这是一篇来自已证抗体库的有关人类 THRA的综述,是根据144篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合THRA 抗体。
THRA 同义词: AR7; CHNG6; EAR7; ERB-T-1; ERBA; ERBA1; NR1A1; THRA1; THRA2; c-ERBA-1

赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100
赛默飞世尔 THRA抗体(Thermo Fisher, PA1-21134)被用于被用于免疫组化在小鼠样本上浓度为1:100. BMC Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3b
赛默飞世尔 THRA抗体(Thermo Fischer Scientific, PA1-211A)被用于被用于免疫印迹在小鼠样本上 (图 3b). Thyroid (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 3a
  • 免疫印迹; 人类; 1:1000; 图 s5b
赛默飞世尔 THRA抗体(ThermoFischer, PA1-211A)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s5b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 3a
  • 免疫印迹; 人类; 1:1000; 图 s5b
赛默飞世尔 THRA抗体(ThermoFischer, PA1-216)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s5b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛默飞世尔 THRA抗体(Thermo Pierce, PA1-211A)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Gen Comp Endocrinol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 5
赛默飞世尔 THRA抗体(Thermo Scientific, PA1-211A)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). J Mol Endocrinol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔 THRA抗体(Thermo Scientific, PA1-211A)被用于被用于免疫印迹在大鼠样本上 (图 5). Mol Cell Endocrinol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 THRA抗体(Thermo Scientific, catalog PA1-211A)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 THRA抗体(Thermo Scientific, catalog PA1-211A)被用于. J Clin Invest (2015) ncbi
小鼠 单克隆(1330)
  • 免疫组化; 人类
赛默飞世尔 THRA抗体(Thermo Fisher Scientific, MA1-4676)被用于被用于免疫组化在人类样本上. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(C3)
  • 免疫印迹; 非洲爪蛙; 1:1000
赛默飞世尔 THRA抗体(Affinity Bioreagents, MA1- 215)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:1000. Apoptosis (2007) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C1)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术 THRA抗体(Santa Cruz Biotechnology, sc-739)被用于被用于免疫印迹在人类样本上 (图 1b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(C4)
  • 染色质免疫沉淀 ; 小鼠; 图 2
圣克鲁斯生物技术 THRA抗体(Santa Cruz, sc-740)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2). J Cell Biol (2014) ncbi
Rockland Immunochemicals
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
Rockland Immunochemicals THRA抗体(Rockland, 600-401-A38)被用于被用于免疫印迹在人类样本上 (图 1c). Proc Natl Acad Sci U S A (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图 1b, 1c, 2i, s8d
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b, 1c, 2i, s8d). Nat Commun (2022) ncbi
domestic rabbit 单克隆(C31E5E)
  • 其他; 小鼠; 图 6c, 7c
  • 免疫印迹; 小鼠; 1:1000; 图 s2b
  • 免疫印迹; 人类; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于其他在小鼠样本上 (图 6c, 7c), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Autophagy (2022) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:2000; 图 4k
赛信通(上海)生物试剂有限公司 THRA抗体(CST, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4k). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图 1f, 3g, 4j, 5l
  • 免疫印迹; 小鼠; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1f, 3g, 4j, 5l) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). Mol Cancer (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signalling Technologies, 2965S)被用于被用于免疫印迹在人类样本上 (图 5d). Sci Rep (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 1c
  • 免疫印迹; 人类; 1:1000; 图 1h, 3g, 4a
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1h, 3g, 4a). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 THRA抗体(CST, 2965)被用于被用于免疫印迹在人类样本上 (图 4d). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在人类样本上 (图 5c). Theranostics (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:3000; 图 2c
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5b
赛信通(上海)生物试剂有限公司 THRA抗体(CST, 2965)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5b). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化-石蜡切片; marine lamprey; 1:1000; 图 7b
  • 免疫印迹; marine lamprey; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫组化-石蜡切片在marine lamprey样本上浓度为1:1000 (图 7b) 和 被用于免疫印迹在marine lamprey样本上浓度为1:1000 (图 6a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Cancer Sci (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 2d). Nat Commun (2020) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:500; 图 5d
赛信通(上海)生物试剂有限公司 THRA抗体(CST, 2965S)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5d). Sci Rep (2020) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:200; 图 6b
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, C31E5E)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6b). Cancer Cell Int (2020) ncbi
domestic rabbit 单克隆(C31E5E)
  • 流式细胞仪; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Metab (2019) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 1b). Cell Stem Cell (2019) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 2d). Nat Cell Biol (2019) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 s5a
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 s5a). Oncogene (2019) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 s7f
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 s7f). Science (2018) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 5q
  • 免疫印迹; 小鼠; 图 5k, 5m
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology., 2965 S)被用于被用于免疫印迹在人类样本上 (图 5q) 和 被用于免疫印迹在小鼠样本上 (图 5k, 5m). Cell Death Differ (2018) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在人类样本上 (图 2a). Autophagy (2019) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 6c). J Autoimmun (2018) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Immunity (2018) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 3a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(C31E5E)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 3a). Biochem Biophys Res Commun (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Mol Cell Biochem (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 1d
  • 免疫印迹; 小鼠; 图 1j
赛信通(上海)生物试剂有限公司 THRA抗体(Cell signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 1d) 和 被用于免疫印迹在小鼠样本上 (图 1j). Nature (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:50; 图 5b
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:50 (图 5b). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 THRA抗体(Cell signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 6a). Cancer Med (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). Theranostics (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 3a). PLoS Pathog (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在小鼠样本上 (图 6e). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 THRA抗体(cell signalling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Am J Physiol Cell Physiol (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 THRA抗体(CST, 2965)被用于被用于免疫印迹在小鼠样本上 (图 6b). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, C331E5E)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Diabetes Obes Metab (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signalling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Nat Genet (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 2). BMC Res Notes (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图 s7
赛信通(上海)生物试剂有限公司 THRA抗体(Cell signaling, C31E5E)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 大鼠; 图 8a
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在大鼠样本上 (图 8a). J Pharmacol Exp Ther (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 5c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4d
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, C31E5E)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4d) 和 被用于免疫印迹在人类样本上 (图 3c). Mol Cancer Ther (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 1d). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 4b). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 3a). Oncogene (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 s4
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signalling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 s4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 1). Skelet Muscle (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 5). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 大鼠; 图 8
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在大鼠样本上 (图 8). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化; 小鼠; 1:300-1:500; 图 s1c
赛信通(上海)生物试剂有限公司 THRA抗体(Abcam, 2965)被用于被用于免疫组化在小鼠样本上浓度为1:300-1:500 (图 s1c). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 5). Cell Signal (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965S)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 1b
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 THRA抗体(Cell signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 1b) 和 被用于免疫印迹在小鼠样本上 (图 4b). Cell Signal (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Hum Mol Genet (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 1). J Virol (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 3). Mol Biol Cell (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 流式细胞仪; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, C31E5E)被用于被用于流式细胞仪在小鼠样本上 (图 5). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Endocrinology (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). elife (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 流式细胞仪; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, C31E5E)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nature (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Sci Rep (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signalling, 2965)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 THRA抗体(Cell signalling, 2965)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在大鼠样本上. Redox Biol (2015) ncbi
domestic rabbit 单克隆(C31E5E)
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于. J Cell Biol (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 THRA抗体(Cell signaling, 2965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, C31E5E)被用于被用于免疫印迹在大鼠样本上 (图 5). Int J Nanomedicine (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 6g
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 6g). Cell Mol Life Sci (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s15d
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s15d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Nat Med (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 THRA抗体(Cell signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫细胞化学; 人类; 1:400
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫细胞化学在人类样本上浓度为1:400 和 被用于免疫印迹在人类样本上浓度为1:1000. Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 流式细胞仪; 小鼠; 图 3h
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, C31E5E)被用于被用于流式细胞仪在小鼠样本上 (图 3h). J Immunol (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化; 人类; 1:50; 图 1e
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, C31E5E)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1e). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图 2.e
赛信通(上海)生物试剂有限公司 THRA抗体(CellSignaling, 2965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2.e). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 3). Exp Neurobiol (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). J Cell Sci (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 THRA抗体(CST, 2965)被用于被用于免疫印迹在人类样本上. Cell Signal (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 大鼠; 图 1
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在大鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 4). Kidney Int (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technologies, 2965)被用于被用于免疫印迹在人类样本上 (图 4b). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Tech, 2965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology., 2965)被用于被用于免疫印迹在人类样本上. Cell Signal (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling TECHNOLOGY, 2965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Sci Signal (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, C31E5E)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 S4b
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在小鼠样本上 (图 S4b). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Tech, 2965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化; 小鼠; 1:1000; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). J Clin Invest (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 THRA抗体(CST, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在小鼠样本上 (图 6a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965L)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:500; 图 5b
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Mol Cell Endocrinol (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, C31E5E)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signalling, 2965)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫细胞化学; 小鼠; 1:500; 图 s2
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 THRA抗体(Cell signaling, 2965)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Neurobiol (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在大鼠样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technologies, 2965)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C31E5E)
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling technology, 2965)被用于. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:600
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在人类样本上浓度为1:600. Urol Oncol (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 THRA抗体(Cell signaling, 2965P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫细胞化学; 人类; 1:300
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, C31E5E)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Ann Surg Oncol (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化-石蜡切片; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:2000
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:2000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technologies, 2965)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上浓度为1:500. Int J Cancer (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化; 人类; 1:2000
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫组化在人类样本上浓度为1:2000. Scand J Med Sci Sports (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Tissue Eng Part A (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 THRA抗体(Cell signaling, C31E5E)被用于被用于免疫印迹在人类样本上 (图 6b). J Biol Chem (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫组化在小鼠样本上 (图 5). Calcif Tissue Int (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; African green monkey
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫印迹在African green monkey样本上. J Cell Sci (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Nat Med (2013) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signalling Technology, 2965)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 THRA抗体(Cell Signaling, 2965)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. FASEB J (2013) ncbi
文章列表
  1. Jiang Q, Zhang X, Dai X, Han S, Wu X, Wang L, et al. S6K1-mediated phosphorylation of PDK1 impairs AKT kinase activity and oncogenic functions. Nat Commun. 2022;13:1548 pubmed 出版商
  2. Vessey K, Jobling A, Tran M, Wang A, Greferath U, Fletcher E. Treatments targeting autophagy ameliorate the age-related macular degeneration phenotype in mice lacking APOE (apolipoprotein E). Autophagy. 2022;18:2368-2384 pubmed 出版商
  3. Kim J, Hwang K, Dang B, Eom M, Kong I, Gwack Y, et al. Insulin-activated store-operated Ca2+ entry via Orai1 induces podocyte actin remodeling and causes proteinuria. Nat Commun. 2021;12:6537 pubmed 出版商
  4. Jiang Q, Zheng N, Bu L, Zhang X, Zhang X, Wu Y, et al. SPOP-mediated ubiquitination and degradation of PDK1 suppresses AKT kinase activity and oncogenic functions. Mol Cancer. 2021;20:100 pubmed 出版商
  5. Innamorati G, Wilkie T, Malpeli G, Paiella S, Grasso S, Rusev B, et al. Gα15 in early onset of pancreatic ductal adenocarcinoma. Sci Rep. 2021;11:14922 pubmed 出版商
  6. Guo J, Cheng J, Zheng N, Zhang X, Dai X, Zhang L, et al. Copper Promotes Tumorigenesis by Activating the PDK1-AKT Oncogenic Pathway in a Copper Transporter 1 Dependent Manner. Adv Sci (Weinh). 2021;8:e2004303 pubmed 出版商
  7. Gan G, Shi Z, Liu D, Zhang S, Zhu H, Wang Y, et al. 3-hydroxyanthranic acid increases the sensitivity of hepatocellular carcinoma to sorafenib by decreasing tumor cell stemness. Cell Death Discov. 2021;7:173 pubmed 出版商
  8. Bi Y, Chen X, Wei B, Wang L, Gong L, Li H, et al. DEPTOR stabilizes ErbB2 to promote the proliferation and survival of ErbB2-positive breast cancer cells. Theranostics. 2021;11:6355-6369 pubmed 出版商
  9. Catalano A, Adlesic M, Kaltenbacher T, Klar R, Albers J, Seidel P, et al. Sensitivity and Resistance of Oncogenic RAS-Driven Tumors to Dual MEK and ERK Inhibition. Cancers (Basel). 2021;13: pubmed 出版商
  10. Wang Z, Goto Y, Allevato M, Wu V, Saddawi Konefka R, Gilardi M, et al. Disruption of the HER3-PI3K-mTOR oncogenic signaling axis and PD-1 blockade as a multimodal precision immunotherapy in head and neck cancer. Nat Commun. 2021;12:2383 pubmed 出版商
  11. Sharma V, Sood R, Lou D, Hung T, Levesque M, Han Y, et al. 4E-BP2-dependent translation in parvalbumin neurons controls epileptic seizure threshold. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  12. Hu J, Rodemer W, Zhang G, Jin L, Li S, Selzer M. Chondroitinase ABC Promotes Axon Regeneration and Reduces Retrograde Apoptosis Signaling in Lamprey. Front Cell Dev Biol. 2021;9:653638 pubmed 出版商
  13. Affortit C, Casas F, Ladrech S, Ceccato J, Bourien J, Coyat C, et al. Exacerbated age-related hearing loss in mice lacking the p43 mitochondrial T3 receptor. BMC Biol. 2021;19:18 pubmed 出版商
  14. Isomura H, Taguchi A, Kajino T, Asai N, Nakatochi M, Kato S, et al. Conditional Ror1 knockout reveals crucial involvement in lung adenocarcinoma development and identifies novel HIF-1α regulator. Cancer Sci. 2021;: pubmed 出版商
  15. Wang F, Zhang Y, Shen J, Yang B, Dai W, Yan J, et al. The Ubiquitin E3 Ligase TRIM21 Promotes Hepatocarcinogenesis by Suppressing the p62-Keap1-Nrf2 Antioxidant Pathway. Cell Mol Gastroenterol Hepatol. 2021;11:1369-1385 pubmed 出版商
  16. Bao Y, Oguz G, Lee W, Lee P, Ghosh K, Li J, et al. EZH2-mediated PP2A inactivation confers resistance to HER2-targeted breast cancer therapy. Nat Commun. 2020;11:5878 pubmed 出版商
  17. Funada K, Yoshizaki K, Miyazaki K, Han X, Yuta T, Tian T, et al. microRNA-875-5p plays critical role for mesenchymal condensation in epithelial-mesenchymal interaction during tooth development. Sci Rep. 2020;10:4918 pubmed 出版商
  18. Xiao Z, Wei Z, Deng D, Zheng Z, Zhao Y, Jiang S, et al. Downregulation of Siah1 promotes colorectal cancer cell proliferation and migration by regulating AKT and YAP ubiquitylation and proteasome degradation. Cancer Cell Int. 2020;20:50 pubmed 出版商
  19. Ortega Molina A, Deleyto Seldas N, Carreras J, Sanz A, Lebrero Fernández C, Menéndez C, et al. Oncogenic Rag GTPase signaling enhances B cell activation and drives follicular lymphoma sensitive to pharmacological inhibition of mTOR. Nat Metab. 2019;1:775-789 pubmed 出版商
  20. Araiz C, Yan A, Bettedi L, Samuelson I, Virtue S, McGavigan A, et al. Enhanced β-adrenergic signalling underlies an age-dependent beneficial metabolic effect of PI3K p110α inactivation in adipose tissue. Nat Commun. 2019;10:1546 pubmed 出版商
  21. Wang E, Dai Z, Ferrante A, Drake C, Christiano A. A Subset of TREM2+ Dermal Macrophages Secretes Oncostatin M to Maintain Hair Follicle Stem Cell Quiescence and Inhibit Hair Growth. Cell Stem Cell. 2019;: pubmed 出版商
  22. Guo J, Dai X, Laurent B, Zheng N, Gan W, Zhang J, et al. AKT methylation by SETDB1 promotes AKT kinase activity and oncogenic functions. Nat Cell Biol. 2019;21:226-237 pubmed 出版商
  23. Urtishak K, Wang L, Culjkovic Kraljacic B, Davenport J, Porazzi P, Vincent T, et al. Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia. Oncogene. 2019;38:2241-2262 pubmed 出版商
  24. Bigenzahn J, Collu G, Kartnig F, Pieraks M, Vladimer G, Heinz L, et al. LZTR1 is a regulator of RAS ubiquitination and signaling. Science. 2018;362:1171-1177 pubmed 出版商
  25. Li W, Yue F, Dai Y, Shi B, Xu G, Jiang X, et al. Suppressor of hepatocellular carcinoma RASSF1A activates autophagy initiation and maturation. Cell Death Differ. 2018;: pubmed 出版商
  26. Nnah I, Wang B, Saqcena C, Weber G, Bonder E, Bagley D, et al. TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy. Autophagy. 2019;15:151-164 pubmed 出版商
  27. Lu D, Song J, Sun Y, Qi F, Liu L, Jin Y, et al. Mutations of deubiquitinase OTUD1 are associated with autoimmune disorders. J Autoimmun. 2018;94:156-165 pubmed 出版商
  28. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  29. Mirzamohammadi F, Kozlova A, Papaioannou G, Paltrinieri E, Ayturk U, Kobayashi T. Distinct molecular pathways mediate Mycn and Myc-regulated miR-17-92 microRNA action in Feingold syndrome mouse models. Nat Commun. 2018;9:1352 pubmed 出版商
  30. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  31. Gao X, Lee H, Li W, Platt R, Barrasa M, Ma Q, et al. Thyroid hormone receptor beta and NCOA4 regulate terminal erythrocyte differentiation. Proc Natl Acad Sci U S A. 2017;114:10107-10112 pubmed 出版商
  32. Guan W, Guyot R, Samarut J, Flamant F, Wong J, Gauthier K. Methylcytosine dioxygenase TET3 interacts with thyroid hormone nuclear receptors and stabilizes their association to chromatin. Proc Natl Acad Sci U S A. 2017;114:8229-8234 pubmed 出版商
  33. Wei X, Guo L, Liu Y, Zhou S, Liu Y, Dou X, et al. Synthesis of cytochrome c oxidase 1 (SCO1) inhibits insulin sensitivity by decreasing copper levels in adipocytes. Biochem Biophys Res Commun. 2017;491:814-820 pubmed 出版商
  34. Szoka L, Karna E, Hlebowicz Sarat K, Karaszewski J, Palka J. Exogenous proline stimulates type I collagen and HIF-1? expression and the process is attenuated by glutamine in human skin fibroblasts. Mol Cell Biochem. 2017;435:197-206 pubmed 出版商
  35. Wang B, Jie Z, Joo D, Ordureau A, Liu P, Gan W, et al. TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature. 2017;545:365-369 pubmed 出版商
  36. Ohba K, Sinha R, Singh B, Iannucci L, Zhou J, Kovalik J, et al. Changes in Hepatic TRβ Protein Expression, Lipogenic Gene Expression, and Long-Chain Acylcarnitine Levels During Chronic Hyperthyroidism and Triiodothyronine Withdrawal in a Mouse Model. Thyroid. 2017;27:852-860 pubmed 出版商
  37. Riemer P, Rydenfelt M, Marks M, van Eunen K, Thedieck K, Herrmann B, et al. Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids. J Cell Biol. 2017;216:1567-1577 pubmed 出版商
  38. Liu S, Gao G, Yan D, Chen X, Yao X, Guo S, et al. Effects of miR-145-5p through NRAS on the cell proliferation, apoptosis, migration, and invasion in melanoma by inhibiting MAPK and PI3K/AKT pathways. Cancer Med. 2017;6:819-833 pubmed 出版商
  39. Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, et al. miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics. 2017;7:664-676 pubmed 出版商
  40. Ganesan R, Hos N, Gutierrez S, Fischer J, Stepek J, Daglidu E, et al. Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. PLoS Pathog. 2017;13:e1006227 pubmed 出版商
  41. Qiao A, Jin X, Pang J, Moskophidis D, Mivechi N. The transcriptional regulator of the chaperone response HSF1 controls hepatic bioenergetics and protein homeostasis. J Cell Biol. 2017;216:723-741 pubmed 出版商
  42. Wu M, Chen W, Lu Y, Zhu G, Hao L, Li Y. Gα13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3β-NFATc1 signalling pathway. Nat Commun. 2017;8:13700 pubmed 出版商
  43. Gross S, Rotwein P. Quantification of growth factor signaling and pathway cross talk by live-cell imaging. Am J Physiol Cell Physiol. 2017;312:C328-C340 pubmed 出版商
  44. Kang Y, Balter B, Csizmadia E, Haas B, Sharma H, Bronson R, et al. Contribution of classical end-joining to PTEN inactivation in p53-mediated glioblastoma formation and drug-resistant survival. Nat Commun. 2017;8:14013 pubmed 出版商
  45. Yamauchi T, Nishiyama M, Moroishi T, Kawamura A, Nakayama K. FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Mol Cell Biol. 2017;37: pubmed 出版商
  46. Möllmann J, Kahles F, Lebherz C, Kappel B, Baeck C, Tacke F, et al. The PDE4 inhibitor roflumilast reduces weight gain by increasing energy expenditure and leads to improved glucose metabolism. Diabetes Obes Metab. 2017;19:496-508 pubmed 出版商
  47. Cvoro A, Bajić A, Zhang A, Simon M, Golic I, Sieglaff D, et al. Ligand Independent and Subtype-Selective Actions of Thyroid Hormone Receptors in Human Adipose Derived Stem Cells. PLoS ONE. 2016;11:e0164407 pubmed 出版商
  48. Broix L, Jagline H, Ivanova E, Schmucker S, Drouot N, Clayton Smith J, et al. Mutations in the HECT domain of NEDD4L lead to AKT-mTOR pathway deregulation and cause periventricular nodular heterotopia. Nat Genet. 2016;48:1349-1358 pubmed 出版商
  49. Vallo S, Michaelis M, Gust K, Black P, Rothweiler F, Kvasnicka H, et al. Dasatinib enhances tumor growth in gemcitabine-resistant orthotopic bladder cancer xenografts. BMC Res Notes. 2016;9:454 pubmed
  50. Carbonneau M, M Gagné L, Lalonde M, Germain M, Motorina A, Guiot M, et al. The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway. Nat Commun. 2016;7:12700 pubmed 出版商
  51. Olianas M, Dedoni S, Onali P. LPA1 Mediates Antidepressant-Induced ERK1/2 Signaling and Protection from Oxidative Stress in Glial Cells. J Pharmacol Exp Ther. 2016;359:340-353 pubmed
  52. Fan L, Liu M, Guo M, Hu C, Yan Z, Chen J, et al. FAM122A, a new endogenous inhibitor of protein phosphatase 2A. Oncotarget. 2016;7:63887-63900 pubmed 出版商
  53. Sarkar D, Singh S. Effect of neonatal hypothyroidism on prepubertal mouse testis in relation to thyroid hormone receptor alpha 1 (THR?1). Gen Comp Endocrinol. 2017;251:109-120 pubmed 出版商
  54. Ladd B, Mazzola A, Bihani T, Lai Z, BRADFORD J, Collins M, et al. Effective combination therapies in preclinical endocrine resistant breast cancer models harboring ER mutations. Oncotarget. 2016;7:54120-54136 pubmed 出版商
  55. Qin Y, Roszik J, Chattopadhyay C, Hashimoto Y, Liu C, Cooper Z, et al. Hypoxia-Driven Mechanism of Vemurafenib Resistance in Melanoma. Mol Cancer Ther. 2016;15:2442-2454 pubmed
  56. Kreger B, Dougherty A, Greene K, Cerione R, Antonyak M. Microvesicle Cargo and Function Changes upon Induction of Cellular Transformation. J Biol Chem. 2016;291:19774-85 pubmed 出版商
  57. Diez H, Benitez M, Fernandez S, Torres Aleman I, Garrido J, Wandosell F. Class I PI3-kinase or Akt inhibition do not impair axonal polarization, but slow down axonal elongation. Biochim Biophys Acta. 2016;1863:2574-2583 pubmed 出版商
  58. Warner M, Bridge K, Hewitson J, Hodgkinson M, Heyam A, Massa B, et al. S6K2-mediated regulation of TRBP as a determinant of miRNA expression in human primary lymphatic endothelial cells. Nucleic Acids Res. 2016;44:9942-9955 pubmed
  59. Huang C, Lee C, Lin H, Chang J. Cathepsin S attenuates endosomal EGFR signalling: A mechanical rationale for the combination of cathepsin S and EGFR tyrosine kinase inhibitors. Sci Rep. 2016;6:29256 pubmed 出版商
  60. Khan S, Sikander M, Ebeling M, Ganju A, Kumari S, Yallapu M, et al. MUC13 interaction with receptor tyrosine kinase HER2 drives pancreatic ductal adenocarcinoma progression. Oncogene. 2017;36:491-500 pubmed 出版商
  61. Fagnocchi L, Cherubini A, Hatsuda H, Fasciani A, Mazzoleni S, Poli V, et al. A Myc-driven self-reinforcing regulatory network maintains mouse embryonic stem cell identity. Nat Commun. 2016;7:11903 pubmed 出版商
  62. Foltz S, Luan J, Call J, Patel A, Peissig K, Fortunato M, et al. Four-week rapamycin treatment improves muscular dystrophy in a fukutin-deficient mouse model of dystroglycanopathy. Skelet Muscle. 2016;6:20 pubmed 出版商
  63. van Ree J, Nam H, Jeganathan K, Kanakkanthara A, van Deursen J. Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes. Nat Cell Biol. 2016;18:814-21 pubmed 出版商
  64. Chan E, Shetty M, Sajikumar S, Chen C, Soong T, Wong B. ApoE4 expression accelerates hippocampus-dependent cognitive deficits by enhancing Aβ impairment of insulin signaling in an Alzheimer's disease mouse model. Sci Rep. 2016;6:26119 pubmed 出版商
  65. Zhu Y, Ramos da Silva S, He M, Liang Q, Lu C, Feng P, et al. An Oncogenic Virus Promotes Cell Survival and Cellular Transformation by Suppressing Glycolysis. PLoS Pathog. 2016;12:e1005648 pubmed 出版商
  66. Itoh Y, Higuchi M, Oishi K, Kishi Y, Okazaki T, Sakai H, et al. PDK1-Akt pathway regulates radial neuronal migration and microtubules in the developing mouse neocortex. Proc Natl Acad Sci U S A. 2016;113:E2955-64 pubmed 出版商
  67. Cieniewicz A, Cooper P, MCGEHEE J, Lingham R, Kihm A. Novel method demonstrates differential ligand activation and phosphatase-mediated deactivation of insulin receptor tyrosine-specific phosphorylation. Cell Signal. 2016;28:1037-47 pubmed 出版商
  68. Kumar A, Abbas W, Colin L, Khan K, Bouchat S, Varin A, et al. Tuning of AKT-pathway by Nef and its blockade by protease inhibitors results in limited recovery in latently HIV infected T-cell line. Sci Rep. 2016;6:24090 pubmed 出版商
  69. Macritchie N, Volpert G, Al Washih M, Watson D, Futerman A, Kennedy S, et al. Effect of the sphingosine kinase 1 selective inhibitor, PF-543 on arterial and cardiac remodelling in a hypoxic model of pulmonary arterial hypertension. Cell Signal. 2016;28:946-55 pubmed 出版商
  70. Hakim S, Dyson J, Feeney S, Davies E, Sriratana A, Koenig M, et al. Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling. Hum Mol Genet. 2016;25:2295-2313 pubmed
  71. Strickland S, Vande Pol S. The Human Papillomavirus 16 E7 Oncoprotein Attenuates AKT Signaling To Promote Internal Ribosome Entry Site-Dependent Translation and Expression of c-MYC. J Virol. 2016;90:5611-5621 pubmed 出版商
  72. Lynch J, McEwen R, Crafter C, McDermott U, Garnett M, Barry S, et al. Identification of differential PI3K pathway target dependencies in T-cell acute lymphoblastic leukemia through a large cancer cell panel screen. Oncotarget. 2016;7:22128-39 pubmed 出版商
  73. Hayashi K, Michiue H, Yamada H, Takata K, Nakayama H, Wei F, et al. Fluvoxamine, an anti-depressant, inhibits human glioblastoma invasion by disrupting actin polymerization. Sci Rep. 2016;6:23372 pubmed 出版商
  74. Scott D, Tolbert C, Burridge K. Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF. Mol Biol Cell. 2016;27:1420-30 pubmed 出版商
  75. Apostolidis S, Rodríguez Rodríguez N, Suárez Fueyo A, Dioufa N, Ozcan E, Crispín J, et al. Phosphatase PP2A is requisite for the function of regulatory T cells. Nat Immunol. 2016;17:556-64 pubmed 出版商
  76. Viana Huete V, Guillen C, García Aguilar A, García G, Fernandez S, Kahn C, et al. Essential Role of IGFIR in the Onset of Male Brown Fat Thermogenic Function: Regulation of Glucose Homeostasis by Differential Organ-Specific Insulin Sensitivity. Endocrinology. 2016;157:1495-511 pubmed 出版商
  77. Wadosky K, Berthiaume J, Tang W, Zungu M, Portman M, Gerdes A, et al. MuRF1 mono-ubiquitinates TRα to inhibit T3-induced cardiac hypertrophy in vivo. J Mol Endocrinol. 2016;56:273-90 pubmed 出版商
  78. Grego Bessa J, Bloomekatz J, Castel P, Omelchenko T, Baselga J, Anderson K. The tumor suppressor PTEN and the PDK1 kinase regulate formation of the columnar neural epithelium. elife. 2016;5:e12034 pubmed 出版商
  79. Luo C, Liao W, Dadi S, Toure A, Li M. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature. 2016;529:532-6 pubmed 出版商
  80. Gomez Villafuertes R, García Huerta P, Díaz Hernández J, Miras Portugal M. PI3K/Akt signaling pathway triggers P2X7 receptor expression as a pro-survival factor of neuroblastoma cells under limiting growth conditions. Sci Rep. 2015;5:18417 pubmed 出版商
  81. Trzeciecka A, Klossowski S, Bajor M, Zagozdzon R, Gaj P, Muchowicz A, et al. Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma. Oncotarget. 2016;7:1717-31 pubmed 出版商
  82. Oudart J, Doué M, Vautrin A, Brassart B, Sellier C, Dupont Deshorgue A, et al. The anti-tumor NC1 domain of collagen XIX inhibits the FAK/ PI3K/Akt/mTOR signaling pathway through αvβ3 integrin interaction. Oncotarget. 2016;7:1516-28 pubmed 出版商
  83. Yasuda K, Takahashi M, Mori N. Mdm20 Modulates Actin Remodeling through the mTORC2 Pathway via Its Effect on Rictor Expression. PLoS ONE. 2015;10:e0142943 pubmed 出版商
  84. Ittig S, Schmutz C, Kasper C, Amstutz M, Schmidt A, Sauteur L, et al. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology. J Cell Biol. 2015;211:913-31 pubmed 出版商
  85. Rizvi F, Mathur A, Krishna S, Siddiqi M, Kakkar P. Suppression in PHLPP2 induction by morin promotes Nrf2-regulated cellular defenses against oxidative injury to primary rat hepatocytes. Redox Biol. 2015;6:587-598 pubmed 出版商
  86. Jovasevic V, Naghavi M, Walsh D. Microtubule plus end-associated CLIP-170 initiates HSV-1 retrograde transport in primary human cells. J Cell Biol. 2015;211:323-37 pubmed 出版商
  87. Verbrugge S, Al M, Assaraf Y, Kammerer S, Chandrupatla D, Honeywell R, et al. Multifactorial resistance to aminopeptidase inhibitor prodrug CHR2863 in myeloid leukemia cells: down-regulation of carboxylesterase 1, drug sequestration in lipid droplets and pro-survival activation ERK/Akt/mTOR. Oncotarget. 2016;7:5240-57 pubmed 出版商
  88. Asano S, Arvapalli R, Manne N, Maheshwari M, Ma B, Rice K, et al. Cerium oxide nanoparticle treatment ameliorates peritonitis-induced diaphragm dysfunction. Int J Nanomedicine. 2015;10:6215-25 pubmed 出版商
  89. Campo Verde Arboccó F, Sasso C, Actis E, Carón R, Hapon M, Jahn G. Hypothyroidism advances mammary involution in lactating rats through inhibition of PRL signaling and induction of LIF/STAT3 mRNAs. Mol Cell Endocrinol. 2016;419:18-28 pubmed 出版商
  90. Bugajev V, Hálová I, Dráberová L, Bambousková M, Potůčková L, Draberova H, et al. Negative regulatory roles of ORMDL3 in the FcεRI-triggered expression of proinflammatory mediators and chemotactic response in murine mast cells. Cell Mol Life Sci. 2016;73:1265-85 pubmed 出版商
  91. Mazur P, Herner A, Mello S, Wirth M, Hausmann S, Sánchez Rivera F, et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med. 2015;21:1163-71 pubmed 出版商
  92. Kitatani K, Usui T, Sriraman S, Toyoshima M, Ishibashi M, Shigeta S, et al. Ceramide limits phosphatidylinositol-3-kinase C2β-controlled cell motility in ovarian cancer: potential of ceramide as a metastasis-suppressor lipid. Oncogene. 2016;35:2801-12 pubmed 出版商
  93. Zeng Z, Jing D, Zhang X, Duan Y, Xue F. Cyclic mechanical stretch promotes energy metabolism in osteoblast-like cells through an mTOR signaling-associated mechanism. Int J Mol Med. 2015;36:947-56 pubmed 出版商
  94. Li Y, Shen C, Zhu B, Shi F, Eisen H, Chen J. Persistent Antigen and Prolonged AKT-mTORC1 Activation Underlie Memory CD8 T Cell Impairment in the Absence of CD4 T Cells. J Immunol. 2015;195:1591-8 pubmed 出版商
  95. Choi E, Byeon S, Kim S, Lee H, Kwon H, Ahn H, et al. Implication of Leptin-Signaling Proteins and Epstein-Barr Virus in Gastric Carcinomas. PLoS ONE. 2015;10:e0130839 pubmed 出版商
  96. Laberge R, Sun Y, Orjalo A, Patil C, Freund A, Zhou L, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol. 2015;17:1049-61 pubmed 出版商
  97. Yi M, Zhang E, Baek H, Kim S, Shin N, Kang J, et al. Growth Differentiation Factor 15 Expression in Astrocytes After Excitotoxic Lesion in the Mouse Hippocampus. Exp Neurobiol. 2015;24:133-8 pubmed 出版商
  98. Yao J, Jia L, Khan N, Lin C, Mitter S, Boulton M, et al. Deletion of autophagy inducer RB1CC1 results in degeneration of the retinal pigment epithelium. Autophagy. 2015;11:939-53 pubmed 出版商
  99. Xie L, Pi X, Townley Tilson W, Li N, Wehrens X, Entman M, et al. PHD2/3-dependent hydroxylation tunes cardiac response to β-adrenergic stress via phospholamban. J Clin Invest. 2015;125:2759-71 pubmed 出版商
  100. Gross S, Rotwein P. Akt signaling dynamics in individual cells. J Cell Sci. 2015;128:2509-19 pubmed 出版商
  101. Tang X, Chen X, Xu Y, Qiao Y, Zhang X, Wang Y, et al. CD166 positively regulates MCAM via inhibition to ubiquitin E3 ligases Smurf1 and βTrCP through PI3K/AKT and c-Raf/MEK/ERK signaling in Bel-7402 hepatocellular carcinoma cells. Cell Signal. 2015;27:1694-702 pubmed 出版商
  102. Li J, Ren J, Liu X, Jiang L, He W, Yuan W, et al. Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis. Kidney Int. 2015;88:515-27 pubmed 出版商
  103. Fonseca B, Zakaria C, Jia J, Graber T, Svitkin Y, Tahmasebi S, et al. La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1). J Biol Chem. 2015;290:15996-6020 pubmed 出版商
  104. Sharon C, Baranwal S, Patel N, Rodriguez Agudo D, Pandak W, Majumdar A, et al. Inhibition of insulin-like growth factor receptor/AKT/mammalian target of rapamycin axis targets colorectal cancer stem cells by attenuating mevalonate-isoprenoid pathway in vitro and in vivo. Oncotarget. 2015;6:15332-47 pubmed
  105. Roffé M, Lupinacci F, Soares L, Hajj G, Martins V. Two widely used RSK inhibitors, BI-D1870 and SL0101, alter mTORC1 signaling in a RSK-independent manner. Cell Signal. 2015;27:1630-42 pubmed 出版商
  106. Janes K. An analysis of critical factors for quantitative immunoblotting. Sci Signal. 2015;8:rs2 pubmed 出版商
  107. Hausmann S, Brandt E, Köchel C, Einsele H, Bargou R, Seggewiss Bernhardt R, et al. Loss of serum and glucocorticoid-regulated kinase 3 (SGK3) does not affect proliferation and survival of multiple myeloma cell lines. PLoS ONE. 2015;10:e0122689 pubmed 出版商
  108. Cerqueira O, Truesdell P, Baldassarre T, Vilella Arias S, Watt K, Meens J, et al. CIP4 promotes metastasis in triple-negative breast cancer and is associated with poor patient prognosis. Oncotarget. 2015;6:9397-408 pubmed
  109. Jia D, Duan F, Peng P, Sun L, Ruan Y, Gu J. Pyrroloquinoline-quinone suppresses liver fibrogenesis in mice. PLoS ONE. 2015;10:e0121939 pubmed 出版商
  110. Hoekstra E, Kodach L, Das A, Ruela de Sousa R, Ferreira C, Hardwick J, et al. Low molecular weight protein tyrosine phosphatase (LMWPTP) upregulation mediates malignant potential in colorectal cancer. Oncotarget. 2015;6:8300-12 pubmed
  111. Venkatesh A, Ma S, Le Y, Hall M, Rüegg M, Punzo C. Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice. J Clin Invest. 2015;125:1446-58 pubmed 出版商
  112. Tapia O, Fong L, Huber M, Young S, Gerace L. Nuclear envelope protein Lem2 is required for mouse development and regulates MAP and AKT kinases. PLoS ONE. 2015;10:e0116196 pubmed 出版商
  113. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  114. Geurts L, Everard A, Van Hul M, Essaghir A, Duparc T, Matamoros S, et al. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat Commun. 2015;6:6495 pubmed 出版商
  115. Murrow L, Malhotra R, Debnath J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol. 2015;17:300-10 pubmed 出版商
  116. Skarra D, Thackray V. FOXO1 is regulated by insulin and IGF1 in pituitary gonadotropes. Mol Cell Endocrinol. 2015;405:14-24 pubmed 出版商
  117. Dongiovanni P, Lanti C, Gatti S, Rametta R, Recalcati S, Maggioni M, et al. High fat diet subverts hepatocellular iron uptake determining dysmetabolic iron overload. PLoS ONE. 2015;10:e0116855 pubmed 出版商
  118. Nakazawa H, Yamada M, Tanaka T, Kramer J, Yu Y, Fischman A, et al. Role of protein farnesylation in burn-induced metabolic derangements and insulin resistance in mouse skeletal muscle. PLoS ONE. 2015;10:e0116633 pubmed 出版商
  119. Jerzak K, Cockburn J, Pond G, Pritchard K, Narod S, Dhesy Thind S, et al. Thyroid hormone receptor α in breast cancer: prognostic and therapeutic implications. Breast Cancer Res Treat. 2015;149:293-301 pubmed 出版商
  120. Zhang D, Wang X, Li Y, Zhao L, Lu M, Yao X, et al. Thyroid hormone regulates muscle fiber type conversion via miR-133a1. J Cell Biol. 2014;207:753-66 pubmed 出版商
  121. Pastor Clerigues A, Martí Bonmatí E, Milara J, Almudever P, Cortijo J. Anti-inflammatory and anti-fibrotic profile of fish oil emulsions used in parenteral nutrition-associated liver disease. PLoS ONE. 2014;9:e115404 pubmed 出版商
  122. Giovannini C, Minguzzi M, Baglioni M, Fornari F, Giannone F, Ravaioli M, et al. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget. 2014;5:10607-20 pubmed
  123. Umberger N, Caspary T. Ciliary transport regulates PDGF-AA/αα signaling via elevated mammalian target of rapamycin signaling and diminished PP2A activity. Mol Biol Cell. 2015;26:350-8 pubmed 出版商
  124. Pérez Alvarez M, Mateos L, Alonso A, Wandosell F. Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus. Mol Neurobiol. 2015;52:1690-1703 pubmed 出版商
  125. Zeldich E, Chen C, Colvin T, Bove Fenderson E, Liang J, Tucker Zhou T, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem. 2014;289:24700-15 pubmed 出版商
  126. Kugel C, Hartsough E, Davies M, Setiady Y, Aplin A. Function-blocking ERBB3 antibody inhibits the adaptive response to RAF inhibitor. Cancer Res. 2014;74:4122-32 pubmed 出版商
  127. Li C, Chen J, Lu B, Shi Z, Wang H, Zhang B, et al. Molecular switch role of Akt in Polygonatum odoratum lectin-induced apoptosis and autophagy in human non-small cell lung cancer A549 cells. PLoS ONE. 2014;9:e101526 pubmed 出版商
  128. Liu J, Ke F, Xu Z, Liu Z, Zhang L, Yan S, et al. CCR6 is a prognostic marker for overall survival in patients with colorectal cancer, and its overexpression enhances metastasis in vivo. PLoS ONE. 2014;9:e101137 pubmed 出版商
  129. Liang W, Hao Z, Han J, Zhu D, Jin Z, Xie W. CAV-1 contributes to bladder cancer progression by inducing epithelial-to-mesenchymal transition. Urol Oncol. 2014;32:855-63 pubmed 出版商
  130. Johnston Cox H, Eisenstein A, Koupenova M, Carroll S, Ravid K. The macrophage A2B adenosine receptor regulates tissue insulin sensitivity. PLoS ONE. 2014;9:e98775 pubmed 出版商
  131. Peng W, Hu X, Yao L, Jiang Y, Shao Z. Elevated expression of Girdin in the nucleus indicates worse prognosis for patients with estrogen receptor-positive breast cancer. Ann Surg Oncol. 2014;21 Suppl 4:S648-56 pubmed 出版商
  132. Bian Z, Liao H, Zhang Y, Wu Q, Zhou H, Yang Z, et al. Never in mitosis gene A related kinase-6 attenuates pressure overload-induced activation of the protein kinase B pathway and cardiac hypertrophy. PLoS ONE. 2014;9:e96095 pubmed 出版商
  133. Bai X, Li X, Tian J, Zhou Z. Antiangiogenic treatment diminishes renal injury and dysfunction via regulation of local AKT in early experimental diabetes. PLoS ONE. 2014;9:e96117 pubmed 出版商
  134. Codeluppi S, Fernández Zafra T, Sandor K, Kjell J, Liu Q, Abrams M, et al. Interleukin-6 secretion by astrocytes is dynamically regulated by PI3K-mTOR-calcium signaling. PLoS ONE. 2014;9:e92649 pubmed 出版商
  135. Bouchekioua Bouzaghou K, Poulard C, Rambaud J, Lavergne E, Hussein N, Billaud M, et al. LKB1 when associated with methylatedER? is a marker of bad prognosis in breast cancer. Int J Cancer. 2014;135:1307-18 pubmed 出版商
  136. Jespersen J, Mikkelsen U, Nedergaard A, Thorlund J, Schjerling P, Suetta C, et al. Alterations in molecular muscle mass regulators after 8 days immobilizing Special Forces mission. Scand J Med Sci Sports. 2015;25:175-83 pubmed 出版商
  137. Morgan K, Black L. Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs. Tissue Eng Part A. 2014;20:1654-67 pubmed 出版商
  138. Wang Y, Xu W, Zhou D, Neckers L, Chen S. Coordinated regulation of serum- and glucocorticoid-inducible kinase 3 by a C-terminal hydrophobic motif and Hsp90-Cdc37 chaperone complex. J Biol Chem. 2014;289:4815-26 pubmed 出版商
  139. Niehoff A, Lechner P, Ratiu O, Reuter S, Hamann N, Bruggemann G, et al. Effect of whole-body vibration and insulin-like growth factor-I on muscle paralysis-induced bone degeneration after botulinum toxin injection in mice. Calcif Tissue Int. 2014;94:373-83 pubmed 出版商
  140. Dunn C, Lampe P. Injury-triggered Akt phosphorylation of Cx43: a ZO-1-driven molecular switch that regulates gap junction size. J Cell Sci. 2014;127:455-64 pubmed 出版商
  141. Bittner S, Ruck T, Schuhmann M, Herrmann A, Moha Ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19:1161-5 pubmed 出版商
  142. Garcia Murillas I, Sharpe R, Pearson A, Campbell J, Natrajan R, Ashworth A, et al. An siRNA screen identifies the GNAS locus as a driver in 20q amplified breast cancer. Oncogene. 2014;33:2478-86 pubmed 出版商
  143. Cieslik K, Trial J, Carlson S, Taffet G, Entman M. Aberrant differentiation of fibroblast progenitors contributes to fibrosis in the aged murine heart: role of elevated circulating insulin levels. FASEB J. 2013;27:1761-71 pubmed 出版商
  144. Saelim N, Holstein D, Chocron E, Camacho P, Lechleiter J. Inhibition of apoptotic potency by ligand stimulated thyroid hormone receptors located in mitochondria. Apoptosis. 2007;12:1781-94 pubmed