Paeoniae Radix Rubra extract (APE) inhibits hepatic stellate cell activation by modulating transforming growth factor-β/Smad pathway. Mol Med Rep. 2015;11:2569-77 pubmed 出版商
  87. Huang W, Li L, Tian X, Yan J, Yang X, Wang X, et al. Astragalus and Paeoniae radix rubra extract inhibits liver fibrosis by modulating the transforming growth factor‑β/Smad pathway in rats. Mol Med Rep. 2015;11:805-14 pubmed 出版商
  88. Zhang X, Ma Y, You T, Tian X, Zhang H, Zhu Q, et al. Roles of TGF-β/Smad signaling pathway in pathogenesis and development of gluteal muscle contracture. Connect Tissue Res. 2015;56:9-17 pubmed 出版商
  89. Chen F, Zhuang M, Peng J, Wang X, Huang T, Li S, et al. Baicalein inhibits migration and invasion of gastric cancer cells through suppression of the TGF-β signaling pathway. Mol Med Rep. 2014;10:1999-2003 pubmed 出版商
  90. McLane J, Rivet C, Gilbert R, Ligon L. A biomaterial model of tumor stromal microenvironment promotes mesenchymal morphology but not epithelial to mesenchymal transition in epithelial cells. Acta Biomater. 2014;10:4811-4821 pubmed 出版商
  91. León B, Bradley J, Lund F, Randall T, Ballesteros Tato A. FoxP3+ regulatory T cells promote influenza-specific Tfh responses by controlling IL-2 availability. Nat Commun. 2014;5:3495 pubmed 出版商
  92. Yan J, Chen Y, Yuan Q, Wang X, Yu S, Qiu W, et al. Comparison of the effects of Mg-6Zn and Ti-3Al-2.5V alloys on TGF-?/TNF-?/VEGF/b-FGF in the healing of the intestinal tract in vivo. Biomed Mater. 2014;9:025011 pubmed 出版商
  93. Du M, Liang H, Mou C, Li X, Sun J, Zhuang Y, et al. Regulation of human mesenchymal stem cells differentiation into chondrocytes in extracellular matrix-based hydrogel scaffolds. Colloids Surf B Biointerfaces. 2014;114:316-23 pubmed 出版商
  94. Gay Jordi G, Guash E, Benito B, Brugada J, Nattel S, Mont L, et al. Losartan prevents heart fibrosis induced by long-term intensive exercise in an animal model. PLoS ONE. 2013;8:e55427 pubmed 出版商
  95. Bourreau E, Ronet C, Couppie P, Sainte Marie D, Tacchini Cottier F, Launois P. IL-10 producing CD8+ T cells in human infection with Leishmania guyanensis. Microbes Infect. 2007;9:1034-41 pubmed
  96. Kariminia A, Bourreau E, Pascalis H, Couppie P, Sainte Marie D, Tacchini Cottier F, et al. Transforming growth factor beta 1 production by CD4+ CD25+ regulatory T cells in peripheral blood mononuclear cells from healthy subjects stimulated with Leishmania guyanensis. Infect Immun. 2005;73:5908-14 pubmed
  97. Hamacher J, Lucas R, Lijnen H, Buschke S, Dunant Y, Wendel A, et al. Tumor necrosis factor-alpha and angiostatin are mediators of endothelial cytotoxicity in bronchoalveolar lavages of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002;166:651-6 pubmed