这是一篇来自已证抗体库的有关人类 Toll样受体4 (TLR4) 的综述,是根据100篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Toll样受体4 抗体。
Toll样受体4 同义词: ARMD10; CD284; TLR-4; TOLL

艾博抗(上海)贸易有限公司
小鼠 单克隆(76B357.1)
  • 免疫组化; 大鼠; 图 4a
  • 免疫印迹; 大鼠; 图 4b
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫组化在大鼠样本上 (图 4a) 和 被用于免疫印迹在大鼠样本上 (图 4b). J Inflamm Res (2021) ncbi
小鼠 单克隆
  • 流式细胞仪; 人类; 图 7f
  • 免疫细胞化学; 人类; 1:500; 图 7e
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab8378)被用于被用于流式细胞仪在人类样本上 (图 7f) 和 被用于免疫细胞化学在人类样本上浓度为1:500 (图 7e). Signal Transduct Target Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
  • 免疫印迹; 大鼠; 图 3d
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab13556)被用于被用于免疫印迹在人类样本上 (图 3c) 和 被用于免疫印迹在大鼠样本上 (图 3d). iScience (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab13556)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Mol Med Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 1:500; 图 5
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab13556)被用于被用于免疫印迹在pigs 样本上浓度为1:500 (图 5). Animals (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5h
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab217274)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5h). Int J Mol Sci (2021) ncbi
小鼠 单克隆(76B357.1)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫印迹在大鼠样本上. Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8a
  • 免疫印迹; 人类; 1:1000; 图 8c
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab13556)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 8c). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab13867)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). BMC Complement Med Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab13867)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). BMC Evol Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab13867)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). BMC Complement Med Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab13867)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). BMC Evol Biol (2020) ncbi
小鼠 单克隆(76B357.1)
  • 免疫组化-石蜡切片; 小鼠; 图 3d
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3d). Front Endocrinol (Lausanne) (2020) ncbi
小鼠 单克隆(76B357.1)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). J Neuroinflammation (2020) ncbi
小鼠 单克隆(76B357.1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3b
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3b). Arthritis Res Ther (2019) ncbi
小鼠 单克隆(76B357.1)
  • 免疫印迹; 大鼠; 图 2a
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫印迹在大鼠样本上 (图 2a). J Biol Chem (2018) ncbi
小鼠 单克隆(76B357.1)
  • 免疫组化; 大鼠; 图 6a
  • 免疫印迹; 大鼠; 图 6g
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫组化在大鼠样本上 (图 6a) 和 被用于免疫印迹在大鼠样本上 (图 6g). Brain Behav Immun (2017) ncbi
小鼠 单克隆(HTA125)
  • 免疫细胞化学; 小鼠; 1:200; 图 7d
  • 免疫印迹; 小鼠; 图 7a
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab 8376)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 7d) 和 被用于免疫印迹在小鼠样本上 (图 7a). Sci Rep (2017) ncbi
小鼠 单克隆(76B357.1)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 5a
  • 免疫印迹; 大鼠; 1:500; 图 1f
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 5a) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 1f). Brain Behav Immun (2017) ncbi
小鼠 单克隆(76B357.1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1b
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1b). Arthritis Res Ther (2017) ncbi
小鼠 单克隆(76B357.1)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Nat Commun (2017) ncbi
小鼠 单克隆(HTA125)
  • 免疫印迹; 大鼠; 图 6
艾博抗(上海)贸易有限公司Toll样受体4抗体(abcam, ab30667)被用于被用于免疫印迹在大鼠样本上 (图 6). BMC Cancer (2016) ncbi
小鼠 单克隆(HTA125)
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab30667)被用于被用于免疫印迹在小鼠样本上 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(76B357.1)
  • 免疫印迹; 大鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(HTA125)
  • 免疫印迹; 小鼠; 图 9a
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab30667)被用于被用于免疫印迹在小鼠样本上 (图 9a). Oncotarget (2016) ncbi
小鼠 单克隆(HTA125)
  • 抑制或激活实验; 人类; 图 s11
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab171260)被用于被用于抑制或激活实验在人类样本上 (图 s11). Part Fibre Toxicol (2016) ncbi
小鼠 单克隆(HTA125)
  • 免疫组化; 大鼠; 1:200; 图 1b
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab30667)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 1b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1
  • 免疫印迹; 小鼠; 图 1
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s5
  • 免疫印迹; 人类; 图 s2
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab13556)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1), 被用于免疫印迹在小鼠样本上 (图 1), 被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s5) 和 被用于免疫印迹在人类样本上 (图 s2). PLoS ONE (2016) ncbi
小鼠 单克隆(76B357.1)
  • 免疫印迹; 小鼠; 图 2bb
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫印迹在小鼠样本上 (图 2bb). Int J Mol Med (2016) ncbi
小鼠 单克隆(76B357.1)
  • 免疫组化-石蜡切片; 大鼠; 图 6
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(HTA125)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab13556/ab30667)被用于被用于免疫印迹在大鼠样本上. Sci Rep (2015) ncbi
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类; 图 2
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab30667)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(HTA125)
  • 免疫细胞化学; 猕猴; 图 2a
  • 免疫印迹; 猕猴; 图 2b
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab30667)被用于被用于免疫细胞化学在猕猴样本上 (图 2a) 和 被用于免疫印迹在猕猴样本上 (图 2b). PLoS ONE (2015) ncbi
小鼠 单克隆(HTA125)
  • 免疫组化; 大鼠; 1:150; 图 3a
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab30667)被用于被用于免疫组化在大鼠样本上浓度为1:150 (图 3a). Sci Rep (2015) ncbi
小鼠 单克隆(HTA125)
  • 免疫组化; 大鼠; 1:100; 图 2d
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab8376)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2d). Exp Ther Med (2015) ncbi
小鼠 单克隆(76B357.1)
  • 免疫组化-石蜡切片; 大鼠; 1:100
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. Mol Pharm (2014) ncbi
小鼠 单克隆(76B357.1)
  • 免疫组化-石蜡切片; 人类; 1:200
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Mol Med Rep (2014) ncbi
小鼠 单克隆(76B357.1)
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于. Nat Commun (2014) ncbi
圣克鲁斯生物技术
大鼠 单克隆(MTS510)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
圣克鲁斯生物技术Toll样受体4抗体(Santa Cruz, sc-13591)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(25)
  • 免疫印迹; 小鼠; 1:500; 图 1d
圣克鲁斯生物技术Toll样受体4抗体(Santa Cruz Biotechnology, 293072)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1d). Diabetologia (2021) ncbi
小鼠 单克隆(25)
  • 免疫印迹; 人类; 1:200; 图 3f
圣克鲁斯生物技术Toll样受体4抗体(Santa Cruz Biotechnology, sc-293072)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3f). Cancers (Basel) (2021) ncbi
小鼠 单克隆(25)
  • 免疫组化; 小鼠; 图 7
圣克鲁斯生物技术Toll样受体4抗体(Santa Cruz, sc-293072)被用于被用于免疫组化在小鼠样本上 (图 7). Front Cell Infect Microbiol (2021) ncbi
小鼠 单克隆(25)
  • 免疫印迹; 小鼠; 图 3b
圣克鲁斯生物技术Toll样受体4抗体(Santa Cruz Biotechnology, sc-293072)被用于被用于免疫印迹在小鼠样本上 (图 3b). Int J Mol Sci (2021) ncbi
小鼠 单克隆(25)
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术Toll样受体4抗体(Santa Cruz Biotechnologies, sc-293072)被用于被用于免疫印迹在人类样本上 (图 7a). PLoS Pathog (2020) ncbi
小鼠 单克隆(HTA125)
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术Toll样受体4抗体(Santa Cruz Biotechnologies, sc-13593)被用于被用于免疫印迹在人类样本上 (图 7a). PLoS Pathog (2020) ncbi
小鼠 单克隆(25)
  • 免疫印迹; 小鼠; 1:300; 图 s4b
圣克鲁斯生物技术Toll样受体4抗体(Santa Cruz, sc-293072)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 s4b). Cell Death Dis (2020) ncbi
小鼠 单克隆(25)
  • 免疫组化-石蜡切片; 犬; 1:500; 图 1
圣克鲁斯生物技术Toll样受体4抗体(ESanta Cruz Biotechnology, Heidelberg, Germany, sc-293,072)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:500 (图 1). BMC Vet Res (2020) ncbi
小鼠 单克隆(25)
  • 免疫印迹; 人类; 1:500; 图 s3a
圣克鲁斯生物技术Toll样受体4抗体(Santa Cruz, sc-293072)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s3a). Nat Immunol (2020) ncbi
小鼠 单克隆(25)
  • 免疫印迹; 人类; 1:1000; 图 8b
圣克鲁斯生物技术Toll样受体4抗体(Santa Cruz, sc293072)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8b). Br J Pharmacol (2018) ncbi
小鼠 单克隆(25)
  • 免疫沉淀; 大鼠; 1:100; 图 7
  • 免疫印迹; 大鼠; 1:50; 图 6
圣克鲁斯生物技术Toll样受体4抗体(Santa Cruz Biotechnology, sc-293072)被用于被用于免疫沉淀在大鼠样本上浓度为1:100 (图 7) 和 被用于免疫印迹在大鼠样本上浓度为1:50 (图 6). Int J Mol Med (2017) ncbi
小鼠 单克隆(HTA125)
  • 免疫印迹; 人类; 图 5d
圣克鲁斯生物技术Toll样受体4抗体(Santa Cruz, sc-13593)被用于被用于免疫印迹在人类样本上 (图 5d). Arterioscler Thromb Vasc Biol (2016) ncbi
大鼠 单克隆(MTS510)
  • 流式细胞仪; 小鼠
圣克鲁斯生物技术Toll样受体4抗体(Santa Cruz Biotechnology, sc-13591)被用于被用于流式细胞仪在小鼠样本上. Exp Mol Med (2014) ncbi
小鼠 单克隆(HTA125)
  • 抑制或激活实验; 人类; 100 ug/ml; 图 2
圣克鲁斯生物技术Toll样受体4抗体(Santa Cruz, sc-13593 L)被用于被用于抑制或激活实验在人类样本上浓度为100 ug/ml (图 2). Innate Immun (2014) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4g
赛默飞世尔Toll样受体4抗体(Invitrogen, 48-2300)被用于被用于免疫印迹在人类样本上 (图 4g). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:500; 图 2
赛默飞世尔Toll样受体4抗体(Invitrogen, #48-2300)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 2). Neurol Res Int (2020) ncbi
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类; 图 6
赛默飞世尔Toll样受体4抗体(eBioscience, HTA125)被用于被用于流式细胞仪在人类样本上 (图 6). J Leukoc Biol (2017) ncbi
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类; 图 1
  • 免疫组化; 人类; 图 2
赛默飞世尔Toll样受体4抗体(eBioscience, HTA125)被用于被用于流式细胞仪在人类样本上 (图 1) 和 被用于免疫组化在人类样本上 (图 2). Eur J Immunol (2017) ncbi
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类; 图 6b
赛默飞世尔Toll样受体4抗体(eBioscience, 12-9917)被用于被用于流式细胞仪在人类样本上 (图 6b). Retrovirology (2017) ncbi
小鼠 单克隆(76B357.1)
  • 流式细胞仪; 人类; 图 1c
赛默飞世尔Toll样受体4抗体(Thermo Scientific, 76B357.1)被用于被用于流式细胞仪在人类样本上 (图 1c). J Immunol (2016) ncbi
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类; 图 1e
赛默飞世尔Toll样受体4抗体(eBioscience, HTA125)被用于被用于流式细胞仪在人类样本上 (图 1e). PLoS ONE (2016) ncbi
小鼠 单克隆(76B357.1)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛默飞世尔Toll样受体4抗体(Thermo Fisher Scientific, MA5-16216)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Mol Cells (2016) ncbi
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔Toll样受体4抗体(eBioscience, HTA125)被用于被用于流式细胞仪在人类样本上 (图 2). J Leukoc Biol (2016) ncbi
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔Toll样受体4抗体(eBioscience, 53-9917-41)被用于被用于流式细胞仪在人类样本上 (图 5). Stem Cell Reports (2016) ncbi
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类; 图 4c
赛默飞世尔Toll样受体4抗体(eBioscience, HTA125)被用于被用于流式细胞仪在人类样本上 (图 4c). PLoS ONE (2016) ncbi
小鼠 单克隆(HTA125)
  • 抑制或激活实验; 人类; 1-20 ug/ml
赛默飞世尔Toll样受体4抗体(eBioscience, HTA125)被用于被用于抑制或激活实验在人类样本上浓度为1-20 ug/ml. J Immunol (2014) ncbi
小鼠 单克隆(HTA125)
  • 免疫细胞化学; 人类
赛默飞世尔Toll样受体4抗体(eBioscience, 12-9917)被用于被用于免疫细胞化学在人类样本上. Sci Signal (2014) ncbi
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类
赛默飞世尔Toll样受体4抗体(eBioscience, HTA125)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类; 图 8
赛默飞世尔Toll样受体4抗体(eBioscience, HTA125)被用于被用于流式细胞仪在人类样本上 (图 8). Retrovirology (2013) ncbi
小鼠 单克隆(HTA125)
  • 抑制或激活实验; 人类; 图 3
赛默飞世尔Toll样受体4抗体(eBioscience, HTA125)被用于被用于抑制或激活实验在人类样本上 (图 3). J Immunol (2010) ncbi
小鼠 单克隆(HTA125)
  • 抑制或激活实验; 小鼠; 10 ug/ml
赛默飞世尔Toll样受体4抗体(eBioscience, HTA125)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml. J Neurosci (2009) ncbi
小鼠 单克隆(HTA125)
  • 免疫印迹; 人类; 图 4
赛默飞世尔Toll样受体4抗体(eBioscience, HTA125)被用于被用于免疫印迹在人类样本上 (图 4). J Virol (2008) ncbi
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类; 图 8
赛默飞世尔Toll样受体4抗体(eBioscience, HTA-125)被用于被用于流式细胞仪在人类样本上 (图 8). Eur J Immunol (2007) ncbi
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类
赛默飞世尔Toll样受体4抗体(eBiosciences, HTA125)被用于被用于流式细胞仪在人类样本上. J Immunol (2005) ncbi
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔Toll样受体4抗体(Zymed, HTA125)被用于被用于流式细胞仪在人类样本上 (图 1). J Leukoc Biol (2005) ncbi
Novus Biologicals
小鼠 单克隆(HTA125)
  • 流式细胞仪; 小鼠; 图 4b
Novus BiologicalsToll样受体4抗体(Novus Biologicals, NB100-56723)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Nat Commun (2021) ncbi
小鼠 单克隆(76B357.1)
  • 免疫细胞化学; 人类; 1:100; 图 4e
Novus BiologicalsToll样受体4抗体(Novus Biological, NB-10056566)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4e). Nat Commun (2019) ncbi
小鼠 单克隆(76B357.1)
  • 免疫细胞化学; pigs ; 1:50; 图 1c
  • 免疫印迹; pigs ; 1:500; 图 1b
Novus BiologicalsToll样受体4抗体(Novus, NB100-56566)被用于被用于免疫细胞化学在pigs 样本上浓度为1:50 (图 1c) 和 被用于免疫印迹在pigs 样本上浓度为1:500 (图 1b). BMC Vet Res (2019) ncbi
小鼠 单克隆(76B357.1)
  • 免疫印迹; 小鼠; 图 s2
Novus BiologicalsToll样受体4抗体(Novus Biologicals, NB100-56566SS)被用于被用于免疫印迹在小鼠样本上 (图 s2). Sci Rep (2018) ncbi
小鼠 单克隆(76B357.1)
  • 流式细胞仪; 大鼠; 图 s1a
Novus BiologicalsToll样受体4抗体(Novus Biologicals, 76B357.1)被用于被用于流式细胞仪在大鼠样本上 (图 s1a). PLoS ONE (2016) ncbi
小鼠 单克隆(76B357.1)
  • 免疫印迹; 小鼠; 1:1000; 图 s11
Novus BiologicalsToll样受体4抗体(Novus, NB100-56566)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s11). Sci Rep (2016) ncbi
小鼠 单克隆(76B357.1)
  • 免疫细胞化学; 小鼠
  • 免疫组化; 小鼠; 1:500; 图 1a
  • 免疫印迹; 小鼠
Novus BiologicalsToll样受体4抗体(Imgenex, 76B357.1)被用于被用于免疫细胞化学在小鼠样本上, 被用于免疫组化在小鼠样本上浓度为1:500 (图 1a) 和 被用于免疫印迹在小鼠样本上. J Cell Mol Med (2014) ncbi
BioLegend
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类; 图 2d
BioLegendToll样受体4抗体(BioLegend, HTA125)被用于被用于流式细胞仪在人类样本上 (图 2d). Rheumatology (Oxford) (2020) ncbi
小鼠 单克隆(HTA125)
  • 免疫印迹; 人类; 图 1a
BioLegendToll样受体4抗体(BioLegend, HTA125)被用于被用于免疫印迹在人类样本上 (图 1a). Thromb Res (2017) ncbi
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类; 图 4a
BioLegendToll样受体4抗体(BioLegend, HTA125)被用于被用于流式细胞仪在人类样本上 (图 4a). Sci Rep (2016) ncbi
小鼠 单克隆(HTA125)
  • 抑制或激活实验; 人类; 图 2a
BioLegendToll样受体4抗体(BioLegend, HTA125)被用于被用于抑制或激活实验在人类样本上 (图 2a). Sci Rep (2016) ncbi
小鼠 单克隆(HTA125)
  • 抑制或激活实验; 人类; 图 3
BioLegendToll样受体4抗体(Biolegend, HTA 125)被用于被用于抑制或激活实验在人类样本上 (图 3). Thromb Haemost (2016) ncbi
小鼠 单克隆(HTA125)
  • 抑制或激活实验; 人类; 图 3a
BioLegendToll样受体4抗体(Biolegend, HTA125)被用于被用于抑制或激活实验在人类样本上 (图 3a). Eur J Immunol (2016) ncbi
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类
BioLegendToll样受体4抗体(Biolegend, HTA125)被用于被用于流式细胞仪在人类样本上. Clin Exp Immunol (2014) ncbi
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类; 表 1
BioLegendToll样受体4抗体(Biolegend, HTA125)被用于被用于流式细胞仪在人类样本上 (表 1). Nat Immunol (2014) ncbi
安迪生物R&D
domestic goat 多克隆
安迪生物R&DToll样受体4抗体(R&D systems, AF1478)被用于. Nat Commun (2020) ncbi
小鼠 单克隆(610029)
  • 免疫印迹; 人类; 图 7f
安迪生物R&DToll样受体4抗体(R&D Systems, MAB14782)被用于被用于免疫印迹在人类样本上 (图 7f). J Virol (2017) ncbi
小鼠 单克隆(285227)
  • 免疫印迹; 人类; 图 6
安迪生物R&DToll样受体4抗体(R&D Systems, MAB1478)被用于被用于免疫印迹在人类样本上 (图 6). Biomed Res Int (2016) ncbi
小鼠 单克隆(610015)
  • 流式细胞仪; 人类; 图 st1
安迪生物R&DToll样受体4抗体(R&D Systems, FAB6248P)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(285227)
  • 免疫印迹; 人类
安迪生物R&DToll样受体4抗体(RnD, MAB-1478)被用于被用于免疫印迹在人类样本上. J Biomed Mater Res A (2015) ncbi
大鼠 单克隆(267518)
  • 免疫印迹; 小鼠; 图 7a
安迪生物R&DToll样受体4抗体(R&D, MAB2759)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Immunol (2012) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类; 表 1
伯乐(Bio-Rad)公司Toll样受体4抗体(AbD Serotec, MCA2061PE)被用于被用于流式细胞仪在人类样本上 (表 1). PLoS ONE (2016) ncbi
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类
伯乐(Bio-Rad)公司Toll样受体4抗体(AbD Serotec, MCA2061PE)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类
伯乐(Bio-Rad)公司Toll样受体4抗体(AbD Serotec, HTA125)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类
伯乐(Bio-Rad)公司Toll样受体4抗体(AbdSerotec, HTA125)被用于被用于流式细胞仪在人类样本上. Inflamm Bowel Dis (2014) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(3B6)
  • 免疫组化; 小鼠; 1:1000; 图 3d
  • 免疫印迹; 小鼠; 1:1000; 图 s1
  • 免疫组化; 人类; 1:1000; 图 2d
  • 免疫印迹; 人类; 1:1000; 图 s1
亚诺法生技股份有限公司Toll样受体4抗体(Abnova Corporation, H00007099-M02)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3d), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1), 被用于免疫组化在人类样本上浓度为1:1000 (图 2d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). J Histochem Cytochem (2016) ncbi
小鼠 单克隆(3B6)
  • 免疫印迹; 人类; 1:1000
亚诺法生技股份有限公司Toll样受体4抗体(Abnova, H00007099-M02)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
文章列表
  1. Guo D, Yamamoto M, Hernandez C, Khodadadi H, Baban B, Stranahan A. Beige adipocytes mediate the neuroprotective and anti-inflammatory effects of subcutaneous fat in obese mice. Nat Commun. 2021;12:4623 pubmed 出版商
  2. Gao Y, Sun Y, Ercan Sencicek A, King J, Akerberg B, Ma Q, et al. YAP/TEAD1 Complex Is a Default Repressor of Cardiac Toll-Like Receptor Genes. Int J Mol Sci. 2021;22: pubmed 出版商
  3. Jiang T, Xu S, Shen Y, Xu Y, Li Y. Genistein Attenuates Isoflurane-Induced Neuroinflammation by Inhibiting TLR4-Mediated Microglial-Polarization in vivo and in vitro. J Inflamm Res. 2021;14:2587-2600 pubmed 出版商
  4. Zhang X, Song L, Li L, Zhu B, Huo L, Hu Z, et al. Phosphatidylserine externalized on the colonic capillaries as a novel pharmacological target for IBD therapy. Signal Transduct Target Ther. 2021;6:235 pubmed 出版商
  5. Getachew A, Abbas N, You K, Yang Z, Hussain M, Huang X, et al. SAA1/TLR2 axis directs chemotactic migration of hepatic stellate cells responding to injury. iScience. 2021;24:102483 pubmed 出版商
  6. Zhang H, Li X, Wang J, Cheng Q, Shang Y, Wang G. Baicalin relieves Mycoplasma pneumoniae infection‑induced lung injury through regulating microRNA‑221 to inhibit the TLR4/NF‑κB signaling pathway. Mol Med Rep. 2021;24: pubmed 出版商
  7. Zhang W, Xiong L, Chen J, Tian Z, Liu J, Chen F, et al. Artemisinin Protects Porcine Mammary Epithelial Cells against Lipopolysaccharide-Induced Inflammatory Injury by Regulating the NF-κB and MAPK Signaling Pathways. Animals (Basel). 2021;11: pubmed 出版商
  8. López Gambero A, Rosell Valle C, Medina Vera D, Navarro J, Vargas A, Rivera P, et al. A Negative Energy Balance Is Associated with Metabolic Dysfunctions in the Hypothalamus of a Humanized Preclinical Model of Alzheimer's Disease, the 5XFAD Mouse. Int J Mol Sci. 2021;22: pubmed 出版商
  9. Lagosz Cwik K, Wielento A, Lipska W, Kantorowicz M, Darczuk D, Kaczmarzyk T, et al. hTERT-immortalized gingival fibroblasts respond to cytokines but fail to mimic primary cell responses to Porphyromonas gingivalis. Sci Rep. 2021;11:10770 pubmed 出版商
  10. Lindfors S, Polianskyte Prause Z, Bouslama R, Lehtonen E, Mannerla M, Nisen H, et al. Adiponectin receptor agonist AdipoRon ameliorates renal inflammation in diet-induced obese mice and endotoxin-treated human glomeruli ex vivo. Diabetologia. 2021;64:1866-1879 pubmed 出版商
  11. Ye S, Su L, Shan P, Ye B, Wu S, Liang G, et al. LCZ696 Attenuated Doxorubicin-Induced Chronic Cardiomyopathy Through the TLR2-MyD88 Complex Formation. Front Cell Dev Biol. 2021;9:654051 pubmed 出版商
  12. Loureiro J, Raimundo L, Calheiros J, Carvalho C, Barcherini V, Lima N, et al. Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers (Basel). 2021;13: pubmed 出版商
  13. Sun Y, Wu D, Zeng W, Chen Y, Guo M, Lu B, et al. The Role of Intestinal Dysbacteriosis Induced Arachidonic Acid Metabolism Disorder in Inflammaging in Atherosclerosis. Front Cell Infect Microbiol. 2021;11:618265 pubmed 出版商
  14. Watahiki A, Hoshikawa S, Chiba M, Egusa H, Fukumoto S, Inuzuka H. Deficiency of Lipin2 Results in Enhanced NF-κB Signaling and Osteoclast Formation in RAW-D Murine Macrophages. Int J Mol Sci. 2021;22: pubmed 出版商
  15. Iannucci A, Caneparo V, Raviola S, Debernardi I, Colangelo D, Miggiano R, et al. Toll-like receptor 4-mediated inflammation triggered by extracellular IFI16 is enhanced by lipopolysaccharide binding. PLoS Pathog. 2020;16:e1008811 pubmed 出版商
  16. Hu J, Wang H, Li X, Liu Y, Mi Y, Kong H, et al. Fibrinogen-like protein 2 aggravates nonalcoholic steatohepatitis via interaction with TLR4, eliciting inflammation in macrophages and inducing hepatic lipid metabolism disorder. Theranostics. 2020;10:9702-9720 pubmed 出版商
  17. El Obeid A, Alajmi H, Harbi M, Yahya W, Al Eidi H, Alaujan M, et al. Distinct anti-proliferative effects of herbal melanin on human acute monocytic leukemia THP-1 cells and embryonic kidney HEK293 cells. BMC Complement Med Ther. 2020;20:154 pubmed 出版商
  18. Chang H, Nie Y, Zhang N, Zhang X, Sun H, Mao Y, et al. MtOrt: an empirical mitochondrial amino acid substitution model for evolutionary studies of Orthoptera insects. BMC Evol Biol. 2020;20:57 pubmed 出版商
  19. Golzio Dos Santos S, Fernandes Gomes I, Fernandes de Oliveira Golzio A, Lopes Souto A, Scotti M, Fechine Tavares J, et al. Psychopharmacological effects of riparin III from Aniba riparia (Nees) Mez. (Lauraceae) supported by metabolic approach and multivariate data analysis. BMC Complement Med Ther. 2020;20:149 pubmed 出版商
  20. da Cruz I, Brochier Armanet C, Benavente R. The TERB1-TERB2-MAJIN complex of mouse meiotic telomeres dates back to the common ancestor of metazoans. BMC Evol Biol. 2020;20:55 pubmed 出版商
  21. Kim J, Jeong J, Jung J, Jeon H, Lee S, Lim J, et al. Immunological characteristics and possible pathogenic role of urinary CD11c+ macrophages in lupus nephritis. Rheumatology (Oxford). 2020;: pubmed 出版商
  22. Famakin B, Tsymbalyuk O, Tsymbalyuk N, Ivanova S, Woo S, Kwon M, et al. HMGB1 is a Potential Mediator of Astrocytic TLR4 Signaling Activation following Acute and Chronic Focal Cerebral Ischemia. Neurol Res Int. 2020;2020:3929438 pubmed 出版商
  23. Jun J, Lau L. CCN1 is an opsonin for bacterial clearance and a direct activator of Toll-like receptor signaling. Nat Commun. 2020;11:1242 pubmed 出版商
  24. Petrovic I, Pejnovic N, Ljujic B, Pavlovic S, Miletic Kovacevic M, Jeftic I, et al. Overexpression of Galectin 3 in Pancreatic β Cells Amplifies β-Cell Apoptosis and Islet Inflammation in Type-2 Diabetes in Mice. Front Endocrinol (Lausanne). 2020;11:30 pubmed 出版商
  25. Duan X, Liu X, Liu N, Huang Y, Jin Z, Zhang S, et al. Inhibition of keratinocyte necroptosis mediated by RIPK1/RIPK3/MLKL provides a protective effect against psoriatic inflammation. Cell Death Dis. 2020;11:134 pubmed 出版商
  26. von Rüden E, Gualtieri F, Schönhoff K, Reiber M, Wolf F, Baumgartner W, et al. Molecular alterations of the TLR4-signaling cascade in canine epilepsy. BMC Vet Res. 2020;16:18 pubmed 出版商
  27. Zhang S, Hu L, Jiang J, Li H, Wu Q, Ooi K, et al. HMGB1/RAGE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia. J Neuroinflammation. 2020;17:15 pubmed 出版商
  28. Zewinger S, Reiser J, Jankowski V, Alansary D, Hahm E, Triem S, et al. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat Immunol. 2020;21:30-41 pubmed 出版商
  29. Managò A, Audrito V, Mazzola F, Sorci L, Gaudino F, Gizzi K, et al. Extracellular nicotinate phosphoribosyltransferase binds Toll like receptor 4 and mediates inflammation. Nat Commun. 2019;10:4116 pubmed 出版商
  30. Bernardini C, Bertocchi M, Zannoni A, Salaroli R, Tubon I, Dothel G, et al. Constitutive and LPS-stimulated secretome of porcine Vascular Wall-Mesenchymal Stem Cells exerts effects on in vitro endothelial angiogenesis. BMC Vet Res. 2019;15:123 pubmed 出版商
  31. Bergqvist F, Carr A, Wheway K, Watkins B, Oppermann U, Jakobsson P, et al. Divergent roles of prostacyclin and PGE2 in human tendinopathy. Arthritis Res Ther. 2019;21:74 pubmed 出版商
  32. Bhattacharjee P, Keyel P. Cholesterol-dependent cytolysins impair pro-inflammatory macrophage responses. Sci Rep. 2018;8:6458 pubmed 出版商
  33. Lu Y, Kim N, Jiang Y, Zhang H, Zheng D, Zhu F, et al. Cambogin suppresses dextran sulphate sodium-induced colitis by enhancing Treg cell stability and function. Br J Pharmacol. 2018;175:1085-1099 pubmed 出版商
  34. Gasparotto J, Girardi C, Somensi N, Ribeiro C, Moreira J, Michels M, et al. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293:226-244 pubmed 出版商
  35. Chen X, Tang L, Fu Y, Wang Y, Han Z, Meng J. Paralemmin-3 contributes to lipopolysaccharide-induced inflammatory response and is involved in lipopolysaccharide-Toll-like receptor-4 signaling in alveolar macrophages. Int J Mol Med. 2017;40:1921-1931 pubmed 出版商
  36. Hally K, La Flamme A, Larsen P, Harding S. Platelet Toll-like receptor (TLR) expression and TLR-mediated platelet activation in acute myocardial infarction. Thromb Res. 2017;158:8-15 pubmed 出版商
  37. Shi Y, Zhang X, Chen C, Tang M, Wang Z, Liang X, et al. Schisantherin A attenuates ischemia/reperfusion-induced neuronal injury in rats via regulation of TLR4 and C5aR1 signaling pathways. Brain Behav Immun. 2017;66:244-256 pubmed 出版商
  38. Bzowska M, Nogieć A, Bania K, Zygmunt M, Zarebski M, Dobrucki J, et al. Involvement of cell surface 90 kDa heat shock protein (HSP90) in pattern recognition by human monocyte-derived macrophages. J Leukoc Biol. 2017;102:763-774 pubmed 出版商
  39. Mitterreiter J, Ouwendijk W, van Velzen M, van Nierop G, Osterhaus A, Verjans G. Satellite glial cells in human trigeminal ganglia have a broad expression of functional Toll-like receptors. Eur J Immunol. 2017;47:1181-1187 pubmed 出版商
  40. Peng J, Wu Y, Tian X, Pang J, Kuai L, Cao F, et al. High-Throughput Sequencing and Co-Expression Network Analysis of lncRNAs and mRNAs in Early Brain Injury Following Experimental Subarachnoid Haemorrhage. Sci Rep. 2017;7:46577 pubmed 出版商
  41. Rong H, Zhao Z, Feng J, Lei Y, Wu H, Sun R, et al. The effects of dexmedetomidine pretreatment on the pro- and anti-inflammation systems after spinal cord injury in rats. Brain Behav Immun. 2017;64:195-207 pubmed 出版商
  42. Alvarez Carbonell D, Garcia Mesa Y, Milne S, Das B, Dobrowolski C, Rojas R, et al. Toll-like receptor 3 activation selectively reverses HIV latency in microglial cells. Retrovirology. 2017;14:9 pubmed 出版商
  43. Dakin S, Buckley C, Al Mossawi M, Hedley R, Martinez F, Wheway K, et al. Persistent stromal fibroblast activation is present in chronic tendinopathy. Arthritis Res Ther. 2017;19:16 pubmed 出版商
  44. Luo L, Bokil N, Wall A, Kapetanovic R, Lansdaal N, Marceline F, et al. SCIMP is a transmembrane non-TIR TLR adaptor that promotes proinflammatory cytokine production from macrophages. Nat Commun. 2017;8:14133 pubmed 出版商
  45. Cianciola N, Chung S, Manor D, Carlin C. Adenovirus Modulates Toll-Like Receptor 4 Signaling by Reprogramming ORP1L-VAP Protein Contacts for Cholesterol Transport from Endosomes to the Endoplasmic Reticulum. J Virol. 2017;91: pubmed 出版商
  46. Hadadi E, Zhang B, Baidžajevas K, Yusof N, Puan K, Ong S, et al. Differential IL-1? secretion by monocyte subsets is regulated by Hsp27 through modulating mRNA stability. Sci Rep. 2016;6:39035 pubmed 出版商
  47. Rigo Adrover M, Franch A, Castell M, Pérez Cano F. Preclinical Immunomodulation by the Probiotic Bifidobacterium breve M-16V in Early Life. PLoS ONE. 2016;11:e0166082 pubmed 出版商
  48. van Haren S, Dowling D, Foppen W, Christensen D, Andersen P, Reed S, et al. Age-Specific Adjuvant Synergy: Dual TLR7/8 and Mincle Activation of Human Newborn Dendritic Cells Enables Th1 Polarization. J Immunol. 2016;197:4413-4424 pubmed
  49. Sadeghi K, Wisgrill L, Wessely I, Diesner S, Schuller S, Dürr C, et al. GM-CSF Down-Regulates TLR Expression via the Transcription Factor PU.1 in Human Monocytes. PLoS ONE. 2016;11:e0162667 pubmed 出版商
  50. An L, Gorman J, Stephens G, Swerdlow B, Warrener P, Bonnell J, et al. Complement C5a induces PD-L1 expression and acts in synergy with LPS through Erk1/2 and JNK signaling pathways. Sci Rep. 2016;6:33346 pubmed 出版商
  51. Chen N, Xia X, Qin L, Luo L, Han S, Wang G, et al. Effects of 8-Week Hatha Yoga Training on Metabolic and Inflammatory Markers in Healthy, Female Chinese Subjects: A Randomized Clinical Trial. Biomed Res Int. 2016;2016:5387258 pubmed 出版商
  52. Fujita K, Motoki K, Tagawa K, Chen X, Hama H, Nakajima K, et al. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer's disease. Sci Rep. 2016;6:31895 pubmed 出版商
  53. Shi D, Shi G, Xie J, Du X, Yang H. MicroRNA-27a Inhibits Cell Migration and Invasion of Fibroblast-Like Synoviocytes by Targeting Follistatin-Like Protein 1 in Rheumatoid Arthritis. Mol Cells. 2016;39:611-8 pubmed 出版商
  54. Aldabbous L, Abdul Salam V, McKinnon T, Duluc L, Pepke Zaba J, Southwood M, et al. Neutrophil Extracellular Traps Promote Angiogenesis: Evidence From Vascular Pathology in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol. 2016;36:2078-87 pubmed 出版商
  55. Garcia P, Seiva F, Carniato A, de Mello Júnior W, Duran N, Macedo A, et al. Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier. BMC Cancer. 2016;16:422 pubmed 出版商
  56. Huhta H, Helminen O, Kauppila J, Salo T, Porvari K, Saarnio J, et al. The Expression of Toll-like Receptors in Normal Human and Murine Gastrointestinal Organs and the Effect of Microbiome and Cancer. J Histochem Cytochem. 2016;64:470-82 pubmed 出版商
  57. Pagano S, Carbone F, Burger F, Roth A, Bertolotto M, Pane B, et al. Anti-apolipoprotein A-1 auto-antibodies as active modulators of atherothrombosis. Thromb Haemost. 2016;116:554-64 pubmed 出版商
  58. Cheng W, van Asten S, Burns L, Evans H, Walter G, Hashim A, et al. Periodontitis-associated pathogens P. gingivalis and A. actinomycetemcomitans activate human CD14(+) monocytes leading to enhanced Th17/IL-17 responses. Eur J Immunol. 2016;46:2211-21 pubmed 出版商
  59. Gren S, Janciauskiene S, Sandeep S, Jonigk D, Kvist P, Gerwien J, et al. The protease inhibitor cystatin C down-regulates the release of IL-? and TNF-? in lipopolysaccharide activated monocytes. J Leukoc Biol. 2016;100:811-822 pubmed
  60. Wang X, Wan H, Wei X, Zhang Y, Qu P. CLI-095 decreases atherosclerosis by modulating foam cell formation in apolipoprotein E-deficient mice. Mol Med Rep. 2016;14:49-56 pubmed 出版商
  61. Sominsky L, Ziko I, Soch A, Smith J, Spencer S. Neonatal overfeeding induces early decline of the ovarian reserve: Implications for the role of leptin. Mol Cell Endocrinol. 2016;431:24-35 pubmed 出版商
  62. Lindsay S, Johnstone S, McGrath M, Mallinson D, Barnett S. Comparative miRNA-Based Fingerprinting Reveals Biological Differences in Human Olfactory Mucosa- and Bone-Marrow-Derived Mesenchymal Stromal Cells. Stem Cell Reports. 2016;6:729-742 pubmed 出版商
  63. Fan H, Qi D, Yu C, Zhao F, Liu T, Zhang Z, et al. Paeonol protects endotoxin-induced acute kidney injury: potential mechanism of inhibiting TLR4-NF-?B signal pathway. Oncotarget. 2016;7:39497-39510 pubmed 出版商
  64. Hiraku Y, Guo F, Ma N, Yamada T, Wang S, Kawanishi S, et al. Multi-walled carbon nanotube induces nitrative DNA damage in human lung epithelial cells via HMGB1-RAGE interaction and Toll-like receptor 9 activation. Part Fibre Toxicol. 2016;13:16 pubmed 出版商
  65. Leng Y, Yi M, Fan J, Bai Y, Ge Q, Yao G. Effects of acute intra-abdominal hypertension on multiple intestinal barrier functions in rats. Sci Rep. 2016;6:22814 pubmed 出版商
  66. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  67. Zwolak A, SÅ‚abczyÅ„ska O, Semeniuk J, Daniluk J, Szuster Ciesielska A. Metformin Changes the Relationship between Blood Monocyte Toll-Like Receptor 4 Levels and Nonalcoholic Fatty Liver Disease-Ex Vivo Studies. PLoS ONE. 2016;11:e0150233 pubmed 出版商
  68. Steiner M, Hawranek T, Schneider M, Ferreira F, Horejs Hoeck J, Harrer A, et al. Elevated Toll-Like Receptor-Induced CXCL8 Secretion in Human Blood Basophils from Allergic Donors Is Independent of Toll-Like Receptor Expression Levels. PLoS ONE. 2016;11:e0149275 pubmed 出版商
  69. Lai C, Wang K, Lee F, Tsai H, Ma C, Cheng T, et al. Toll-Like Receptor 4 Is Essential in the Development of Abdominal Aortic Aneurysm. PLoS ONE. 2016;11:e0146565 pubmed 出版商
  70. Li G, Wu X, Yang L, He Y, Liu Y, Jin X, et al. TLR4-mediated NF-κB signaling pathway mediates HMGB1-induced pancreatic injury in mice with severe acute pancreatitis. Int J Mol Med. 2016;37:99-107 pubmed 出版商
  71. Zwolak A, Szuster Ciesielska A, Daniluk J, SÅ‚abczyÅ„ska O, Kandefer SzerszeÅ„ M. Hyperreactivity of Blood Leukocytes in Patients with NAFLD to Ex Vivo Lipopolysaccharide Treatment Is Modulated by Metformin and Phosphatidylcholine but Not by Alpha Ketoglutarate. PLoS ONE. 2015;10:e0143851 pubmed 出版商
  72. Nozako M, Koyama T, Nagano C, Sato M, Matsumoto S, Mitani K, et al. An Atherogenic Paigen-Diet Aggravates Nephropathy in Type 2 Diabetic OLETF Rats. PLoS ONE. 2015;10:e0143979 pubmed 出版商
  73. Shin W, Jeon M, Leem E, Won S, Jeong K, Park S, et al. Induction of microglial toll-like receptor 4 by prothrombin kringle-2: a potential pathogenic mechanism in Parkinson's disease. Sci Rep. 2015;5:14764 pubmed 出版商
  74. Hwang S, Cho H, Park S, Lee W, Lee H, Lee D, et al. Characteristics of Human Turbinate-Derived Mesenchymal Stem Cells Are Not Affected by Allergic Condition of Donor. PLoS ONE. 2015;10:e0138041 pubmed 出版商
  75. Feng Y, Guo H, Yuan F, Shen M. Lipopolysaccharide Promotes Choroidal Neovascularization by Up-Regulation of CXCR4 and CXCR7 Expression in Choroid Endothelial Cell. PLoS ONE. 2015;10:e0136175 pubmed 出版商
  76. Lin J, Du Y, Cai W, Kuang R, Chang T, Zhang Z, et al. Toll-like receptor 4 signaling in neurons of trigeminal ganglion contributes to nociception induced by acute pulpitis in rats. Sci Rep. 2015;5:12549 pubmed 出版商
  77. Pohjanen V, Koivurova O, Huhta H, Helminen O, Mäkinen J, Karhukorpi J, et al. Toll-Like Receptor 4 Wild Type Homozygozity of Polymorphisms +896 and +1196 Is Associated with High Gastrin Serum Levels and Peptic Ulcer Risk. PLoS ONE. 2015;10:e0131553 pubmed 出版商
  78. Wang L, Liu X, Chen H, Chen Z, Weng X, Qiu T, et al. Picroside II protects rat kidney against ischemia/reperfusion-induced oxidative stress and inflammation by the TLR4/NF-κB pathway. Exp Ther Med. 2015;9:1253-1258 pubmed
  79. Thompson I, Mann E, Stokes M, English N, Knight S, Williamson D. Specific activation of dendritic cells enhances clearance of Bacillus anthracis following infection. PLoS ONE. 2014;9:e109720 pubmed 出版商
  80. Landy J, Al Hassi H, Ronde E, English N, Mann E, Bernardo D, et al. Innate immune factors in the development and maintenance of pouchitis. Inflamm Bowel Dis. 2014;20:1942-9 pubmed 出版商
  81. Davey M, Morgan M, Liuzzi A, Tyler C, Khan M, Szakmany T, et al. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J Immunol. 2014;193:3704-3716 pubmed 出版商
  82. Wang X, Xiong M, Zeng Y, Sun X, Gong T, Zhang Z. Mechanistic studies of a novel mycophenolic acid-glucosamine conjugate that attenuates renal ischemia/reperfusion injury in rat. Mol Pharm. 2014;11:3503-14 pubmed 出版商
  83. Weng H, Liu H, Deng Y, Xie Y, Shen G. Effects of high mobility group protein box 1 and toll like receptor 4 pathway on warts caused by human papillomavirus. Mol Med Rep. 2014;10:1765-71 pubmed 出版商
  84. Kyriakidis N, Kapsogeorgou E, Gourzi V, Konsta O, Baltatzis G, Tzioufas A. Toll-like receptor 3 stimulation promotes Ro52/TRIM21 synthesis and nuclear redistribution in salivary gland epithelial cells, partially via type I interferon pathway. Clin Exp Immunol. 2014;178:548-60 pubmed 出版商
  85. Liaunardy Jopeace A, Bryant C, Gay N. The COP II adaptor protein TMED7 is required to initiate and mediate the delivery of TLR4 to the plasma membrane. Sci Signal. 2014;7:ra70 pubmed 出版商
  86. McNally A, Anderson J. Phenotypic expression in human monocyte-derived interleukin-4-induced foreign body giant cells and macrophages in vitro: dependence on material surface properties. J Biomed Mater Res A. 2015;103:1380-90 pubmed 出版商
  87. Luo L, Wall A, Yeo J, Condon N, Norwood S, Schoenwaelder S, et al. Rab8a interacts directly with PI3K? to modulate TLR4-driven PI3K and mTOR signalling. Nat Commun. 2014;5:4407 pubmed 出版商
  88. Balan S, Ollion V, Colletti N, Chelbi R, Montanana Sanchis F, Liu H, et al. Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells. J Immunol. 2014;193:1622-35 pubmed 出版商
  89. Schuster A, Klotz M, Schwab T, Di Liddo R, Bertalot T, Schrenk S, et al. Maintenance of the enteric stem cell niche by bacterial lipopolysaccharides? Evidence and perspectives. J Cell Mol Med. 2014;18:1429-43 pubmed 出版商
  90. Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15:354-364 pubmed 出版商
  91. Jin Y, Wi H, Choi M, Hong S, Bae Y. Regulation of anti-inflammatory cytokines IL-10 and TGF-? in mouse dendritic cells through treatment with Clonorchis sinensis crude antigen. Exp Mol Med. 2014;46:e74 pubmed 出版商
  92. Babu R, Brown A. A consensus surface activation marker signature is partially dependent on human immunodeficiency virus type 1 Nef expression within productively infected macrophages. Retrovirology. 2013;10:155 pubmed 出版商
  93. Wang L, Yang H, Sun Y, Yu F, Wu X. Signaling mechanism for Aspergillus fumigatus tolerance in corneal fibroblasts induced by LPS pretreatment. Innate Immun. 2014;20:563-73 pubmed 出版商
  94. Xu L, Jin L, Zhang B, Akerlund L, Shu H, Cambier J. VISA is required for B cell expression of TLR7. J Immunol. 2012;188:248-58 pubmed 出版商
  95. Ahmad U, Ali R, Lebastchi A, Qin L, Lo S, Yakimov A, et al. IFN-gamma primes intact human coronary arteries and cultured coronary smooth muscle cells to double-stranded RNA- and self-RNA-induced inflammatory responses by upregulating TLR3 and melanoma differentiation-associated gene 5. J Immunol. 2010;185:1283-94 pubmed 出版商
  96. Reed Geaghan E, Savage J, Hise A, Landreth G. CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J Neurosci. 2009;29:11982-92 pubmed 出版商
  97. Nicol M, Mathys J, Pereira A, Ollington K, Ieong M, Skolnik P. Human immunodeficiency virus infection alters tumor necrosis factor alpha production via Toll-like receptor-dependent pathways in alveolar macrophages and U1 cells. J Virol. 2008;82:7790-8 pubmed 出版商
  98. Laudanski K, De A, Miller Graziano C. Exogenous heat shock protein 27 uniquely blocks differentiation of monocytes to dendritic cells. Eur J Immunol. 2007;37:2812-24 pubmed
  99. Sendide K, Reiner N, Lee J, Bourgoin S, Talal A, Hmama Z. Cross-talk between CD14 and complement receptor 3 promotes phagocytosis of mycobacteria: regulation by phosphatidylinositol 3-kinase and cytohesin-1. J Immunol. 2005;174:4210-9 pubmed
  100. Tunheim G, Schjetne K, Fredriksen A, Sandlie I, Bogen B. Human CD14 is an efficient target for recombinant immunoglobulin vaccine constructs that deliver T cell epitopes. J Leukoc Biol. 2005;77:303-10 pubmed