这是一篇来自已证抗体库的有关人类 Toll样受体2 (TLR2) 的综述,是根据41篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Toll样受体2 抗体。
Toll样受体2 同义词: CD282; TIL4

艾博抗(上海)贸易有限公司
小鼠 单克隆(T2.5)
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司Toll样受体2抗体(Abcam, ab16894)被用于被用于免疫印迹在小鼠样本上 (图 4a). Free Radic Biol Med (2020) ncbi
小鼠 单克隆(T2.5)
  • 免疫组化-冰冻切片; 小鼠; 图 1b
艾博抗(上海)贸易有限公司Toll样受体2抗体(Abcam, T2.5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1b). Front Microbiol (2018) ncbi
小鼠 单克隆(TL2.1)
  • 抑制或激活实验; 牛; 图 1b
  • 流式细胞仪; 牛; 图 2b
艾博抗(上海)贸易有限公司Toll样受体2抗体(Abcam, ab9100)被用于被用于抑制或激活实验在牛样本上 (图 1b) 和 被用于流式细胞仪在牛样本上 (图 2b). Front Cell Infect Microbiol (2017) ncbi
小鼠 单克隆(TL2.1)
  • 抑制或激活实验; 牛; 图 4
  • 流式细胞仪; 牛; 图 4
艾博抗(上海)贸易有限公司Toll样受体2抗体(Abcam, TLR2.1)被用于被用于抑制或激活实验在牛样本上 (图 4) 和 被用于流式细胞仪在牛样本上 (图 4). Mediators Inflamm (2016) ncbi
小鼠 单克隆(T2.5)
  • 免疫细胞化学; 人类; 图 2
艾博抗(上海)贸易有限公司Toll样受体2抗体(Abcam, 16894)被用于被用于免疫细胞化学在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(TL2.1)
  • 流式细胞仪; 人类; 图 2
艾博抗(上海)贸易有限公司Toll样受体2抗体(Abcam, ab9100)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(T2.5)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司Toll样受体2抗体(Abcam, AB16894)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neurotherapeutics (2015) ncbi
赛默飞世尔
小鼠 单克隆(TL2.1)
  • 流式细胞仪; 人类; 图 6
赛默飞世尔Toll样受体2抗体(eBioscience, TL2.1)被用于被用于流式细胞仪在人类样本上 (图 6). J Leukoc Biol (2017) ncbi
小鼠 单克隆(TL2.1)
  • 流式细胞仪; 人类; 图 1
  • 免疫组化; 人类; 图 2
赛默飞世尔Toll样受体2抗体(eBioscience, TL2.1)被用于被用于流式细胞仪在人类样本上 (图 1) 和 被用于免疫组化在人类样本上 (图 2). Eur J Immunol (2017) ncbi
小鼠 单克隆(TL2.1)
  • 流式细胞仪; 人类; 图 1e
赛默飞世尔Toll样受体2抗体(eBioscience, TL2.1)被用于被用于流式细胞仪在人类样本上 (图 1e). PLoS ONE (2016) ncbi
小鼠 单克隆(TL2.1)
  • 流式细胞仪; 人类
赛默飞世尔Toll样受体2抗体(eBioscience, TL2.1)被用于被用于流式细胞仪在人类样本上. J Leukoc Biol (2016) ncbi
小鼠 单克隆(TL2.1)
  • 抑制或激活实验; 人类; 10 ug/ml; 图 3s
赛默飞世尔Toll样受体2抗体(eBioscience, 16-9922)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml (图 3s). Front Microbiol (2016) ncbi
小鼠 单克隆(TL2.1)
  • 抑制或激活实验; 人类; 图 6
赛默飞世尔Toll样受体2抗体(eBioscience, CD282)被用于被用于抑制或激活实验在人类样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(TL2.1)
  • 抑制或激活实验; 人类; 1 ug/ml; 图 3
赛默飞世尔Toll样受体2抗体(eBioscience, TL2.1)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml (图 3). PLoS ONE (2013) ncbi
小鼠 单克隆(TL2.1)
  • 流式细胞仪; 人类; 图 8
赛默飞世尔Toll样受体2抗体(eBioscience, TL2.1)被用于被用于流式细胞仪在人类样本上 (图 8). Eur J Immunol (2007) ncbi
小鼠 单克隆(TL2.1)
  • 流式细胞仪; 人类
赛默飞世尔Toll样受体2抗体(eBiosciences, TL2.1)被用于被用于流式细胞仪在人类样本上. J Immunol (2005) ncbi
圣克鲁斯生物技术
小鼠 单克隆(TL2.1)
  • 免疫印迹; 人类; 图 s2b
圣克鲁斯生物技术Toll样受体2抗体(Santa Cruz, sc-21759)被用于被用于免疫印迹在人类样本上 (图 s2b). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(TL2.1)
  • 流式细胞仪; 人类; 1:200; 图 1
  • 免疫细胞化学; 人类; 1:200; 图 4
圣克鲁斯生物技术Toll样受体2抗体(Santa Cruz, SC-21759)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). PLoS Pathog (2015) ncbi
小鼠 单克隆(4H265)
  • 流式细胞仪; 人类; 图 2
圣克鲁斯生物技术Toll样受体2抗体(Santa Cruz, sc-73181)被用于被用于流式细胞仪在人类样本上 (图 2). J Hepatol (2015) ncbi
小鼠 单克隆(TL2.1)
  • 免疫组化-石蜡切片; 人类; 1:50
圣克鲁斯生物技术Toll样受体2抗体(Santa Cruz, sc-21759)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. PLoS ONE (2014) ncbi
小鼠 单克隆(A-9)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术Toll样受体2抗体(Santa Cruz Biotechnology, sc-166900)被用于被用于免疫印迹在小鼠样本上. Respirology (2014) ncbi
小鼠 单克隆(TLR2.3)
  • 免疫印迹; 人类
圣克鲁斯生物技术Toll样受体2抗体(Santa Cruz, sc-21760)被用于被用于免疫印迹在人类样本上. Infect Immun (2014) ncbi
小鼠 单克隆(11G7)
  • 抑制或激活实验; 人类; 100 ug/ml; 图 2
圣克鲁斯生物技术Toll样受体2抗体(Santa Cruz, sc-47728 L)被用于被用于抑制或激活实验在人类样本上浓度为100 ug/ml (图 2). Innate Immun (2014) ncbi
安迪生物R&D
小鼠 单克隆(383936)
  • 抑制或激活实验; 人类; 10 ug/ml; 图 s6d
安迪生物R&DToll样受体2抗体(R&D systems, MAB2616)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml (图 s6d). Sci Adv (2019) ncbi
小鼠 单克隆(383936)
  • 抑制或激活实验; 人类; 图 1b
安迪生物R&DToll样受体2抗体(R&D Systems, 383936)被用于被用于抑制或激活实验在人类样本上 (图 1b). PLoS ONE (2016) ncbi
小鼠 单克隆(383936)
  • 流式细胞仪; 人类; 图 s1
安迪生物R&DToll样受体2抗体(R&D Systems, MAB2616)被用于被用于流式细胞仪在人类样本上 (图 s1). Autophagy (2015) ncbi
BioLegend
小鼠 单克隆(TL2.1)
  • 免疫印迹; 人类; 图 1a
BioLegendToll样受体2抗体(BioLegend, TL2.1)被用于被用于免疫印迹在人类样本上 (图 1a). Thromb Res (2017) ncbi
小鼠 单克隆(TL2.1)
  • 抑制或激活实验; 人类; 图 3a
BioLegendToll样受体2抗体(Biolegend, TL2.1)被用于被用于抑制或激活实验在人类样本上 (图 3a). Eur J Immunol (2016) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(TLR2.3)
  • 流式细胞仪; 人类
伯乐(Bio-Rad)公司Toll样受体2抗体(AbD Serotec, TLR2.3)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(TLR2.3)
  • 流式细胞仪; 人类
伯乐(Bio-Rad)公司Toll样受体2抗体(AbdSerotec, TLR2.3)被用于被用于流式细胞仪在人类样本上. Inflamm Bowel Dis (2014) ncbi
Biorbyt
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7
BiorbytToll样受体2抗体(Biorbyt, orb191498)被用于被用于免疫印迹在小鼠样本上 (图 7). Microb Pathog (2018) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
西格玛奥德里奇Toll样受体2抗体(Sigma, SAB1300199)被用于被用于免疫印迹在人类样本上 (图 2a). Mol Cell Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
西格玛奥德里奇Toll样受体2抗体(Sigma Aldrich, SAB1300199)被用于被用于免疫印迹在人类样本上 (图 4d). Cell Immunol (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D7G9Z)
  • 免疫印迹; 人类; 1:1000; 图 s3a
赛信通(上海)生物试剂有限公司Toll样受体2抗体(Cell Signaling, D7G9Z)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3a). Nat Immunol (2020) ncbi
domestic rabbit 单克隆(D7G9Z)
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司Toll样受体2抗体(Cell Signaling, 12276)被用于被用于免疫印迹在小鼠样本上 (图 1d). elife (2016) ncbi
domestic rabbit 单克隆(D7G9Z)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司Toll样受体2抗体(Cell Signaling, 12276)被用于被用于免疫印迹在人类样本上 (图 6). Biomed Res Int (2016) ncbi
domestic rabbit 单克隆(D7G9Z)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司Toll样受体2抗体(Cell Signaling, 12276)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D7G9Z)
  • 免疫印迹; 大鼠; 1:600
赛信通(上海)生物试剂有限公司Toll样受体2抗体(Cell Signaling, 12276)被用于被用于免疫印迹在大鼠样本上浓度为1:600. Mediators Inflamm (2015) ncbi
碧迪BD
小鼠 单克隆(11G7)
  • 流式细胞仪; 人类; 图 6b
碧迪BDToll样受体2抗体(BD, 558318)被用于被用于流式细胞仪在人类样本上 (图 6b). Retrovirology (2017) ncbi
小鼠 单克隆(11G7)
  • 流式细胞仪; 人类; 图 st1
碧迪BDToll样受体2抗体(BD, 558318)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(11G7)
  • 流式细胞仪; 人类; 图 3
碧迪BDToll样受体2抗体(BD Biosciences, 11G7)被用于被用于流式细胞仪在人类样本上 (图 3). Nephrol Dial Transplant (2015) ncbi
文章列表
  1. Wan B, Xu W, Chen M, Sun S, Jin J, Lv Y, et al. Geranylgeranyl diphosphate synthase 1 knockout ameliorates ventilator-induced lung injury via regulation of TLR2/4-AP-1 signaling. Free Radic Biol Med. 2020;147:159-166 pubmed 出版商
  2. Zewinger S, Reiser J, Jankowski V, Alansary D, Hahm E, Triem S, et al. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat Immunol. 2020;21:30-41 pubmed 出版商
  3. Hari P, Millar F, Tarrats N, Birch J, Quintanilla A, Rink C, et al. The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype. Sci Adv. 2019;5:eaaw0254 pubmed 出版商
  4. Brun P, Scarpa M, Marchiori C, Conti J, Kotsafti A, Porzionato A, et al. Herpes Simplex Virus Type 1 Engages Toll Like Receptor 2 to Recruit Macrophages During Infection of Enteric Neurons. Front Microbiol. 2018;9:2148 pubmed 出版商
  5. Dey S, Bishayi B. Killing of S. aureus in murine peritoneal macrophages by Ascorbic acid along with antibiotics Chloramphenicol or Ofloxacin: Correlation with inflammation. Microb Pathog. 2018;115:239-250 pubmed 出版商
  6. Hally K, La Flamme A, Larsen P, Harding S. Platelet Toll-like receptor (TLR) expression and TLR-mediated platelet activation in acute myocardial infarction. Thromb Res. 2017;158:8-15 pubmed 出版商
  7. Bzowska M, Nogieć A, Bania K, Zygmunt M, Zarebski M, Dobrucki J, et al. Involvement of cell surface 90 kDa heat shock protein (HSP90) in pattern recognition by human monocyte-derived macrophages. J Leukoc Biol. 2017;102:763-774 pubmed 出版商
  8. Mitterreiter J, Ouwendijk W, van Velzen M, van Nierop G, Osterhaus A, Verjans G. Satellite glial cells in human trigeminal ganglia have a broad expression of functional Toll-like receptors. Eur J Immunol. 2017;47:1181-1187 pubmed 出版商
  9. Alva Murillo N, Ochoa Zarzosa A, López Meza J. Sodium Octanoate Modulates the Innate Immune Response of Bovine Mammary Epithelial Cells through the TLR2/P38/JNK/ERK1/2 Pathway: Implications during Staphylococcus aureus Internalization. Front Cell Infect Microbiol. 2017;7:78 pubmed 出版商
  10. Alvarez Carbonell D, Garcia Mesa Y, Milne S, Das B, Dobrowolski C, Rojas R, et al. Toll-like receptor 3 activation selectively reverses HIV latency in microglial cells. Retrovirology. 2017;14:9 pubmed 出版商
  11. McKelvey A, Lear T, Dunn S, Evankovich J, Londino J, Bednash J, et al. RING finger E3 ligase PPP1R11 regulates TLR2 signaling and innate immunity. elife. 2016;5: pubmed 出版商
  12. Sadeghi K, Wisgrill L, Wessely I, Diesner S, Schuller S, Dürr C, et al. GM-CSF Down-Regulates TLR Expression via the Transcription Factor PU.1 in Human Monocytes. PLoS ONE. 2016;11:e0162667 pubmed 出版商
  13. Bhaskar S, Helen A. Quercetin modulates toll-like receptor-mediated protein kinase signaling pathways in oxLDL-challenged human PBMCs and regulates TLR-activated atherosclerotic inflammation in hypercholesterolemic rats. Mol Cell Biochem. 2016;423:53-65 pubmed
  14. Bhaskar S, Sudhakaran P, Helen A. Quercetin attenuates atherosclerotic inflammation and adhesion molecule expression by modulating TLR-NF-?B signaling pathway. Cell Immunol. 2016;310:131-140 pubmed 出版商
  15. Kativhu C, Libraty D. A Model to Explain How the Bacille Calmette Guérin (BCG) Vaccine Drives Interleukin-12 Production in Neonates. PLoS ONE. 2016;11:e0162148 pubmed 出版商
  16. Chen N, Xia X, Qin L, Luo L, Han S, Wang G, et al. Effects of 8-Week Hatha Yoga Training on Metabolic and Inflammatory Markers in Healthy, Female Chinese Subjects: A Randomized Clinical Trial. Biomed Res Int. 2016;2016:5387258 pubmed 出版商
  17. Cheng W, van Asten S, Burns L, Evans H, Walter G, Hashim A, et al. Periodontitis-associated pathogens P. gingivalis and A. actinomycetemcomitans activate human CD14(+) monocytes leading to enhanced Th17/IL-17 responses. Eur J Immunol. 2016;46:2211-21 pubmed 出版商
  18. Gren S, Janciauskiene S, Sandeep S, Jonigk D, Kvist P, Gerwien J, et al. The protease inhibitor cystatin C down-regulates the release of IL-? and TNF-? in lipopolysaccharide activated monocytes. J Leukoc Biol. 2016;100:811-822 pubmed
  19. Song X, Yao Z, Yang J, Zhang Z, Deng Y, Li M, et al. HCV core protein binds to gC1qR to induce A20 expression and inhibit cytokine production through MAPKs and NF-κB signaling pathways. Oncotarget. 2016;7:33796-808 pubmed 出版商
  20. Butoi E, Gan A, Tucureanu M, Stan D, Macarie R, Constantinescu C, et al. Cross-talk between macrophages and smooth muscle cells impairs collagen and metalloprotease synthesis and promotes angiogenesis. Biochim Biophys Acta. 2016;1863:1568-78 pubmed 出版商
  21. Medina Estrada I, López Meza J, Ochoa Zarzosa A. Anti-Inflammatory and Antimicrobial Effects of Estradiol in Bovine Mammary Epithelial Cells during Staphylococcus aureus Internalization. Mediators Inflamm. 2016;2016:6120509 pubmed 出版商
  22. Pérez García L, Csonka K, Flores Carreón A, Estrada Mata E, Mellado Mojica E, Németh T, et al. Role of Protein Glycosylation in Candida parapsilosis Cell Wall Integrity and Host Interaction. Front Microbiol. 2016;7:306 pubmed 出版商
  23. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  24. Snäll J, Linnér A, Uhlmann J, Siemens N, Ibold H, Janos M, et al. Differential neutrophil responses to bacterial stimuli: Streptococcal strains are potent inducers of heparin-binding protein and resistin-release. Sci Rep. 2016;6:21288 pubmed 出版商
  25. Ulbrich F, Kaufmann K, Roesslein M, Wellner F, Auwärter V, Kempf J, et al. Argon Mediates Anti-Apoptotic Signaling and Neuroprotection via Inhibition of Toll-Like Receptor 2 and 4. PLoS ONE. 2015;10:e0143887 pubmed 出版商
  26. Hwang S, Cho H, Park S, Lee W, Lee H, Lee D, et al. Characteristics of Human Turbinate-Derived Mesenchymal Stem Cells Are Not Affected by Allergic Condition of Donor. PLoS ONE. 2015;10:e0138041 pubmed 出版商
  27. Chen J, Ng M, Chu J. Activation of TLR2 and TLR6 by Dengue NS1 Protein and Its Implications in the Immunopathogenesis of Dengue Virus Infection. PLoS Pathog. 2015;11:e1005053 pubmed 出版商
  28. Luangsay S, Ait Goughoulte M, Michelet M, Floriot O, Bonnin M, Gruffaz M, et al. Expression and functionality of Toll- and RIG-like receptors in HepaRG cells. J Hepatol. 2015;63:1077-85 pubmed 出版商
  29. Miao Y, Wu H, Yang S, Dai J, Qiu Y, Tao Z, et al. 5'-adenosine monophosphate-induced hypothermia attenuates brain ischemia/reperfusion injury in a rat model by inhibiting the inflammatory response. Mediators Inflamm. 2015;2015:520745 pubmed 出版商
  30. Sanjurjo L, Amézaga N, Aran G, Naranjo Gómez M, Arias L, Armengol C, et al. The human CD5L/AIM-CD36 axis: A novel autophagy inducer in macrophages that modulates inflammatory responses. Autophagy. 2015;11:487-502 pubmed 出版商
  31. Patel P, Julien J, Kriz J. Early-stage treatment with Withaferin A reduces levels of misfolded superoxide dismutase 1 and extends lifespan in a mouse model of amyotrophic lateral sclerosis. Neurotherapeutics. 2015;12:217-33 pubmed 出版商
  32. Cañeda Guzmán I, Salaiza Suazo N, Fernández Figueroa E, Carrada Figueroa G, Aguirre García M, Becker I. NK cell activity differs between patients with localized and diffuse cutaneous leishmaniasis infected with Leishmania mexicana: a comparative study of TLRs and cytokines. PLoS ONE. 2014;9:e112410 pubmed 出版商
  33. Thompson I, Mann E, Stokes M, English N, Knight S, Williamson D. Specific activation of dendritic cells enhances clearance of Bacillus anthracis following infection. PLoS ONE. 2014;9:e109720 pubmed 出版商
  34. Rogacev K, Zawada A, Hundsdorfer J, Achenbach M, Held G, Fliser D, et al. Immunosuppression and monocyte subsets. Nephrol Dial Transplant. 2015;30:143-53 pubmed 出版商
  35. Landy J, Al Hassi H, Ronde E, English N, Mann E, Bernardo D, et al. Innate immune factors in the development and maintenance of pouchitis. Inflamm Bowel Dis. 2014;20:1942-9 pubmed 出版商
  36. Qu S, Ou Yang H, He Y, Li Z, Shi J, Song L, et al. Der p2 recombinant bacille Calmette-Guerin priming of bone marrow-derived dendritic cells suppresses Der p2-induced T helper17 function in a mouse model of asthma. Respirology. 2014;19:122-31 pubmed 出版商
  37. Park E, Na H, Song Y, Shin S, Kim Y, Chung J. Activation of NLRP3 and AIM2 inflammasomes by Porphyromonas gingivalis infection. Infect Immun. 2014;82:112-23 pubmed 出版商
  38. Wang L, Yang H, Sun Y, Yu F, Wu X. Signaling mechanism for Aspergillus fumigatus tolerance in corneal fibroblasts induced by LPS pretreatment. Innate Immun. 2014;20:563-73 pubmed 出版商
  39. Nagy L, Grishina I, Macal M, Hirao L, Hu W, Sankaran Walters S, et al. Chronic HIV infection enhances the responsiveness of antigen presenting cells to commensal Lactobacillus. PLoS ONE. 2013;8:e72789 pubmed 出版商
  40. Laudanski K, De A, Miller Graziano C. Exogenous heat shock protein 27 uniquely blocks differentiation of monocytes to dendritic cells. Eur J Immunol. 2007;37:2812-24 pubmed
  41. Sendide K, Reiner N, Lee J, Bourgoin S, Talal A, Hmama Z. Cross-talk between CD14 and complement receptor 3 promotes phagocytosis of mycobacteria: regulation by phosphatidylinositol 3-kinase and cytohesin-1. J Immunol. 2005;174:4210-9 pubmed