这是一篇来自已证抗体库的有关人类 TGF-乙一 (TGF-beta1) 的综述,是根据77篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合TGF-乙一 抗体。
TGF-乙一 同义词: CED; DPD1; IBDIMDE; LAP; TGF-beta1; TGFB; TGFbeta

安迪生物R&D
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 4d
安迪生物R&DTGF-乙一抗体(R&D, AF-246-NA)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4d). Sci Adv (2019) ncbi
小鼠 单克隆(1D11)
  • 抑制或激活实验; 人类
安迪生物R&DTGF-乙一抗体(R&D, MAB1835)被用于被用于抑制或激活实验在人类样本上. Nephron (2019) ncbi
小鼠 单克隆(1D11)
  • 免疫组化-冰冻切片; 小鼠; 图 4a
安迪生物R&DTGF-乙一抗体(R&D, MAB1835)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4a). Cell Death Dis (2018) ncbi
小鼠 单克隆(141322)
  • 其他; 人类; 图 s1
安迪生物R&DTGF-乙一抗体(R&D Systems, MAB2401)被用于被用于其他在人类样本上 (图 s1). Cell Chem Biol (2017) ncbi
domestic goat 多克隆
  • 免疫印迹; 人类; 图 1c
安迪生物R&DTGF-乙一抗体(R&D, AF-246-N)被用于被用于免疫印迹在人类样本上 (图 1c). J Immunol (2017) ncbi
鸡 多克隆
  • 抑制或激活实验; 人类
安迪生物R&DTGF-乙一抗体(R&D Systems, AF-101-NA)被用于被用于抑制或激活实验在人类样本上. Am J Sports Med (2017) ncbi
小鼠 单克隆(1D11)
  • 流式细胞仪; 小鼠; 图 4d
安迪生物R&DTGF-乙一抗体(R&D systems, 1D11)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Nature (2016) ncbi
小鼠 单克隆(1D11)
  • 抑制或激活实验; 人类; 5 ug/ml
安迪生物R&DTGF-乙一抗体(R&D systems, MAB1835)被用于被用于抑制或激活实验在人类样本上浓度为5 ug/ml. Carcinogenesis (2017) ncbi
鸡 多克隆
  • 抑制或激活实验; 人类; 0.5 ug/ml
安迪生物R&DTGF-乙一抗体(R&D systems, AB-101-NA)被用于被用于抑制或激活实验在人类样本上浓度为0.5 ug/ml. Carcinogenesis (2017) ncbi
domestic goat 多克隆
  • 抑制或激活实验; 人类; 图 6c
安迪生物R&DTGF-乙一抗体(R&D, AB-246-NA)被用于被用于抑制或激活实验在人类样本上 (图 6c). Oncotarget (2016) ncbi
小鼠 单克隆(1D11)
  • 抑制或激活实验; 小鼠; 10 ug/ml; 图 2b
安迪生物R&DTGF-乙一抗体(R&D Systems, 1D11)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml (图 2b). J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500
安迪生物R&DTGF-乙一抗体(R&D Systems, AB-100NA)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Clin Invest (2016) ncbi
小鼠 单克隆(9016)
  • 抑制或激活实验; 人类; 图 3c
安迪生物R&DTGF-乙一抗体(R&D Systems, 9016)被用于被用于抑制或激活实验在人类样本上 (图 3c). J Immunol (2016) ncbi
小鼠 单克隆(9016)
  • 流式细胞仪; 人类; 图 4b
安迪生物R&DTGF-乙一抗体(R&D Systems, 9016)被用于被用于流式细胞仪在人类样本上 (图 4b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 抑制或激活实验; 小鼠; 3 mg/kg; 图 s4
安迪生物R&DTGF-乙一抗体(R&D Systems, AB-100-NA)被用于被用于抑制或激活实验在小鼠样本上浓度为3 mg/kg (图 s4). Sci Rep (2016) ncbi
鸡 多克隆
  • 抑制或激活实验; 人类; 图 3
安迪生物R&DTGF-乙一抗体(R&D Biosystems, AF-101-NA)被用于被用于抑制或激活实验在人类样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(1D11)
  • 抑制或激活实验; 人类; 图 2a
安迪生物R&DTGF-乙一抗体(R&D Systems, MAB1835)被用于被用于抑制或激活实验在人类样本上 (图 2a). J Dent Res (2016) ncbi
小鼠 单克隆(1D11)
  • 抑制或激活实验; 人类; 图 4c
安迪生物R&DTGF-乙一抗体(R&D Systems, 1D11)被用于被用于抑制或激活实验在人类样本上 (图 4c). Curr Cancer Drug Targets (2016) ncbi
小鼠 单克隆(9016)
  • 流式细胞仪; 人类; 图 1
安迪生物R&DTGF-乙一抗体(R&D Systems, 9016)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(27232)
  • 流式细胞仪; 人类; 图 6
安迪生物R&DTGF-乙一抗体(R&D, FAB2463P)被用于被用于流式细胞仪在人类样本上 (图 6). Nat Commun (2015) ncbi
安迪生物R&DTGF-乙一抗体(R&D Systems, DB100B)被用于. PLoS Med (2015) ncbi
小鼠 单克隆(27232)
  • 流式细胞仪; 人类
安迪生物R&DTGF-乙一抗体(R&D Systems, 27232)被用于被用于流式细胞仪在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(27232)
  • 流式细胞仪; 人类
安迪生物R&DTGF-乙一抗体(R&D Systems, 27232)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
安迪生物R&DTGF-乙一抗体(R&D system, DB100B)被用于. Int J Med Sci (2014) ncbi
小鼠 单克隆(27232)
  • 流式细胞仪; 人类; 图 1b
安迪生物R&DTGF-乙一抗体(R&D Systems, 27232)被用于被用于流式细胞仪在人类样本上 (图 1b). Eur J Immunol (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6d
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫印迹在小鼠样本上 (图 6d). JACC Basic Transl Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:250; 图 4b
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab9248)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 4b). J Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 4 ug/ml; 图 3d
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫印迹在人类样本上浓度为4 ug/ml (图 3d). BMC Mol Biol (2019) ncbi
domestic rabbit 单克隆(EPR18163)
  • 免疫印迹; 人类; 0.5 ug/ml; 图 s3a
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab179695)被用于被用于免疫印迹在人类样本上浓度为0.5 ug/ml (图 s3a). Arterioscler Thromb Vasc Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 7d
艾博抗(上海)贸易有限公司TGF-乙一抗体(abcam, ab92486)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7d). Kidney Int (2019) ncbi
domestic rabbit 单克隆(EPR18163)
  • 免疫印迹; 小鼠; 图 2a
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab179695)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4c
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫印迹在小鼠样本上 (图 4c). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6c
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫印迹在小鼠样本上 (图 6c). Basic Res Cardiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:400; 图 11c
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫组化在大鼠样本上浓度为1:400 (图 11c). Am J Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2i
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2i). Nat Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4c
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab92486)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4c). Pharmacol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2k
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab9758)被用于被用于免疫印迹在人类样本上 (图 2k). Oncotarget (2016) ncbi
小鼠 单克隆(TB21)
  • 免疫印迹; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab190503)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab25121)被用于被用于免疫印迹在大鼠样本上 (图 5). Evid Based Complement Alternat Med (2016) ncbi
小鼠 单克隆(TB21)
  • 抑制或激活实验; 人类; 图 6
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab27969)被用于被用于抑制或激活实验在人类样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(TB21)
  • 免疫印迹; 大鼠; 1:500; 图 2c
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab27969)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2c). Eur J Pharmacol (2015) ncbi
小鼠 单克隆(TB21)
  • 免疫组化; 大鼠
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam, ab27969)被用于被用于免疫组化在大鼠样本上. Biomed Mater (2014) ncbi
小鼠 单克隆(TB21)
  • 免疫印迹; 大鼠; 1:2000
艾博抗(上海)贸易有限公司TGF-乙一抗体(Abcam plc, ab27969)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. PLoS ONE (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(3C11)
  • 免疫组化; 小鼠; 1:25; 图 2g
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz, sc-130348)被用于被用于免疫组化在小鼠样本上浓度为1:25 (图 2g). Sci Adv (2019) ncbi
小鼠 单克隆(500-M66)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz, sc-65378)被用于被用于免疫印迹在人类样本上 (图 1c). BMC Cancer (2017) ncbi
小鼠 单克隆(TB21)
  • 免疫印迹; 人类; 1:1000; 图 6c
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz, sc-52893)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). Oncotarget (2016) ncbi
小鼠 单克隆(TB21)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 5
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz, sc-52893)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 5). Mol Med Rep (2016) ncbi
小鼠 单克隆(TB21)
  • 免疫印迹; 人类
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz Biotechnology, sc-52893)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(3C11)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz, sc-130348)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Med Rep (2015) ncbi
小鼠 单克隆(3C11)
  • 免疫印迹; 大鼠; 图 4a
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz Biotechnology, sc-130348)被用于被用于免疫印迹在大鼠样本上 (图 4a). Mol Med Rep (2015) ncbi
小鼠 单克隆(3C11)
  • 免疫组化; 人类; 图 3c
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz, sc-130348)被用于被用于免疫组化在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 3a). Connect Tissue Res (2015) ncbi
小鼠 单克隆(3C11)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术TGF-乙一抗体(Santa Cruz, sc-130348)被用于被用于免疫细胞化学在人类样本上. Colloids Surf B Biointerfaces (2014) ncbi
BioLegend
小鼠 单克隆(TW7-28G11)
  • 流式细胞仪; 人类; 图 4c
BioLegendTGF-乙一抗体(Biolegend, 146704)被用于被用于流式细胞仪在人类样本上 (图 4c). Nature (2017) ncbi
小鼠 单克隆(TW4-6H10)
  • 流式细胞仪; 人类; 图 1c
BioLegendTGF-乙一抗体(BioLegend, TW4-6H10)被用于被用于流式细胞仪在人类样本上 (图 1c). Cell Death Dis (2016) ncbi
小鼠 单克隆(19D8)
  • 流式细胞仪; 小鼠; 图 4
BioLegendTGF-乙一抗体(BioLegend, 521705)被用于被用于流式细胞仪在小鼠样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(TW4-2F8)
  • 流式细胞仪; 人类; 表 s1
BioLegendTGF-乙一抗体(Biolegend, TW4-2F8)被用于被用于流式细胞仪在人类样本上 (表 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(TW4-2F8)
  • 流式细胞仪; 人类; 图 2
BioLegendTGF-乙一抗体(BioLeged, TW4-2F8)被用于被用于流式细胞仪在人类样本上 (图 2). J Autoimmun (2015) ncbi
小鼠 单克隆(TW4-2F8)
  • 流式细胞仪; 人类
BioLegendTGF-乙一抗体(BioLegend, TW4-2 F8)被用于被用于流式细胞仪在人类样本上. Virol J (2014) ncbi
小鼠 单克隆(TW4-2F8)
BioLegendTGF-乙一抗体(BioLegend, TW4-2F8)被用于. Immunol Cell Biol (2014) ncbi
赛默飞世尔
鸡 多克隆
  • 免疫组化-石蜡切片; 大鼠; 图 5
赛默飞世尔TGF-乙一抗体(Thermo Fisher Scientific, PA1-9574)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 5). Naunyn Schmiedebergs Arch Pharmacol (2016) ncbi
domestic rabbit 单克隆(F.888.7)
  • 免疫印迹; 人类
赛默飞世尔TGF-乙一抗体(Pierce Biotechnology, MA5-15065)被用于被用于免疫印迹在人类样本上. Acta Biomater (2014) ncbi
小鼠 单克隆(TB21)
  • 抑制或激活实验; 人类
赛默飞世尔TGF-乙一抗体(Biosource, TB21)被用于被用于抑制或激活实验在人类样本上. Microbes Infect (2007) ncbi
小鼠 单克隆(TB21)
  • 抑制或激活实验; 人类
赛默飞世尔TGF-乙一抗体(Biosource, TB21)被用于被用于抑制或激活实验在人类样本上. Infect Immun (2005) ncbi
小鼠 单克隆(TB21)
  • 抑制或激活实验; 人类; 10 ug/ml
赛默飞世尔TGF-乙一抗体(Biosource, clone TB21)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml. Am J Respir Crit Care Med (2002) ncbi
Bio X Cell
小鼠 单克隆(1D11.16.8)
  • 抑制或激活实验; 小鼠; 图 1l
Bio X CellTGF-乙一抗体(BioXcell, 1D11.16.8)被用于被用于抑制或激活实验在小鼠样本上 (图 1l). J Exp Med (2017) ncbi
小鼠 单克隆(1D11.16.8)
  • 抑制或激活实验; 小鼠
Bio X CellTGF-乙一抗体(BioXcell, 1D11.16.8)被用于被用于抑制或激活实验在小鼠样本上. Infect Immun (2016) ncbi
小鼠 单克隆(1D11.16.8)
  • 流式细胞仪; 小鼠; 图 5c
Bio X CellTGF-乙一抗体(Bioxcell, 1D11.16.8)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Nat Commun (2014) ncbi
北京傲锐东源
小鼠 单克隆(OTI3B6)
  • 免疫印迹; 人类; 1:2000; 图 3d
北京傲锐东源TGF-乙一抗体(OriGene, OTI3B6)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3d). Tumour Biol (2016) ncbi
GeneTex
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 斑马鱼; 图 2
  • 免疫印迹; 大鼠; 1:1000; 图 3
GeneTexTGF-乙一抗体(Genetex, GTX110630)被用于被用于免疫组化-石蜡切片在斑马鱼样本上 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Front Pharmacol (2016) ncbi
亚诺法生技股份有限公司
domestic rabbit 多克隆
  • 抑制或激活实验; 人类
亚诺法生技股份有限公司TGF-乙一抗体(Abnova, PAB 12738)被用于被用于抑制或激活实验在人类样本上. Am J Sports Med (2017) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(TB21)
  • 免疫组化; 人类; 1:100; 图 1c
伯乐(Bio-Rad)公司TGF-乙一抗体(AbD Serotec, MCA797)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1c). BMC Cancer (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3e
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling, 3711)被用于被用于免疫印迹在大鼠样本上 (图 3e). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(56E4)
  • 免疫组化; 小鼠; 1:100; 图 2a
  • 免疫印迹; 小鼠; 1:1000; 图 2h, 4c
赛信通(上海)生物试剂有限公司TGF-乙一抗体(CST, 3709)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2h, 4c). Sci Adv (2019) ncbi
domestic rabbit 单克隆(56E4)
  • 免疫印迹; 大鼠; 1:100; 图 1d
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling, 3709)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 1d). Mol Cell Endocrinol (2018) ncbi
domestic rabbit 单克隆(56E4)
  • 免疫印迹; 人类; 1:2000; 图 8a
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling Technology Inc., 3709)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 8a). Oncol Lett (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling, 3711)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1c). World J Gastroenterol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b, 6j
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling, 3711)被用于被用于免疫印迹在人类样本上 (图 4b, 6j). Exp Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling Technology, 3711)被用于被用于免疫印迹在小鼠样本上 (图 7). Physiol Rep (2016) ncbi
domestic rabbit 单克隆(56E4)
  • 免疫印迹; 人类; 1:500; 图 2b
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell signaling, 3709)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司TGF-乙一抗体(ell Signaling Technology, 3711)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling Technology, 3711)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
domestic rabbit 单克隆(56E4)
  • 免疫印迹; 小鼠; 图 3d, 4a
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling, 3709S)被用于被用于免疫印迹在小鼠样本上 (图 3d, 4a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(56E4)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司TGF-乙一抗体(Cell Signaling Technology, 3709)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Med Rep (2014) ncbi
文章列表
  1. Guo X, Kolpakov M, Hooshdaran B, Schappell W, Wang T, Eguchi S, et al. Cardiac Expression of Factor X Mediates Cardiac Hypertrophy and Fibrosis in Pressure Overload. JACC Basic Transl Sci. 2020;5:69-83 pubmed 出版商
  2. Ye D, Zhu J, Zhao Q, Ma W, Xiao Y, Xu G, et al. LMP1 Up-regulates Calreticulin to Induce Epithelial-mesenchymal Transition via TGF-β/Smad3/NRP1 Pathway in Nasopharyngeal Carcinoma Cells. J Cancer. 2020;11:1257-1269 pubmed 出版商
  3. Sarker M, Lee J, Lee D, Chun K, Jun H. Attenuation of diabetic kidney injury in DPP4-deficient rats; role of GLP-1 on the suppression of AGE formation by inducing glyoxalase 1. Aging (Albany NY). 2020;12:593-610 pubmed 出版商
  4. Shen J, Xing W, Liu R, Zhang Y, Xie C, Gong F. MiR-32-5p influences high glucose-induced cardiac fibroblast proliferation and phenotypic alteration by inhibiting DUSP1. BMC Mol Biol. 2019;20:21 pubmed 出版商
  5. van de Vlekkert D, Demmers J, Nguyen X, Campos Y, Machado E, Annunziata I, et al. Excessive exosome release is the pathogenic pathway linking a lysosomal deficiency to generalized fibrosis. Sci Adv. 2019;5:eaav3270 pubmed 出版商
  6. Yin 殷晓科 X, Wanga S, Fellows A, Barallobre Barreiro J, Lu R, Davaapil H, et al. Glycoproteomic Analysis of the Aortic Extracellular Matrix in Marfan Patients. Arterioscler Thromb Vasc Biol. 2019;39:1859-1873 pubmed 出版商
  7. Bon H, Hales P, Lumb S, Holdsworth G, Johnson T, Qureshi O, et al. Spontaneous Extracellular Matrix Accumulation in a Human in vitro Model of Renal Fibrosis Is Mediated by αV Integrins. Nephron. 2019;:1-23 pubmed 出版商
  8. HASAN A, von Websky K, Reichetzeder C, Tsuprykov O, Gaballa M, Guo J, et al. Mechanisms of GLP-1 receptor-independent renoprotective effects of the dipeptidyl peptidase type 4 inhibitor linagliptin in GLP-1 receptor knockout mice with 5/6 nephrectomy. Kidney Int. 2019;95:1373-1388 pubmed 出版商
  9. MacFarlane E, Parker S, Shin J, Kang B, Ziegler S, Creamer T, et al. Lineage-specific events underlie aortic root aneurysm pathogenesis in Loeys-Dietz syndrome. J Clin Invest. 2019;129:659-675 pubmed 出版商
  10. Yin J, Wang Y, Chang J, Li B, Zhang J, Liu Y, et al. Apelin inhibited epithelial-mesenchymal transition of podocytes in diabetic mice through downregulating immunoproteasome subunits β5i. Cell Death Dis. 2018;9:1031 pubmed 出版商
  11. Hoa N, Ge L, Korach K, Levin E. Estrogen receptor beta maintains expression of KLF15 to prevent cardiac myocyte hypertrophy in female rodents. Mol Cell Endocrinol. 2018;470:240-250 pubmed 出版商
  12. Shah F, Stepan A, O Mahony A, Velichko S, Folias A, Houle C, et al. Mechanisms of Skin Toxicity Associated with Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators. Cell Chem Biol. 2017;24:858-869.e5 pubmed 出版商
  13. Wang Q, Yu Y, Zhang P, Chen Y, Li C, Chen J, et al. The crucial role of activin A/ALK4 pathway in the pathogenesis of Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation. Basic Res Cardiol. 2017;112:47 pubmed 出版商
  14. Ventura E, Weller M, Burghardt I. Cutting Edge: ERK1 Mediates the Autocrine Positive Feedback Loop of TGF-? and Furin in Glioma-Initiating Cells. J Immunol. 2017;198:4569-4574 pubmed 出版商
  15. Wu K, Zhao Z, Ma J, Chen J, Peng J, Yang S, et al. Deregulation of miR-193b affects the growth of colon cancer cells via transforming growth factor-? and regulation of the SMAD3 pathway. Oncol Lett. 2017;13:2557-2562 pubmed 出版商
  16. Daley D, Mani V, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711-1724 pubmed 出版商
  17. Wang Y, Shen R, Han B, Li Z, Xiong L, Zhang F, et al. Notch signaling mediated by TGF-?/Smad pathway in concanavalin A-induced liver fibrosis in rats. World J Gastroenterol. 2017;23:2330-2336 pubmed 出版商
  18. Manzanares M, Usui A, Campbell D, Dumur C, Maldonado G, Fausther M, et al. Transforming Growth Factors α and β Are Essential for Modeling Cholangiocarcinoma Desmoplasia and Progression in a Three-Dimensional Organotypic Culture Model. Am J Pathol. 2017;187:1068-1092 pubmed 出版商
  19. Seo G, Lim Y, Koh D, Huh J, Hyun C, Kim Y, et al. TMF and glycitin act synergistically on keratinocytes and fibroblasts to promote wound healing and anti-scarring activity. Exp Mol Med. 2017;49:e302 pubmed 出版商
  20. de la Mare J, Jurgens T, Edkins A. Extracellular Hsp90 and TGFβ regulate adhesion, migration and anchorage independent growth in a paired colon cancer cell line model. BMC Cancer. 2017;17:202 pubmed 出版商
  21. Dong X, Zhao B, Iacob R, Zhu J, Koksal A, Lu C, et al. Force interacts with macromolecular structure in activation of TGF-?. Nature. 2017;542:55-59 pubmed 出版商
  22. Oller J, Méndez Barbero N, Ruiz E, Villahoz S, Renard M, Canelas L, et al. Nitric oxide mediates aortic disease in mice deficient in the metalloprotease Adamts1 and in a mouse model of Marfan syndrome. Nat Med. 2017;23:200-212 pubmed 出版商
  23. Miroshnychenko O, Chang W, Dragoo J. The Use of Platelet-Rich and Platelet-Poor Plasma to Enhance Differentiation of Skeletal Myoblasts: Implications for the Use of Autologous Blood Products for Muscle Regeneration. Am J Sports Med. 2017;45:945-953 pubmed 出版商
  24. Li L, Byrd M, Doh K, Dixon P, Lee H, Tiwari S, et al. Absence of renal enlargement in fructose-fed proximal-tubule-select insulin receptor (IR), insulin-like-growth factor receptor (IGF1R) double knockout mice. Physiol Rep. 2016;4: pubmed
  25. Wei C, Mei J, Tang L, Liu Y, Li D, Li M, et al. 1-Methyl-tryptophan attenuates regulatory T cells differentiation due to the inhibition of estrogen-IDO1-MRC2 axis in endometriosis. Cell Death Dis. 2016;7:e2489 pubmed 出版商
  26. Cummings R, Barbet G, Bongers G, Hartmann B, Gettler K, Muniz L, et al. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature. 2016;539:565-569 pubmed 出版商
  27. Cirillo N, Hassona Y, Celentano A, Lim K, Manchella S, Parkinson E, et al. Cancer-associated fibroblasts regulate keratinocyte cell-cell adhesion via TGF-β-dependent pathways in genotype-specific oral cancer. Carcinogenesis. 2017;38:76-85 pubmed 出版商
  28. Wang Y, Han G, Guo B, Huang J. Hyaluronan oligosaccharides promote diabetic wound healing by increasing angiogenesis. Pharmacol Rep. 2016;68:1126-1132 pubmed 出版商
  29. Zeng Y, Yao X, Chen L, Yan Z, Liu J, Zhang Y, et al. Sphingosine-1-phosphate induced epithelial-mesenchymal transition of hepatocellular carcinoma via an MMP-7/ syndecan-1/TGF-β autocrine loop. Oncotarget. 2016;7:63324-63337 pubmed 出版商
  30. Yoon J, Leyva Castillo J, Wang G, Galand C, Oyoshi M, Kumar L, et al. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization. J Exp Med. 2016;213:2147-66 pubmed 出版商
  31. Matkar P, Singh K, Rudenko D, Kim Y, Kuliszewski M, Prud homme G, et al. Novel regulatory role of neuropilin-1 in endothelial-to-mesenchymal transition and fibrosis in pancreatic ductal adenocarcinoma. Oncotarget. 2016;7:69489-69506 pubmed 出版商
  32. Hoare M, Ito Y, Kang T, Weekes M, Matheson N, Patten D, et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol. 2016;18:979-92 pubmed 出版商
  33. Lund A, Wagner M, Fankhauser M, Steinskog E, Broggi M, Spranger S, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126:3389-402 pubmed 出版商
  34. Hou C, Wu Q, Ouyang C, Huang T. Effects of an intravitreal injection of interleukin-35-expressing plasmid on pro-inflammatory and anti-inflammatory cytokines. Int J Mol Med. 2016;38:713-20 pubmed 出版商
  35. Sadallah S, Schmied L, Eken C, Charoudeh H, Amicarella F, Schifferli J. Platelet-Derived Ectosomes Reduce NK Cell Function. J Immunol. 2016;197:1663-71 pubmed 出版商
  36. Giusti I, Delle Monache S, Di Francesco M, Sanità P, D Ascenzo S, Gravina G, et al. From glioblastoma to endothelial cells through extracellular vesicles: messages for angiogenesis. Tumour Biol. 2016;37:12743-12753 pubmed
  37. Piancone F, Saresella M, Marventano I, La Rosa F, Zoppis M, Agostini S, et al. B Lymphocytes in Multiple Sclerosis: Bregs and BTLA/CD272 Expressing-CD19+ Lymphocytes Modulate Disease Severity. Sci Rep. 2016;6:29699 pubmed 出版商
  38. Stifter K, Schuster C, Schlosser M, Boehm B, Schirmbeck R. Exploring the induction of preproinsulin-specific Foxp3(+) CD4(+) Treg cells that inhibit CD8(+) T cell-mediated autoimmune diabetes by DNA vaccination. Sci Rep. 2016;6:29419 pubmed 出版商
  39. Wei M, He W, Lu X, Ni L, Yang Y, Chen L, et al. JiaWeiDangGui Decoction Ameliorates Proteinuria and Kidney Injury in Adriamycin-Induced Rat by Blockade of TGF-?/Smad Signaling. Evid Based Complement Alternat Med. 2016;2016:5031890 pubmed 出版商
  40. Chuang H, Su H, Li C, Lin S, Yen S, Huang M, et al. The Role of Butylidenephthalide in Targeting the Microenvironment Which Contributes to Liver Fibrosis Amelioration. Front Pharmacol. 2016;7:112 pubmed 出版商
  41. Liu B, Shi Y, Peng W, Zhang Q, Liu J, Chen N, et al. Diosmetin induces apoptosis by upregulating p53 via the TGF-? signal pathway in HepG2 hepatoma cells. Mol Med Rep. 2016;14:159-64 pubmed 出版商
  42. Zhang M, Huang W, Bai J, Nie X, Wang W. Chymase inhibition protects diabetic rats from renal lesions. Mol Med Rep. 2016;14:121-8 pubmed 出版商
  43. Abuelezz S, Hendawy N, Osman W. Aliskiren attenuates bleomycin-induced pulmonary fibrosis in rats: focus on oxidative stress, advanced glycation end products, and matrix metalloproteinase-9. Naunyn Schmiedebergs Arch Pharmacol. 2016;389:897-909 pubmed 出版商
  44. Wang S, Gao X, Shen G, Wang W, Li J, Zhao J, et al. Interleukin-10 deficiency impairs regulatory T cell-derived neuropilin-1 functions and promotes Th1 and Th17 immunity. Sci Rep. 2016;6:24249 pubmed 出版商
  45. Becker M, Ibrahim Y, Oh A, Fagan D, Byron S, Sarver A, et al. Insulin Receptor Substrate Adaptor Proteins Mediate Prognostic Gene Expression Profiles in Breast Cancer. PLoS ONE. 2016;11:e0150564 pubmed 出版商
  46. Yang W, Deng Y, Hsieh Y, Wu K, Kuo M. Thrombin Activates Latent TGF?1 via Integrin ?v?1 in Gingival Fibroblasts. J Dent Res. 2016;95:939-45 pubmed 出版商
  47. Nguyen H, Kadam P, Helkin A, Cao K, Wu S, Samara G, et al. MT1-MMP Activation of TGF-? Signaling Enables Intercellular Activation of an Epithelial-mesenchymal Transition Program in Cancer. Curr Cancer Drug Targets. 2016;16:618-30 pubmed
  48. Choi S, Chen Z, Tang L, Fang Y, Shin S, Panarelli N, et al. Bcl-xL promotes metastasis independent of its anti-apoptotic activity. Nat Commun. 2016;7:10384 pubmed 出版商
  49. Zhao C, Zhang W, Zhao Y, Yang Y, Luo H, Ji G, et al. Endothelial Cords Promote Tumor Initial Growth prior to Vascular Function through a Paracrine Mechanism. Sci Rep. 2016;6:19404 pubmed 出版商
  50. Deisting W, Raum T, Kufer P, Baeuerle P, Münz M. Impact of Diverse Immune Evasion Mechanisms of Cancer Cells on T Cells Engaged by EpCAM/CD3-Bispecific Antibody Construct AMG 110. PLoS ONE. 2015;10:e0141669 pubmed 出版商
  51. Miles B, Miller S, Folkvord J, Kimball A, Chamanian M, Meditz A, et al. Follicular regulatory T cells impair follicular T helper cells in HIV and SIV infection. Nat Commun. 2015;6:8608 pubmed 出版商
  52. Villegas Mendez A, Shaw T, Inkson C, Strangward P, de Souza J, Couper K. Parasite-Specific CD4+ IFN-γ+ IL-10+ T Cells Distribute within Both Lymphoid and Nonlymphoid Compartments and Are Controlled Systemically by Interleukin-27 and ICOS during Blood-Stage Malaria Infection. Infect Immun. 2016;84:34-46 pubmed 出版商
  53. Maris P, Blomme A, Palacios A, Costanza B, Bellahcène A, Bianchi E, et al. Asporin Is a Fibroblast-Derived TGF-β1 Inhibitor and a Tumor Suppressor Associated with Good Prognosis in Breast Cancer. PLoS Med. 2015;12:e1001871 pubmed 出版商
  54. Huygens C, Liénart S, Dedobbeleer O, Stockis J, Gauthy E, Coulie P, et al. Lysosomal-associated Transmembrane Protein 4B (LAPTM4B) Decreases Transforming Growth Factor β1 (TGF-β1) Production in Human Regulatory T Cells. J Biol Chem. 2015;290:20105-16 pubmed 出版商
  55. Kassem L, Deygas M, Fattet L, Lopez J, Goulvent T, Lavergne E, et al. TIF1γ interferes with TGFβ1/SMAD4 signaling to promote poor outcome in operable breast cancer patients. BMC Cancer. 2015;15:453 pubmed 出版商
  56. Yi H, Eun H, Lee Y, Jung J, Park S, Park K, et al. Treatment with 4-methylpyrazole modulated stellate cells and natural killer cells and ameliorated liver fibrosis in mice. PLoS ONE. 2015;10:e0127946 pubmed 出版商
  57. Weinberg A, Muresan P, Richardson K, Fenton T, Domínguez T, Bloom A, et al. Determinants of vaccine immunogenicity in HIV-infected pregnant women: analysis of B and T cell responses to pandemic H1N1 monovalent vaccine. PLoS ONE. 2015;10:e0122431 pubmed 出版商
  58. Ueda K, Yoshimura K, Yamashita O, Harada T, Morikage N, Hamano K. Possible dual role of decorin in abdominal aortic aneurysm. PLoS ONE. 2015;10:e0120689 pubmed 出版商
  59. Rissiek A, Baumann I, Cuapio A, Mautner A, Kolster M, Arck P, et al. The expression of CD39 on regulatory T cells is genetically driven and further upregulated at sites of inflammation. J Autoimmun. 2015;58:12-20 pubmed 出版商
  60. Li X, Wu Y, Li X, Li D, Du J, Hu C, et al. Role of eukaryotic translation initiation factor 3a in bleomycin-induced pulmonary fibrosis. Eur J Pharmacol. 2015;749:89-97 pubmed 出版商
  61. Hatano R, Ohnuma K, Otsuka H, Komiya E, Taki I, Iwata S, et al. CD26-mediated induction of EGR2 and IL-10 as potential regulatory mechanism for CD26 costimulatory pathway. J Immunol. 2015;194:960-72 pubmed 出版商
  62. Huang W, Li L, Tian X, Yan J, Yang X, Wang X, et al. Astragalus and Paeoniae Radix Rubra extract (APE) inhibits hepatic stellate cell activation by modulating transforming growth factor-β/Smad pathway. Mol Med Rep. 2015;11:2569-77 pubmed 出版商
  63. Huang W, Li L, Tian X, Yan J, Yang X, Wang X, et al. Astragalus and Paeoniae radix rubra extract inhibits liver fibrosis by modulating the transforming growth factor‑β/Smad pathway in rats. Mol Med Rep. 2015;11:805-14 pubmed 出版商
  64. Zhang X, Ma Y, You T, Tian X, Zhang H, Zhu Q, et al. Roles of TGF-β/Smad signaling pathway in pathogenesis and development of gluteal muscle contracture. Connect Tissue Res. 2015;56:9-17 pubmed 出版商
  65. Rothan H, Djordjevic I, Bahrani H, Paydar M, Ibrahim F, Abd Rahmanh N, et al. Three-dimensional culture environment increases the efficacy of platelet rich plasma releasate in prompting skin fibroblast differentiation and extracellular matrix formation. Int J Med Sci. 2014;11:1029-38 pubmed 出版商
  66. Chen F, Zhuang M, Peng J, Wang X, Huang T, Li S, et al. Baicalein inhibits migration and invasion of gastric cancer cells through suppression of the TGF-β signaling pathway. Mol Med Rep. 2014;10:1999-2003 pubmed 出版商
  67. McLane J, Rivet C, Gilbert R, Ligon L. A biomaterial model of tumor stromal microenvironment promotes mesenchymal morphology but not epithelial to mesenchymal transition in epithelial cells. Acta Biomater. 2014;10:4811-4821 pubmed 出版商
  68. Noyan F, Lee Y, Zimmermann K, Hardtke Wolenski M, Taubert R, Warnecke G, et al. Isolation of human antigen-specific regulatory T cells with high suppressive function. Eur J Immunol. 2014;44:2592-602 pubmed 出版商
  69. Sueur C, Lupo J, Mas P, Morand P, Boyer V. Difference in cytokine production and cell cycle progression induced by Epstein-Barr virus Lmp1 deletion variants in Kmh2, a Hodgkin lymphoma cell line. Virol J. 2014;11:94 pubmed 出版商
  70. Bedke T, Iannitti R, De Luca A, Giovannini G, Fallarino F, Berges C, et al. Distinct and complementary roles for Aspergillus fumigatus-specific Tr1 and Foxp3+ regulatory T cells in humans and mice. Immunol Cell Biol. 2014;92:659-70 pubmed 出版商
  71. León B, Bradley J, Lund F, Randall T, Ballesteros Tato A. FoxP3+ regulatory T cells promote influenza-specific Tfh responses by controlling IL-2 availability. Nat Commun. 2014;5:3495 pubmed 出版商
  72. Yan J, Chen Y, Yuan Q, Wang X, Yu S, Qiu W, et al. Comparison of the effects of Mg-6Zn and Ti-3Al-2.5V alloys on TGF-?/TNF-?/VEGF/b-FGF in the healing of the intestinal tract in vivo. Biomed Mater. 2014;9:025011 pubmed 出版商
  73. Du M, Liang H, Mou C, Li X, Sun J, Zhuang Y, et al. Regulation of human mesenchymal stem cells differentiation into chondrocytes in extracellular matrix-based hydrogel scaffolds. Colloids Surf B Biointerfaces. 2014;114:316-23 pubmed 出版商
  74. Gay Jordi G, Guash E, Benito B, Brugada J, Nattel S, Mont L, et al. Losartan prevents heart fibrosis induced by long-term intensive exercise in an animal model. PLoS ONE. 2013;8:e55427 pubmed 出版商
  75. Bourreau E, Ronet C, Couppie P, Sainte Marie D, Tacchini Cottier F, Launois P. IL-10 producing CD8+ T cells in human infection with Leishmania guyanensis. Microbes Infect. 2007;9:1034-41 pubmed
  76. Kariminia A, Bourreau E, Pascalis H, Couppie P, Sainte Marie D, Tacchini Cottier F, et al. Transforming growth factor beta 1 production by CD4+ CD25+ regulatory T cells in peripheral blood mononuclear cells from healthy subjects stimulated with Leishmania guyanensis. Infect Immun. 2005;73:5908-14 pubmed
  77. Hamacher J, Lucas R, Lijnen H, Buschke S, Dunant Y, Wendel A, et al. Tumor necrosis factor-alpha and angiostatin are mediators of endothelial cytotoxicity in bronchoalveolar lavages of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002;166:651-6 pubmed