这是一篇来自已证抗体库的有关人类 肿瘤坏死因子甲 (TNF-alpha) 的综述,是根据351篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合肿瘤坏死因子甲 抗体。
肿瘤坏死因子甲 同义词: DIF; TNF-alpha; TNFA; TNFSF2; TNLG1F

其他
肿瘤坏死因子甲抗体(BioLegend, Mab11)被用于. J Immunol (2019) ncbi
肿瘤坏死因子甲抗体(BioLegend, Mab11)被用于. Infect Immun (2019) ncbi
  • 流式细胞仪; 人类; 图 6a
肿瘤坏死因子甲抗体(BioLegend, MAb11)被用于被用于流式细胞仪在人类样本上 (图 6a). Immunol Cell Biol (2019) ncbi
肿瘤坏死因子甲抗体(Biolegend, Mab11)被用于. Nat Commun (2018) ncbi
肿瘤坏死因子甲抗体(BioLegend, Mab11)被用于. J Exp Med (2018) ncbi
赛默飞世尔
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 1:100; 图 2b
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, 11-7349-41)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2b). Nat Commun (2022) ncbi
小鼠 单克隆(68B 3C5)
  • 酶联免疫吸附测定; 人类; 1:1000; 图 6d
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, AHC3419)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:1000 (图 6d). Commun Biol (2022) ncbi
小鼠 单克隆(68B2B3 and 68B6A3)
  • 酶联免疫吸附测定; 人类; 1:1000; 图 6d
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, AHC3712)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:1000 (图 6d). Commun Biol (2022) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 1:200; 图 6c, 6g
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, 17-7349-82)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 6c, 6g). Nat Commun (2021) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 1:40; 图 5e
赛默飞世尔肿瘤坏死因子甲抗体(ThermoFisher Scientific, 12-7349-41)被用于被用于流式细胞仪在人类样本上浓度为1:40 (图 5e). elife (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200; 图 7
赛默飞世尔肿瘤坏死因子甲抗体(Fisher, PIPA546945)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7). J Pharm Anal (2020) ncbi
小鼠 单克隆(2C8)
  • 免疫组化-石蜡切片; 人类; 1:1200; 图 2f
赛默飞世尔肿瘤坏死因子甲抗体(Thermo Fisher, 2C8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1200 (图 2f). BMC Nephrol (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:40; 图 5c
赛默飞世尔肿瘤坏死因子甲抗体(Thermofisher, PA5-46945)被用于被用于免疫组化在小鼠样本上浓度为1:40 (图 5c). Front Neurosci (2020) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 小鼠; 图 3j
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在小鼠样本上 (图 3j). Nature (2019) ncbi
domestic rabbit 多克隆
  • 抑制或激活实验; 人类; 40 ug/ml; 图 4c
赛默飞世尔肿瘤坏死因子甲抗体(Thermo, P300A)被用于被用于抑制或激活实验在人类样本上浓度为40 ug/ml (图 4c). Mol Cancer Res (2019) ncbi
小鼠 单克隆(MAb11)
  • 酶联免疫吸附测定; 人类; 图 5c
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAB11)被用于被用于酶联免疫吸附测定在人类样本上 (图 5c). J Immunol (2018) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, Mab11)被用于被用于流式细胞仪在人类样本上 (图 2a). J Immunol (2018) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 6b
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在人类样本上 (图 6b). Sci Rep (2018) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 3d
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在人类样本上 (图 3d). Ann Rheum Dis (2018) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 4f
赛默飞世尔肿瘤坏死因子甲抗体(eBiosciences, MAb11)被用于被用于流式细胞仪在人类样本上 (图 4f). Nature (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 3d
赛默飞世尔肿瘤坏死因子甲抗体(eBiosciences, MAb11)被用于被用于流式细胞仪在人类样本上 (图 3d). Oncoimmunology (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 s6d
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在人类样本上 (图 s6d). Science (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 猕猴; 图 s9
赛默飞世尔肿瘤坏死因子甲抗体(eBiosciences, MAB11)被用于被用于流式细胞仪在猕猴样本上 (图 s9). PLoS Pathog (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔肿瘤坏死因子甲抗体(eBiosciences, Mab11)被用于被用于流式细胞仪在人类样本上 (图 3b). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔肿瘤坏死因子甲抗体(Thermo Scientific, PA5-19810)被用于被用于免疫印迹在小鼠样本上 (图 2). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔肿瘤坏死因子甲抗体(eBiosciences, MAb11)被用于被用于流式细胞仪在人类样本上 (图 1a). Tuberculosis (Edinb) (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry A (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 s1d
赛默飞世尔肿瘤坏死因子甲抗体(eBiosciences, Mab11)被用于被用于流式细胞仪在人类样本上 (图 s1d). J Immunol (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在人类样本上 (图 3a). Int J Cancer (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 2c
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, Mab11)被用于被用于流式细胞仪在人类样本上 (图 2c). J Immunol (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔肿瘤坏死因子甲抗体(eBiosciences, MAb11)被用于被用于流式细胞仪在人类样本上 (图 2a). Eur J Immunol (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 7b
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在人类样本上 (图 7b). J Immunol (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 s5c
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在人类样本上 (图 s5c). Nat Commun (2016) ncbi
小鼠 单克隆(MAb11)
  • mass cytometry; 人类; 表 1, 3
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于mass cytometry在人类样本上 (表 1, 3). Methods Mol Biol (2016) ncbi
小鼠 单克隆(68B6A3 L1)
  • 免疫组化; pigs ; 1:75; 表 2
赛默飞世尔肿瘤坏死因子甲抗体(Invitrogen, 68B6A3 L1)被用于被用于免疫组化在pigs 样本上浓度为1:75 (表 2). Vet Microbiol (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 4a
赛默飞世尔肿瘤坏死因子甲抗体(eBiosciences, MAb11)被用于被用于流式细胞仪在人类样本上 (图 4a). Sci Rep (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; African green monkey; 图 5a
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在African green monkey样本上 (图 5a). Infect Immun (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 7
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在人类样本上 (图 7). Eur J Immunol (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 s2c
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在人类样本上 (图 s2c). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(MAb1)
  • 流式细胞仪; 人类; 图 s2c
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在人类样本上 (图 s2c). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, Mab11)被用于被用于流式细胞仪在人类样本上 (图 1b). Retrovirology (2015) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔肿瘤坏死因子甲抗体(eBio, 25-7349-82)被用于被用于流式细胞仪在人类样本上 (图 1). Clin Vaccine Immunol (2015) ncbi
小鼠 单克隆(MAb1)
  • 抑制或激活实验; 人类; 10 ug/ml; 图 3
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb1)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml (图 3). J Immunol (2015) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, Mab11)被用于被用于流式细胞仪在人类样本上 (图 2). Cancer Immunol Res (2015) ncbi
小鼠 单克隆(2TNF-H34A)
  • 抑制或激活实验; 人类; 图 4f
赛默飞世尔肿瘤坏死因子甲抗体(Thermo Fisher Scientific, 2TNF-H34A)被用于被用于抑制或激活实验在人类样本上 (图 4f). J Immunol (2015) ncbi
小鼠 单克隆(MAb1)
  • 酶联免疫吸附测定; 人类
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, 16?C7384?C85)被用于被用于酶联免疫吸附测定在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, Mab11)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol (2015) ncbi
小鼠 单克隆(MAb11)
  • 酶联免疫吸附测定; 人类; 1:250
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:250. Nat Commun (2014) ncbi
小鼠 单克隆(MAb1)
  • 酶联免疫吸附测定; 人类; 1:500
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb1)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:500. Nat Commun (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, Mab11)被用于被用于流式细胞仪在人类样本上 (图 2). J Infect Dis (2015) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在人类样本上. J Virol (2015) ncbi
小鼠 单克隆(MAb1)
  • 抑制或激活实验; 人类; 5 ug/ml
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb1)被用于被用于抑制或激活实验在人类样本上浓度为5 ug/ml. J Immunol (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在人类样本上. Vaccine (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 2B
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在人类样本上 (图 2B). J Immunol (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔肿瘤坏死因子甲抗体(eBiosciences, Mab11)被用于被用于流式细胞仪在人类样本上 (图 1a). J Infect Dis (2014) ncbi
小鼠 单克隆(MAb11)
  • 抑制或激活实验; 小鼠
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, 14-7349-85)被用于被用于抑制或激活实验在小鼠样本上. Neurobiol Dis (2014) ncbi
小鼠 单克隆(MAb1)
  • 流式细胞仪; 人类; 1 ug/ml; 图 3
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在人类样本上浓度为1 ug/ml (图 3). PLoS ONE (2013) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 1 ug/ml; 图 3
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在人类样本上浓度为1 ug/ml (图 3). PLoS ONE (2013) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔肿瘤坏死因子甲抗体(eBioscience, MAb11)被用于被用于流式细胞仪在人类样本上 (图 2). Ann Rheum Dis (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 1C
赛默飞世尔肿瘤坏死因子甲抗体(e-Bioscience, MAb11)被用于被用于流式细胞仪在人类样本上 (图 1C). Ann Rheum Dis (2008) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 5b
赛默飞世尔肿瘤坏死因子甲抗体(eBiosciences, Mab11)被用于被用于流式细胞仪在人类样本上 (图 5b). Virology (2007) ncbi
小鼠 单克隆(68B2B3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔肿瘤坏死因子甲抗体(BioSource, 68B2B3/68B6A3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Inflamm Bowel Dis (2007) ncbi
小鼠 单克隆(68B 3C5)
  • 酶联免疫吸附测定; 人类; 1:200; 图 2
赛默飞世尔肿瘤坏死因子甲抗体(BioSource, AHC3419)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:200 (图 2). J Immunol (2006) ncbi
小鼠 单克隆(68B2B3 and 68B6A3)
  • 免疫组化; pigs ; 1:100; 图 4
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B6A3)被用于被用于免疫组化在pigs 样本上浓度为1:100 (图 4). Diabetes Technol Ther (2006) ncbi
小鼠 单克隆(68B6A3 L1)
  • 免疫组化; pigs ; 1:100; 图 4
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B6A3)被用于被用于免疫组化在pigs 样本上浓度为1:100 (图 4). Diabetes Technol Ther (2006) ncbi
小鼠 单克隆(68B2B3)
  • 酶联免疫吸附测定; 人类
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B2B3)被用于被用于酶联免疫吸附测定在人类样本上. Immunology (2006) ncbi
小鼠 单克隆(68B 3C5)
  • 酶联免疫吸附测定; 人类; 表 2
赛默飞世尔肿瘤坏死因子甲抗体(BioSource, AHC3419)被用于被用于酶联免疫吸附测定在人类样本上 (表 2). J Biomol Screen (2006) ncbi
小鼠 单克隆(68B2B3 and 68B6A3)
  • 酶联免疫吸附测定; 人类; 表 2
赛默飞世尔肿瘤坏死因子甲抗体(BioSource, AHC3712)被用于被用于酶联免疫吸附测定在人类样本上 (表 2). J Biomol Screen (2006) ncbi
小鼠 单克隆(68B2B3 and 68B6A3)
  • 酶联免疫吸附测定; 人类; 8 ug/ml
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B 6A3)被用于被用于酶联免疫吸附测定在人类样本上浓度为8 ug/ml. Exp Gerontol (2006) ncbi
小鼠 单克隆(68B6A3 L1)
  • 酶联免疫吸附测定; 人类; 8 ug/ml
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B 6A3)被用于被用于酶联免疫吸附测定在人类样本上浓度为8 ug/ml. Exp Gerontol (2006) ncbi
小鼠 单克隆(68B2B3)
  • 酶联免疫吸附测定; 人类; 8 ug/ml
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B 2B3)被用于被用于酶联免疫吸附测定在人类样本上浓度为8 ug/ml. Exp Gerontol (2006) ncbi
小鼠 单克隆(68B6A3 L1)
  • 酶联免疫吸附测定; 人类; 图 4
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B6A3)被用于被用于酶联免疫吸附测定在人类样本上 (图 4). Clin Immunol (2005) ncbi
小鼠 单克隆(68B2B3 and 68B6A3)
  • 酶联免疫吸附测定; 人类; 图 4
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B6A3)被用于被用于酶联免疫吸附测定在人类样本上 (图 4). Clin Immunol (2005) ncbi
小鼠 单克隆(68B2B3)
  • 酶联免疫吸附测定; 人类; 图 4
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B2B3)被用于被用于酶联免疫吸附测定在人类样本上 (图 4). Clin Immunol (2005) ncbi
小鼠 单克隆(68B2B3)
  • 酶联免疫吸附测定; 人类; 图 4
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B2B3)被用于被用于酶联免疫吸附测定在人类样本上 (图 4). Aliment Pharmacol Ther (2005) ncbi
小鼠 单克隆(68B2B3 and 68B6A3)
  • 酶联免疫吸附测定; 人类; 图 1
赛默飞世尔肿瘤坏死因子甲抗体(BioSource, 68B6A3)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). Immunology (2005) ncbi
小鼠 单克隆(68B6A3 L1)
  • 酶联免疫吸附测定; 人类; 图 1
赛默飞世尔肿瘤坏死因子甲抗体(BioSource, 68B6A3)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). Immunology (2005) ncbi
小鼠 单克隆(68B2B3)
  • 酶联免疫吸附测定; 人类; 图 1
赛默飞世尔肿瘤坏死因子甲抗体(BioSource, 68B2B3)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). Immunology (2005) ncbi
小鼠 单克隆(68B 3C5)
  • 酶联免疫吸附测定; 人类
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B3C5)被用于被用于酶联免疫吸附测定在人类样本上. Eur J Biochem (2004) ncbi
小鼠 单克隆(68B6A3 L1)
  • 酶联免疫吸附测定; 人类
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B6A3)被用于被用于酶联免疫吸附测定在人类样本上. Eur J Biochem (2004) ncbi
小鼠 单克隆(68B2B3 and 68B6A3)
  • 酶联免疫吸附测定; 人类
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B6A3)被用于被用于酶联免疫吸附测定在人类样本上. Eur J Biochem (2004) ncbi
小鼠 单克隆(68B2B3)
  • 酶联免疫吸附测定; 人类
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B2B3)被用于被用于酶联免疫吸附测定在人类样本上. Eur J Biochem (2004) ncbi
小鼠 单克隆(68B 3C5)
  • 酶联免疫吸附测定; 人类; 4 ug/ml; 图 1
赛默飞世尔肿瘤坏死因子甲抗体(BIOSOURCE, AHC3419)被用于被用于酶联免疫吸附测定在人类样本上浓度为4 ug/ml (图 1). J Biol Chem (2003) ncbi
小鼠 单克隆(68B2B3 and 68B6A3)
  • 酶联免疫吸附测定; 人类; 5 ug/ml; 图 1
赛默飞世尔肿瘤坏死因子甲抗体(BIOSOURCE, AHC3712)被用于被用于酶联免疫吸附测定在人类样本上浓度为5 ug/ml (图 1). J Biol Chem (2003) ncbi
小鼠 单克隆(68B 3C5)
  • 酶联免疫吸附测定; 人类; 4 ug/ml; 图 2
赛默飞世尔肿瘤坏死因子甲抗体(BioSource, AHC3419)被用于被用于酶联免疫吸附测定在人类样本上浓度为4 ug/ml (图 2). J Immunol (2002) ncbi
小鼠 单克隆(68B2B3 and 68B6A3)
  • 酶联免疫吸附测定; 人类; 5 ug/ml; 图 2
赛默飞世尔肿瘤坏死因子甲抗体(BioSource, AHC3712)被用于被用于酶联免疫吸附测定在人类样本上浓度为5 ug/ml (图 2). J Immunol (2002) ncbi
小鼠 单克隆(68B2B3)
  • 酶联免疫吸附测定; 人类; 1 ug/ml
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B2B3)被用于被用于酶联免疫吸附测定在人类样本上浓度为1 ug/ml. Am J Physiol Endocrinol Metab (2002) ncbi
小鼠 单克隆(68B6A3 L1)
  • 酶联免疫吸附测定; 人类; 1 ug/ml
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B6A3)被用于被用于酶联免疫吸附测定在人类样本上浓度为1 ug/ml. Am J Physiol Endocrinol Metab (2002) ncbi
小鼠 单克隆(68B2B3 and 68B6A3)
  • 酶联免疫吸附测定; 人类; 1 ug/ml
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B6A3)被用于被用于酶联免疫吸附测定在人类样本上浓度为1 ug/ml. Am J Physiol Endocrinol Metab (2002) ncbi
小鼠 单克隆(68B6A3 L1)
  • 酶联免疫吸附测定; 人类
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B6A3)被用于被用于酶联免疫吸附测定在人类样本上. Endocrinology (2002) ncbi
小鼠 单克隆(68B2B3 and 68B6A3)
  • 酶联免疫吸附测定; 人类
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B6A3)被用于被用于酶联免疫吸附测定在人类样本上. Endocrinology (2002) ncbi
小鼠 单克隆(68B2B3)
  • 酶联免疫吸附测定; 人类
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B2B3)被用于被用于酶联免疫吸附测定在人类样本上. Endocrinology (2002) ncbi
小鼠 单克隆(68B 3C5)
  • 酶联免疫吸附测定; 人类
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, AHC3419)被用于被用于酶联免疫吸附测定在人类样本上. Blood (2001) ncbi
小鼠 单克隆(68B2B3 and 68B6A3)
  • 酶联免疫吸附测定; 人类
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, AHC3712)被用于被用于酶联免疫吸附测定在人类样本上. Blood (2001) ncbi
小鼠 单克隆(68B2B3)
  • 酶联免疫吸附测定; 人类; 图 1
赛默飞世尔肿瘤坏死因子甲抗体(Biosource/Medgenix Diagnostics, clone 68B2B3/68B6A3)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). Scand J Immunol (2001) ncbi
小鼠 单克隆(68B 3C5)
  • 酶联免疫吸附测定; 人类; 图 2, 3
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B3C5)被用于被用于酶联免疫吸附测定在人类样本上 (图 2, 3). Int Immunol (2001) ncbi
小鼠 单克隆(68B6A3 L1)
  • 酶联免疫吸附测定; 人类; 图 2, 3
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B6A3)被用于被用于酶联免疫吸附测定在人类样本上 (图 2, 3). Int Immunol (2001) ncbi
小鼠 单克隆(68B2B3 and 68B6A3)
  • 酶联免疫吸附测定; 人类; 图 2, 3
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B6A3)被用于被用于酶联免疫吸附测定在人类样本上 (图 2, 3). Int Immunol (2001) ncbi
小鼠 单克隆(68B2B3)
  • 酶联免疫吸附测定; 人类; 图 2, 3
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, 68B2B3)被用于被用于酶联免疫吸附测定在人类样本上 (图 2, 3). Int Immunol (2001) ncbi
小鼠 单克隆(68B2B3)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 2
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, noca)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 2). Neurochem Res (2000) ncbi
小鼠 单克隆(68B2B3)
  • 酶联免疫吸附测定; 人类; 图 1
赛默飞世尔肿瘤坏死因子甲抗体(BioSource, 68B2B3)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). J Immunol (2000) ncbi
小鼠 单克隆(68B2B3 and 68B6A3)
  • 酶联免疫吸附测定; 人类; 图 1
赛默飞世尔肿瘤坏死因子甲抗体(BioSource, 68B6A3)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). J Immunol (2000) ncbi
小鼠 单克隆(68B6A3 L1)
  • 酶联免疫吸附测定; 人类; 图 1
赛默飞世尔肿瘤坏死因子甲抗体(BioSource, 68B6A3)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). J Immunol (2000) ncbi
小鼠 单克隆(68B 3C5)
  • 酶联免疫吸附测定; 人类
赛默飞世尔肿瘤坏死因子甲抗体(BioSource, AHC3419)被用于被用于酶联免疫吸附测定在人类样本上. J Immunol (2000) ncbi
小鼠 单克隆(68B2B3 and 68B6A3)
  • 酶联免疫吸附测定; 人类
赛默飞世尔肿瘤坏死因子甲抗体(BioSource, AHC3712)被用于被用于酶联免疫吸附测定在人类样本上. J Immunol (2000) ncbi
小鼠 单克隆(68B 3C5)
  • 酶联免疫吸附测定; 人类
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, AHC3419)被用于被用于酶联免疫吸附测定在人类样本上. J Exp Med (1999) ncbi
小鼠 单克隆(68B2B3 and 68B6A3)
  • 酶联免疫吸附测定; 人类
赛默飞世尔肿瘤坏死因子甲抗体(Biosource, AHC3712)被用于被用于酶联免疫吸附测定在人类样本上. J Exp Med (1999) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 6e
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab1793)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 6e). Front Oncol (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7c
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫印迹在小鼠样本上 (图 7c). Signal Transduct Target Ther (2022) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1b
  • 免疫细胞化学; 小鼠; 1:100; 图 3c
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab1793)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3c). Nutrients (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5i
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫组化在小鼠样本上 (图 5i). Sci Adv (2022) ncbi
小鼠 单克隆(52B83)
  • 免疫组化; 大鼠; 图 5b
  • 免疫印迹; 大鼠; 1:1000; 图 1b
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab1793)被用于被用于免疫组化在大鼠样本上 (图 5b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1b). J Neuroinflammation (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 13h
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab9739)被用于被用于免疫组化在小鼠样本上 (图 13h). Mol Metab (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 11a
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 11a). J Neuroinflammation (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1f
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab66579)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:100; 图 8c
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 8c). J Neuroinflammation (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3a
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3a). BMC Musculoskelet Disord (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4d
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Nanoscale Res Lett (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫印迹在小鼠样本上. Redox Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3a
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫组化在小鼠样本上 (图 3a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1d
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫组化在人类样本上 (图 1d). Exp Ther Med (2021) ncbi
小鼠 单克隆(2.1_4E10-1H11)
  • 免疫印迹; 人类; 1:1000; 图 5d
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, Ab8348)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:800; 图 5a
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, Ab66579)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 5a). Brain Pathol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; domestic rabbit; 1:100; 图 1f, 8b
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab66579)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:100 (图 1f, 8b). Invest Ophthalmol Vis Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab9739)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Front Immunol (2020) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 5d
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab1793)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 5d). Front Pharmacol (2020) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹基因敲除验证; 小鼠; 图 s7b
  • 免疫印迹; 小鼠; 图 1a, 1c
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab1793)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 s7b) 和 被用于免疫印迹在小鼠样本上 (图 1a, 1c). Cell Discov (2020) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 图 e5e
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab183218)被用于被用于免疫印迹在小鼠样本上 (图 e5e). Nature (2020) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 人类; 图 6a
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab1793)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6a). elife (2020) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6a
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab1793)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6a). Front Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). PLoS ONE (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:800; 图 2a
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 2a). Stem Cells Dev (2020) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 8a
  • 免疫印迹; 小鼠; 图 8c
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab1793)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 8a) 和 被用于免疫印迹在小鼠样本上 (图 8c). Neurochem Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2e
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab66579)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2e). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6b
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6b). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4e
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab9739)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). CNS Neurosci Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 5c
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 5c). Oncotarget (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b). BMC Biotechnol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s2a-c
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2a-c). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). J Mol Cell Cardiol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1f
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab66579)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 8c
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 8c). J Neuroinflammation (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3a
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab9739)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). Exp Cell Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5k
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab9635)被用于被用于免疫印迹在人类样本上 (图 5k). Sci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:250; 图 6c
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, AB6671)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 6c). Ann Rheum Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Int J Mol Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 6a
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫印迹在大鼠样本上 (图 6a). J Neuroinflammation (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5). Am J Transl Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6a
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, AB6671)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6a). Parasitol Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6e
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6e). Infect Immun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:2000; 图 5
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab66579)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2000 (图 5). J Neuroinflammation (2016) ncbi
小鼠 单克隆(52B83)
  • 免疫组化; 小鼠; 图 3c
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, 52B83)被用于被用于免疫组化在小鼠样本上 (图 3c). Diabetes (2017) ncbi
小鼠 单克隆(P/T2)
  • 免疫组化; 人类; 1:1000; 图 6c
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab9579)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 6c). JCI Insight (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 牛; 1:100; 图 2c
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab66579)被用于被用于免疫组化在牛样本上浓度为1:100 (图 2c). Eur Cell Mater (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, AB6671)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Microbes Infect (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:150; 图 3
  • 免疫印迹; 大鼠; 图 4
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫组化在大鼠样本上浓度为1:150 (图 3) 和 被用于免疫印迹在大鼠样本上 (图 4). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(abcam, ab6671)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 3a). Acta Histochem (2016) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab1793)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2e
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab9635)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2e). Eneuro (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3b
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫组化在小鼠样本上 (图 3b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫组化在小鼠样本上 (图 3). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2d
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫组化在小鼠样本上 (图 2d). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 1:400; 图 4
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫印迹在pigs 样本上浓度为1:400 (图 4). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 10 ug/ml; 图 5
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为10 ug/ml (图 5). Lab Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab9739)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(abcam, ab66579)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(P/T2)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(AbCam, P/T2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1). BMC Gastroenterol (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab6671)被用于被用于免疫组化在人类样本上. Support Care Cancer (2016) ncbi
小鼠 单克隆(52B83)
  • 流式细胞仪; 人类; 图 5a
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab1793)被用于被用于流式细胞仪在人类样本上 (图 5a). Oncogene (2016) ncbi
小鼠 单克隆(52B83)
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab1793)被用于. Gene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab66579)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Biol Trace Elem Res (2016) ncbi
大鼠 单克隆(MP6-XT3)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab11564)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 大鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab1793)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Exp Ther Med (2015) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-自由浮动切片; 人类; 1:10
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab179)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:10. J Neuropathol Exp Neurol (2015) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab1793)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(52B83)
  • 免疫组化; 大鼠; 1:150; 图 3a
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab1793)被用于被用于免疫组化在大鼠样本上浓度为1:150 (图 3a). J Dent Res (2015) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab1793)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Toxicology (2014) ncbi
小鼠 单克隆(52B83)
  • 免疫组化; 人类; 1:20
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab1793)被用于被用于免疫组化在人类样本上浓度为1:20. Brain Pathol (2015) ncbi
小鼠 单克隆(52B83)
  • 免疫组化; 人类; 1:100; 图 5c
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab1793)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5c). Int Forum Allergy Rhinol (2014) ncbi
小鼠 单克隆(P/T2)
  • 免疫组化; 人类; 1:1000
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, P/T2)被用于被用于免疫组化在人类样本上浓度为1:1000. PLoS Pathog (2014) ncbi
小鼠 单克隆(52B83)
  • 免疫细胞化学; 小鼠; 2 ug/ml
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab1793)被用于被用于免疫细胞化学在小鼠样本上浓度为2 ug/ml 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Neurobiol Dis (2014) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab1793)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Food Chem Toxicol (2013) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-冰冻切片; 大鼠
  • 免疫细胞化学; 大鼠
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab1793)被用于被用于免疫组化-冰冻切片在大鼠样本上 和 被用于免疫细胞化学在大鼠样本上. Stroke (2013) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司肿瘤坏死因子甲抗体(Abcam, ab1793)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Toxicology (2013) ncbi
BioLegend
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 4i
BioLegend肿瘤坏死因子甲抗体(Biolegend, MAb11)被用于被用于流式细胞仪在人类样本上 (图 4i). PLoS ONE (2022) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 1:20; 图 6h
BioLegend肿瘤坏死因子甲抗体(BioLegend, 502909)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 6h). EMBO Mol Med (2022) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 1:100; 图 4i
BioLegend肿瘤坏死因子甲抗体(Biolegend, 502940)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 4i). Nat Med (2021) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 1c
BioLegend肿瘤坏死因子甲抗体(Biolegend, 502930)被用于被用于流式细胞仪在人类样本上 (图 1c). Cell Host Microbe (2021) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 s11g
BioLegend肿瘤坏死因子甲抗体(Biolegend, 502940)被用于被用于流式细胞仪在人类样本上 (图 s11g). Science (2021) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 2d
BioLegend肿瘤坏死因子甲抗体(Biolegend, Mab11)被用于被用于流式细胞仪在人类样本上 (图 2d). Acta Neuropathol (2021) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 3:50; 图 4a
BioLegend肿瘤坏死因子甲抗体(Biolegend, MAb11)被用于被用于流式细胞仪在人类样本上浓度为3:50 (图 4a). elife (2020) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 7c
BioLegend肿瘤坏死因子甲抗体(Biolegend, 502912)被用于被用于流式细胞仪在人类样本上 (图 7c). Am J Respir Crit Care Med (2021) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 4d
BioLegend肿瘤坏死因子甲抗体(Biolegend, 502909)被用于被用于流式细胞仪在人类样本上 (图 4d). Cell (2020) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 4b
BioLegend肿瘤坏死因子甲抗体(BioLegend, MAB11)被用于被用于流式细胞仪在人类样本上 (图 4b). J Immunother Cancer (2020) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 6d
BioLegend肿瘤坏死因子甲抗体(BioLegend, Mab11)被用于被用于流式细胞仪在人类样本上 (图 6d). Nature (2019) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 4b
BioLegend肿瘤坏死因子甲抗体(Biolegend, 502930)被用于被用于流式细胞仪在人类样本上 (图 4b). Cell Mol Gastroenterol Hepatol (2020) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 1b
BioLegend肿瘤坏死因子甲抗体(BioLegend, Mab11)被用于被用于流式细胞仪在人类样本上 (图 1b). J Immunol (2019) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 s7d
BioLegend肿瘤坏死因子甲抗体(BioLegend, 502909)被用于被用于流式细胞仪在人类样本上 (图 s7d). Immunity (2019) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 3b
BioLegend肿瘤坏死因子甲抗体(BioLegend, Mab11)被用于被用于流式细胞仪在人类样本上 (图 3b). Infect Immun (2019) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 3a
BioLegend肿瘤坏死因子甲抗体(BioLegend, 502930)被用于被用于流式细胞仪在人类样本上 (图 3a). Cell (2019) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 6a
BioLegend肿瘤坏死因子甲抗体(BioLegend, MAb11)被用于被用于流式细胞仪在人类样本上 (图 6a). Immunol Cell Biol (2019) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 3f
BioLegend肿瘤坏死因子甲抗体(Biolegend, Mab11)被用于被用于流式细胞仪在人类样本上 (图 3f). Cell Stem Cell (2019) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 2d
BioLegend肿瘤坏死因子甲抗体(BioLegend, 502930)被用于被用于流式细胞仪在人类样本上 (图 2d). Cell Rep (2018) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 8d
BioLegend肿瘤坏死因子甲抗体(Biolegend, Mab11)被用于被用于流式细胞仪在人类样本上 (图 8d). Nat Commun (2018) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 1:50; 图 1e
BioLegend肿瘤坏死因子甲抗体(Biolegend, 502928)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1e). Nat Med (2019) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 3c
BioLegend肿瘤坏死因子甲抗体(BioLegend, 502927)被用于被用于流式细胞仪在人类样本上 (图 3c). J Exp Med (2018) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 3a
BioLegend肿瘤坏死因子甲抗体(BioLegend, 502909)被用于被用于流式细胞仪在人类样本上 (图 3a). J Clin Invest (2018) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 7a
BioLegend肿瘤坏死因子甲抗体(Biolegend, 502944)被用于被用于流式细胞仪在人类样本上 (图 7a). Cell Rep (2018) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 3b
BioLegend肿瘤坏死因子甲抗体(BioLegend, Mab11)被用于被用于流式细胞仪在人类样本上 (图 3b). J Exp Med (2018) ncbi
小鼠 单克隆(MAb11)
  • 酶联免疫吸附测定; 人类; 图 3d
BioLegend肿瘤坏死因子甲抗体(BioLegend, 502915)被用于被用于酶联免疫吸附测定在人类样本上 (图 3d). Nat Commun (2018) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 2h
BioLegend肿瘤坏死因子甲抗体(BioLegend, Mab11)被用于被用于流式细胞仪在人类样本上 (图 2h). J Clin Invest (2018) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 1f
BioLegend肿瘤坏死因子甲抗体(BioLegend, MAb11)被用于被用于流式细胞仪在人类样本上 (图 1f). Immun Inflamm Dis (2018) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 2b
BioLegend肿瘤坏死因子甲抗体(Biolegend, Mab11)被用于被用于流式细胞仪在人类样本上 (图 2b). Front Immunol (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 s2b
BioLegend肿瘤坏死因子甲抗体(Biolegend, Mab11)被用于被用于流式细胞仪在人类样本上 (图 s2b). Nature (2017) ncbi
小鼠 单克隆(MAb11)
  • mass cytometry; 人类; 图 2a
BioLegend肿瘤坏死因子甲抗体(BioLegend, MAb11)被用于被用于mass cytometry在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 5b
BioLegend肿瘤坏死因子甲抗体(Biolegend, 502920)被用于被用于流式细胞仪在人类样本上 (图 5b). PLoS Pathog (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 4c
BioLegend肿瘤坏死因子甲抗体(BioLegend, 502920)被用于被用于流式细胞仪在人类样本上 (图 4c). Oncoimmunology (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 2a
BioLegend肿瘤坏死因子甲抗体(BioLegend, 502920)被用于被用于流式细胞仪在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 表 s9
BioLegend肿瘤坏死因子甲抗体(BioLegend, 502937)被用于被用于流式细胞仪在人类样本上 (表 s9). Nature (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 猕猴
BioLegend肿瘤坏死因子甲抗体(Biolegend, MAb11)被用于被用于流式细胞仪在猕猴样本上. PLoS Pathog (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 表 1
BioLegend肿瘤坏死因子甲抗体(BioLegend, MAb11)被用于被用于流式细胞仪在人类样本上 (表 1). J Exp Med (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 1a
BioLegend肿瘤坏死因子甲抗体(Biolegend, 502906)被用于被用于流式细胞仪在人类样本上 (图 1a). Retrovirology (2016) ncbi
小鼠 单克隆(MAb11)
  • 抑制或激活实验; 人类; 图 6a
BioLegend肿瘤坏死因子甲抗体(BioLegend, Mab11)被用于被用于抑制或激活实验在人类样本上 (图 6a). Sci Rep (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 1:10; 图 7b
BioLegend肿瘤坏死因子甲抗体(BioLegend, 502930)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 7b). Nat Biotechnol (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 2e
BioLegend肿瘤坏死因子甲抗体(BioLegend, MAb11)被用于被用于流式细胞仪在人类样本上 (图 2e). J Clin Invest (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 s9f
BioLegend肿瘤坏死因子甲抗体(Biolegend, MAb11)被用于被用于流式细胞仪在人类样本上 (图 s9f). Nature (2016) ncbi
小鼠 单克隆(MAb11)
BioLegend肿瘤坏死因子甲抗体(Biolegend, 502929)被用于. Nat Commun (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 s1e
BioLegend肿瘤坏死因子甲抗体(Biolegend, MAb11)被用于被用于流式细胞仪在人类样本上 (图 s1e). Eur J Immunol (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 6a
BioLegend肿瘤坏死因子甲抗体(Biolegend, MAb11)被用于被用于流式细胞仪在人类样本上 (图 6a). PLoS ONE (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 猕猴
BioLegend肿瘤坏死因子甲抗体(BioLegend, 502920)被用于被用于流式细胞仪在猕猴样本上. Nat Med (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; African green monkey; 图 1b
BioLegend肿瘤坏死因子甲抗体(BioLegend, Mab11)被用于被用于流式细胞仪在African green monkey样本上 (图 1b). J Med Primatol (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; pigs ; 图 7d
BioLegend肿瘤坏死因子甲抗体(Biolegend, MAb11)被用于被用于流式细胞仪在pigs 样本上 (图 7d). PLoS ONE (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 1
BioLegend肿瘤坏死因子甲抗体(Biolegend, MAb11)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 4b
BioLegend肿瘤坏死因子甲抗体(BioLegend, MAb11)被用于被用于流式细胞仪在人类样本上 (图 4b). Clin Cancer Res (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 3a
BioLegend肿瘤坏死因子甲抗体(biolegend, MAb11)被用于被用于流式细胞仪在人类样本上 (图 3a). J Immunol (2016) ncbi
小鼠 单克隆(MAb11)
  • 免疫细胞化学; 人类; 图 6
BioLegend肿瘤坏死因子甲抗体(BioLegend, MAb11)被用于被用于免疫细胞化学在人类样本上 (图 6). J Hematol Oncol (2015) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 1
BioLegend肿瘤坏死因子甲抗体(Biolegend, MAb11)被用于被用于流式细胞仪在人类样本上 (图 1). Mucosal Immunol (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; pigs
BioLegend肿瘤坏死因子甲抗体(BioLegend, MAb11)被用于被用于流式细胞仪在pigs 样本上. Vet Res (2015) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 2 ul/test
BioLegend肿瘤坏死因子甲抗体(Biolegend, MAb11)被用于被用于流式细胞仪在人类样本上浓度为2 ul/test. J Immunol Methods (2015) ncbi
小鼠 单克隆(MAb11)
  • dot blot; 人类; 表 s1
BioLegend肿瘤坏死因子甲抗体(Biolegend, 502902)被用于被用于dot blot在人类样本上 (表 s1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(MAb1)
  • dot blot; 人类; 表 s1
BioLegend肿瘤坏死因子甲抗体(Biolegend, 502802)被用于被用于dot blot在人类样本上 (表 s1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 1
BioLegend肿瘤坏死因子甲抗体(Biolegend, MAb11)被用于被用于流式细胞仪在人类样本上 (图 1). J Infect Dis (2015) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; pigs
BioLegend肿瘤坏死因子甲抗体(BioLegend, MAb11)被用于被用于流式细胞仪在pigs 样本上. Mol Immunol (2015) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 10,000 ug/ml; 图 3
BioLegend肿瘤坏死因子甲抗体(BioLegend, MAb11)被用于被用于流式细胞仪在人类样本上浓度为10,000 ug/ml (图 3). J Surg Res (2015) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 1:20
BioLegend肿瘤坏死因子甲抗体(BioLegend, MAb11)被用于被用于流式细胞仪在人类样本上浓度为1:20. Nat Med (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
BioLegend肿瘤坏死因子甲抗体(BioLegend, Mab11)被用于被用于流式细胞仪在人类样本上. Virol J (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 3a
BioLegend肿瘤坏死因子甲抗体(BioLegend, MAb11)被用于被用于流式细胞仪在人类样本上 (图 3a). Exp Gerontol (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 表 2
BioLegend肿瘤坏死因子甲抗体(BioLegend, MAB11)被用于被用于流式细胞仪在人类样本上 (表 2). J Infect Dis (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
BioLegend肿瘤坏死因子甲抗体(Biolegend, MAb11)被用于被用于流式细胞仪在人类样本上. Tuberculosis (Edinb) (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(4E1)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 7a
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa Cruz, 130349)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 7a). Arthritis Res Ther (2022) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 大鼠; 1:25; 图 1i
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa Cruz, sc-52746)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:25 (图 1i). Sci Rep (2022) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 7
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa Cruz, sc-52746)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 7). Biomed Res Int (2022) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-冰冻切片; 人类; 1:150; 图 1b, 4b, 7b
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa Cruz, sc- 52746)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:150 (图 1b, 4b, 7b). Cells (2021) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 11a
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa Cruz, sc-52746)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 11a). Front Immunol (2021) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 小鼠; 1:100; 图 5a
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa Cruz, sc-52746)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 5a). Sci Rep (2021) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; African green monkey; 1:200; 图 6j
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa Cruz, sc-52746)被用于被用于免疫组化-石蜡切片在African green monkey样本上浓度为1:200 (图 6j). Protein Cell (2021) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 8o
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa, sc52746)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 8o). PLoS Pathog (2020) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa Cruz, sc-52746)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7). Food Sci Nutr (2020) ncbi
小鼠 单克隆(4E1)
  • 免疫组化; 人类; 图 1
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa Cruz, sc-130349)被用于被用于免疫组化在人类样本上 (图 1). PLoS ONE (2020) ncbi
小鼠 单克隆(C-4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4a
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa Cruz, sc-133192)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4a). Cancers (Basel) (2020) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 3a
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa, sc-52746)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 3a). J Inflamm (Lond) (2020) ncbi
小鼠 单克隆(C-4)
  • 免疫印迹; 小鼠; 1:500; 图 4b
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa Cruz, sc-133192)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4b). Neuropharmacology (2020) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 大鼠; 1:500; 图 6a
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa, sc-52B83)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6a). J Pain Res (2018) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 小鼠; 1:3000; 图 3c
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa Cruz Biotechnology, SC-52746)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3c). Arterioscler Thromb Vasc Biol (2018) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa Cruz Biotechnology, Inc, sc-52746)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Mol Med Rep (2018) ncbi
小鼠 单克隆(52B83)
  • 免疫组化; 大鼠; 1:100; 图 4i
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa Cruz, sc-52746)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 4i). Pharmacol Res (2018) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 小鼠; 图 2b
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Bethyl, sc-52746)被用于被用于免疫印迹在小鼠样本上 (图 2b). Cell Metab (2017) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6g
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa Cruz Biotechnology, sc-52746)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6g). J Biomed Sci (2016) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
圣克鲁斯生物技术肿瘤坏死因子甲抗体(santa Cruz, sc-52746)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa Cruz, sc-52746)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5). Front Mol Neurosci (2016) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa Cruz, Sc52746)被用于被用于免疫印迹在人类样本上 (图 1). J Matern Fetal Neonatal Med (2016) ncbi
小鼠 单克隆(4E1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7
圣克鲁斯生物技术肿瘤坏死因子甲抗体(santa Cruz, sc-130349)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7). Oxid Med Cell Longev (2015) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa Cruz Biotechnology, sc-52746)被用于被用于免疫印迹在小鼠样本上 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa Cruz Biotechnology, SC52746)被用于被用于免疫印迹在大鼠样本上浓度为1:200. J Pineal Res (2015) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa Cruz Biotechnology, sc-52746)被用于被用于免疫印迹在小鼠样本上 (图 6). Respir Res (2014) ncbi
小鼠 单克隆(4E1)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术肿瘤坏死因子甲抗体(Santa Cruz Biotechnology, sc-130349)被用于被用于免疫印迹在大鼠样本上. Vascular (2015) ncbi
安迪生物R&D
domestic goat 多克隆
  • 酶联免疫吸附测定; 人类; 表 s7
安迪生物R&D肿瘤坏死因子甲抗体(R&D Systems, BAF210)被用于被用于酶联免疫吸附测定在人类样本上 (表 s7). Cell (2020) ncbi
domestic goat 多克隆
  • 抑制或激活实验; 人类; 3 ug/ml; 图 4a
安迪生物R&D肿瘤坏死因子甲抗体(R&D Systems, AF-410-NA)被用于被用于抑制或激活实验在人类样本上浓度为3 ug/ml (图 4a). Oncogene (2019) ncbi
domestic goat 多克隆
  • 抑制或激活实验; 小鼠; 0.5 ug/ml; 图 1f
安迪生物R&D肿瘤坏死因子甲抗体(R&D Systems, AF-410-NA)被用于被用于抑制或激活实验在小鼠样本上浓度为0.5 ug/ml (图 1f). Oxid Med Cell Longev (2019) ncbi
domestic goat 多克隆
  • 抑制或激活实验; 人类; 图 s2a
安迪生物R&D肿瘤坏死因子甲抗体(R&D Systems, AF210)被用于被用于抑制或激活实验在人类样本上 (图 s2a). Cell Death Dis (2017) ncbi
domestic goat 多克隆
  • 抑制或激活实验; 人类; 图 4
安迪生物R&D肿瘤坏死因子甲抗体(R&D Systems, AF-210-NA)被用于被用于抑制或激活实验在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(6402)
  • 流式细胞仪; 人类; 图 5
安迪生物R&D肿瘤坏死因子甲抗体(R&D Systems, IC210P)被用于被用于流式细胞仪在人类样本上 (图 5). Stem Cell Reports (2016) ncbi
domestic goat 多克隆
  • 酶联免疫吸附测定; 小鼠; 图 6
安迪生物R&D肿瘤坏死因子甲抗体(R&D Systems, AF-410-NA)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 6). Acta Neuropathol Commun (2016) ncbi
domestic goat 多克隆
  • 抑制或激活实验; 小鼠; 图 5
安迪生物R&D肿瘤坏死因子甲抗体(R&D Systems, AF-410-NA)被用于被用于抑制或激活实验在小鼠样本上 (图 5). Cell Mol Immunol (2017) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300; 图 3a
Novus Biologicals肿瘤坏死因子甲抗体(Novus Biologicals, NBP1-19532)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 3a). Diabetologia (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 小鼠; 图 s1a, s1b
Novus Biologicals肿瘤坏死因子甲抗体(Novus, NBP1-19532)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 s1a, s1b). Cell Discov (2020) ncbi
domestic rabbit 多克隆(L243)
  • 抑制或激活实验; 小鼠; 图 5b
Novus Biologicals肿瘤坏死因子甲抗体(Novus Biologicals, NB600-587)被用于被用于抑制或激活实验在小鼠样本上 (图 5b). J Endocrinol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 3
Novus Biologicals肿瘤坏死因子甲抗体(Novus Biologicals, nbp1-19532)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3). Arch Med Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 6
Novus Biologicals肿瘤坏死因子甲抗体(Novus Biologicals, NBP1-19532)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 6). Sci Rep (2016) ncbi
武汉菲恩生物科技
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:200; 图 3
武汉菲恩生物科技肿瘤坏死因子甲抗体(FineTest, FNab08821)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 3). Eur J Histochem (2021) ncbi
GeneTex
小鼠 单克隆(F6C5)
  • 酶联免疫吸附测定; 小鼠; 1 ug/ml; 图 4a
  • 免疫细胞化学; 人类; 图 4b
GeneTex肿瘤坏死因子甲抗体(Genetex, F6C5)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1 ug/ml (图 4a) 和 被用于免疫细胞化学在人类样本上 (图 4b). Glia (2014) ncbi
北京义翘神州
小鼠 单克隆(9A7A5G9)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类; 图 4
  • 酶联免疫吸附测定; 人类
  • 流式细胞仪; 小鼠
  • 酶联免疫吸附测定; 小鼠
北京义翘神州肿瘤坏死因子甲抗体(Sino Biological Inc, 10602-MM01)被用于被用于流式细胞仪在人类样本上, 被用于免疫细胞化学在人类样本上 (图 4), 被用于酶联免疫吸附测定在人类样本上, 被用于流式细胞仪在小鼠样本上 和 被用于酶联免疫吸附测定在小鼠样本上. Biosens Bioelectron (2015) ncbi
伯乐(Bio-Rad)公司
大鼠 单克隆(MP9-20A4)
  • 抑制或激活实验; 人类; 图 5b
伯乐(Bio-Rad)公司肿瘤坏死因子甲抗体(AbD Serotec, MCA1560)被用于被用于抑制或激活实验在人类样本上 (图 5b). Toxicol In Vitro (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3h
赛信通(上海)生物试剂有限公司肿瘤坏死因子甲抗体(Cell signaling, 3707)被用于被用于免疫印迹在小鼠样本上 (图 s3h). Acta Pharm Sin B (2022) ncbi
domestic rabbit 单克隆(D5G9)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司肿瘤坏死因子甲抗体(CST, 6945)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D5G9)
  • 免疫印迹; 人类; 图 1j
赛信通(上海)生物试剂有限公司肿瘤坏死因子甲抗体(Cell Signaling Technology, D5G9)被用于被用于免疫印迹在人类样本上 (图 1j). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8b
赛信通(上海)生物试剂有限公司肿瘤坏死因子甲抗体(Cell Signaling Technology, 3707S)被用于被用于免疫印迹在小鼠样本上 (图 8b). Heliyon (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司肿瘤坏死因子甲抗体(Cell Signaling Technology, 3707s)被用于被用于免疫印迹在小鼠样本上. J Cell Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司肿瘤坏死因子甲抗体(Cell Signaling, 3707)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Mol Metab (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 4g
赛信通(上海)生物试剂有限公司肿瘤坏死因子甲抗体(Cell Signaling Technology, 3707)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 4g). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司肿瘤坏死因子甲抗体(Cell Signaling, 3707)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Radiat Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3j
赛信通(上海)生物试剂有限公司肿瘤坏死因子甲抗体(Cell Signaling, 3707)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3j). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D1B4)
  • 抑制或激活实验; 大鼠; 图 s3d
赛信通(上海)生物试剂有限公司肿瘤坏死因子甲抗体(Cell Signaling, 7321)被用于被用于抑制或激活实验在大鼠样本上 (图 s3d). Nature (2017) ncbi
domestic rabbit 单克隆(D1B4)
  • 抑制或激活实验; 人类; 图 3b
赛信通(上海)生物试剂有限公司肿瘤坏死因子甲抗体(Cell Signaling, 7321)被用于被用于抑制或激活实验在人类样本上 (图 3b). Front Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司肿瘤坏死因子甲抗体(Cell Signaling Technology, 3707)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司肿瘤坏死因子甲抗体(Cell Signaling, 3707)被用于被用于免疫印迹在大鼠样本上 (图 3). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(D1B4)
  • 抑制或激活实验; 人类; 图 10
赛信通(上海)生物试剂有限公司肿瘤坏死因子甲抗体(Cell Signaling Technology, 7321S)被用于被用于抑制或激活实验在人类样本上 (图 10). J Virol (2016) ncbi
domestic rabbit 单克隆(D5G9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司肿瘤坏死因子甲抗体(Cell Signaling Technology, 6945)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(D1B4)
  • 其他; 人类; 图 5c
赛信通(上海)生物试剂有限公司肿瘤坏死因子甲抗体(Cell signaling, 7321)被用于被用于其他在人类样本上 (图 5c). Anticancer Agents Med Chem (2015) ncbi
domestic rabbit 单克隆(D1B4)
  • 抑制或激活实验; 人类
赛信通(上海)生物试剂有限公司肿瘤坏死因子甲抗体(Cell Signaling Technology, D1B4)被用于被用于抑制或激活实验在人类样本上. J Biol Chem (2014) ncbi
碧迪BD
小鼠 单克隆(MAb11)
  • 流式细胞仪; 小鼠; 图 3e
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, Mab11)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Mol Ther Oncolytics (2022) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 1:100; 图 3a
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, 557647)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3a). J Immunother Cancer (2022) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 1:400; 图 s5f
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, Mab11)被用于被用于流式细胞仪在人类样本上浓度为1:400 (图 s5f). Nature (2021) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子甲抗体(BD Bioscience, Mab11)被用于被用于流式细胞仪在人类样本上. Arthritis Res Ther (2021) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 2e
碧迪BD肿瘤坏死因子甲抗体(BD, Mab11)被用于被用于流式细胞仪在人类样本上 (图 2e). Rheumatology (Oxford) (2020) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 10e, 12e
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, 554512)被用于被用于流式细胞仪在人类样本上 (图 10e, 12e). Hum Vaccin Immunother (2020) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 3b
碧迪BD肿瘤坏死因子甲抗体(BD, 554513)被用于被用于流式细胞仪在人类样本上 (图 3b). Front Immunol (2019) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 3a
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, Mab11)被用于被用于流式细胞仪在人类样本上 (图 3a). Blood (2019) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 1b
碧迪BD肿瘤坏死因子甲抗体(BD, MAb11)被用于被用于流式细胞仪在人类样本上 (图 1b). J Virol (2019) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 s3a
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, MAb11)被用于被用于流式细胞仪在人类样本上 (图 s3a). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 5d
碧迪BD肿瘤坏死因子甲抗体(BD, 554512)被用于被用于流式细胞仪在人类样本上 (图 5d). J Clin Invest (2018) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 6h
碧迪BD肿瘤坏死因子甲抗体(BD, Mab11)被用于被用于流式细胞仪在人类样本上 (图 6h). Cancer Res (2018) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 3e
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, MAb11)被用于被用于流式细胞仪在人类样本上 (图 3e). J Clin Invest (2018) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 2g
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, 554512)被用于被用于流式细胞仪在人类样本上 (图 2g). Cell (2018) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 4b
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, Mab11)被用于被用于流式细胞仪在人类样本上 (图 4b). Front Immunol (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 7a
碧迪BD肿瘤坏死因子甲抗体(BD, MAb11)被用于被用于流式细胞仪在人类样本上 (图 7a). J Immunol (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 1a
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, MAb11)被用于被用于流式细胞仪在人类样本上 (图 1a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 3
碧迪BD肿瘤坏死因子甲抗体(BD Bioscience, MAb11)被用于被用于流式细胞仪在人类样本上 (图 3). Eur J Immunol (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 5a
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, Mab11)被用于被用于流式细胞仪在人类样本上 (图 5a). Science (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 5d
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, 557647)被用于被用于流式细胞仪在人类样本上 (图 5d). Oncoimmunology (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; African green monkey; 图 s4b
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, Mab11)被用于被用于流式细胞仪在African green monkey样本上 (图 s4b). Nature (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 5
碧迪BD肿瘤坏死因子甲抗体(BD, 557647)被用于被用于流式细胞仪在人类样本上 (图 5). Eur J Immunol (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子甲抗体(BD, 554514)被用于被用于流式细胞仪在人类样本上. Cell (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 小鼠; 图 s6d
碧迪BD肿瘤坏死因子甲抗体(BD pharmingen, MAb11)被用于被用于流式细胞仪在小鼠样本上 (图 s6d). Nature (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 6c
碧迪BD肿瘤坏死因子甲抗体(BD Bioscience, MAb11)被用于被用于流式细胞仪在人类样本上 (图 6c). Immunity (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 猕猴; 图 3a
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, MAb11)被用于被用于流式细胞仪在猕猴样本上 (图 3a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子甲抗体(BD Bioscience, MAb11)被用于被用于流式细胞仪在人类样本上. Sci Rep (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 猕猴; 表 1
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, MAb11)被用于被用于流式细胞仪在猕猴样本上 (表 1). Vaccine (2017) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; black flying fox; 图 6a
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, Mab11)被用于被用于流式细胞仪在black flying fox样本上 (图 6a). Sci Rep (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 猕猴; 图 8b
碧迪BD肿瘤坏死因子甲抗体(BD, 557647)被用于被用于流式细胞仪在猕猴样本上 (图 8b). Sci Rep (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 3b
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, mAb11)被用于被用于流式细胞仪在人类样本上 (图 3b). PLoS ONE (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 1b
碧迪BD肿瘤坏死因子甲抗体(BD, MAb11)被用于被用于流式细胞仪在人类样本上 (图 1b). Clin Immunol (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 3a
碧迪BD肿瘤坏死因子甲抗体(BD, 559321)被用于被用于流式细胞仪在人类样本上 (图 3a). Eur J Immunol (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 2g
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, MAb11)被用于被用于流式细胞仪在人类样本上 (图 2g). Sci Rep (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 s6
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, 554514)被用于被用于流式细胞仪在人类样本上 (图 s6). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 1
碧迪BD肿瘤坏死因子甲抗体(BD Pharmigen, 560679)被用于被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 6c
碧迪BD肿瘤坏死因子甲抗体(BD, MAb11)被用于被用于流式细胞仪在人类样本上 (图 6c). J Immunol (2016) ncbi
小鼠 单克隆(6401.1111)
  • 流式细胞仪; 人类; 图 1
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, 6401.111)被用于被用于流式细胞仪在人类样本上 (图 1). J Transl Med (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 6
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, MAb11)被用于被用于流式细胞仪在人类样本上 (图 6). J Transl Med (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 1:100; 图 3
碧迪BD肿瘤坏死因子甲抗体(Becton Dickinson, Mab11)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 表 2
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, MAb11)被用于被用于流式细胞仪在人类样本上 (表 2). Vaccine (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 猕猴
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, Mab11)被用于被用于流式细胞仪在猕猴样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 牛; 1:10; 表 2
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, 559321)被用于被用于流式细胞仪在牛样本上浓度为1:10 (表 2). Vet Parasitol (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子甲抗体(BD, 554512)被用于被用于流式细胞仪在人类样本上. Oncoimmunology (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 4a
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, MAb11)被用于被用于流式细胞仪在人类样本上 (图 4a). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 3b
碧迪BD肿瘤坏死因子甲抗体(BD Pharmingen, MAb11)被用于被用于流式细胞仪在人类样本上 (图 3b). PLoS ONE (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 猕猴; 图 3
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, Mab11)被用于被用于流式细胞仪在猕猴样本上 (图 3). J Virol (2016) ncbi
小鼠 单克隆(MAb1)
  • 流式细胞仪; 猕猴; 图 3
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, Mab11)被用于被用于流式细胞仪在猕猴样本上 (图 3). J Virol (2016) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 犬; 图 6
碧迪BD肿瘤坏死因子甲抗体(BD, 559321)被用于被用于流式细胞仪在犬样本上 (图 6). Acta Vet Scand (2015) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 4c
碧迪BD肿瘤坏死因子甲抗体(BD-PharMingen, 557647)被用于被用于流式细胞仪在人类样本上 (图 4c). Hum Vaccin Immunother (2016) ncbi
小鼠 单克隆(MAb1)
  • 流式细胞仪; 人类; 图 3
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, MAb11)被用于被用于流式细胞仪在人类样本上 (图 3). PLoS Pathog (2015) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 3
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, MAb11)被用于被用于流式细胞仪在人类样本上 (图 3). PLoS Pathog (2015) ncbi
小鼠 单克隆(6401.1111)
  • 流式细胞仪; 人类; 1:50; 图 s3
碧迪BD肿瘤坏死因子甲抗体(BD, 340534)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s3). Nat Commun (2015) ncbi
小鼠 单克隆(MAb1)
  • 流式细胞仪; South American squirrel monkey
  • 酶联免疫吸附测定; South American squirrel monkey
碧迪BD肿瘤坏死因子甲抗体(BD Bioscience, mAb1)被用于被用于流式细胞仪在South American squirrel monkey样本上 和 被用于酶联免疫吸附测定在South American squirrel monkey样本上. Malar J (2015) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子甲抗体(BD, MAb11)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, MAb11)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, Mab11)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 6:100; 图 3b
碧迪BD肿瘤坏死因子甲抗体(Becton Dickinson, MAb11)被用于被用于流式细胞仪在人类样本上浓度为6:100 (图 3b). Nat Commun (2015) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子甲抗体(BD, Mab11)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(MAb11)
  • 酶联免疫吸附测定; 人类; 图 1
碧迪BD肿瘤坏死因子甲抗体(BD Pharmingen, 554511)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(MAb1)
  • 酶联免疫吸附测定; 人类; 图 1
碧迪BD肿瘤坏死因子甲抗体(BD Pharmingen, 551220)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子甲抗体(BD Bioscience, MAb11)被用于被用于流式细胞仪在人类样本上. Immun Inflamm Dis (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子甲抗体(BD Pharmingen, MAb11)被用于被用于流式细胞仪在人类样本上. Chest (2015) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, MAB11)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(MAb11)
  • 免疫细胞化学; 人类
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, MAb11)被用于被用于免疫细胞化学在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 2
碧迪BD肿瘤坏死因子甲抗体(BD Pharmingen, clone Mab11)被用于被用于流式细胞仪在人类样本上 (图 2). Clin Immunol (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, Clone MAb11)被用于被用于流式细胞仪在人类样本上. Vaccine (2014) ncbi
小鼠 单克隆(MAb1)
  • 流式细胞仪; 猕猴
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, MAb11)被用于被用于流式细胞仪在猕猴样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 猕猴
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, MAb11)被用于被用于流式细胞仪在猕猴样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子甲抗体(BD Bioscience, MAb11)被用于被用于流式细胞仪在人类样本上. Med Microbiol Immunol (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子甲抗体(BD Bioscience, MAb11)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子甲抗体(BD, MAb11)被用于被用于流式细胞仪在人类样本上. Front Immunol (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 猕猴; 图 5b
碧迪BD肿瘤坏死因子甲抗体(BD, Mab11)被用于被用于流式细胞仪在猕猴样本上 (图 5b). J Immunol (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子甲抗体(BD, Mab11)被用于被用于流式细胞仪在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, MAb11)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(MAb11)
  • 酶联免疫吸附测定; 人类; 图 3
碧迪BD肿瘤坏死因子甲抗体(BD Biosciences, mAb 11)被用于被用于酶联免疫吸附测定在人类样本上 (图 3). Sci Transl Med (2014) ncbi
小鼠 单克隆(6401.1111)
  • 流式细胞仪; 人类
碧迪BD肿瘤坏死因子甲抗体(BD, 6401.1111)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 猕猴
碧迪BD肿瘤坏死因子甲抗体(BD, Mab11)被用于被用于流式细胞仪在猕猴样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(MAb11)
  • 流式细胞仪; 人类; 图 1
碧迪BD肿瘤坏死因子甲抗体(BD Pharmingen, clone MAb11)被用于被用于流式细胞仪在人类样本上 (图 1). Front Immunol (2014) ncbi
文章列表
  1. Pandey S, Shteinfer Kuzmine A, Chalifa Caspi V, Shoshan Barmatz V. Non-apoptotic activity of the mitochondrial protein SMAC/Diablo in lung cancer: Novel target to disrupt survival, inflammation, and immunosuppression. Front Oncol. 2022;12:992260 pubmed 出版商
  2. Tong J, Li D, Meng H, Sun D, Lan X, Ni M, et al. Targeting a novel inducible GPX4 alternative isoform to alleviate ferroptosis and treat metabolic-associated fatty liver disease. Acta Pharm Sin B. 2022;12:3650-3666 pubmed 出版商
  3. Jin Y, Lorvik K, Jin Y, Beck C, Sike A, Persiconi I, et al. Development of STEAP1 targeting chimeric antigen receptor for adoptive cell therapy against cancer. Mol Ther Oncolytics. 2022;26:189-206 pubmed 出版商
  4. Zhang L, Zheng D, Yan Y, Yu Y, Chen R, Li Z, et al. Myeloid cell-specific deletion of Capns1 prevents macrophage polarization toward the M1 phenotype and reduces interstitial lung disease in the bleomycin model of systemic sclerosis. Arthritis Res Ther. 2022;24:148 pubmed 出版商
  5. Shankar S, Stolp J, Juvet S, Beckett J, Macklin P, Issa F, et al. Ex vivo-expanded human CD19+TIM-1+ regulatory B cells suppress immune responses in vivo and are dependent upon the TIM-1/STAT3 axis. Nat Commun. 2022;13:3121 pubmed 出版商
  6. Formigari G, D xe1 tilo M, Vareda B, Bonfante I, Cavaglieri C, Lopes de Faria J, et al. Renal protection induced by physical exercise may be mediated by the irisin/AMPK axis in diabetic nephropathy. Sci Rep. 2022;12:9062 pubmed 出版商
  7. Hickman T, Choi E, Whiteman K, Muralidharan S, Pai T, Johnson T, et al. BOXR1030, an anti-GPC3 CAR with exogenous GOT2 expression, shows enhanced T cell metabolism and improved anti-cell line derived tumor xenograft activity. PLoS ONE. 2022;17:e0266980 pubmed 出版商
  8. Yu L, Zhang J, Gao A, Wang Z, Yu F, Guo X, et al. An intersegmental single-cell profile reveals aortic heterogeneity and identifies a novel Malat1+ vascular smooth muscle subtype involved in abdominal aortic aneurysm formation. Signal Transduct Target Ther. 2022;7:125 pubmed 出版商
  9. Gharanei S, Ramanjaneya M, Patel A, Patel V, Shabir K, Auld C, et al. NUCB2/Nesfatin-1 Reduces Obesogenic Diet Induced Inflammation in Mice Subcutaneous White Adipose Tissue. Nutrients. 2022;14: pubmed 出版商
  10. Zhou Q, Li J, Xiang Z, Zou H, Shao X. Amelioration of Renal Injury by Resveratrol in a Rat Renal Transplantation Model via Activation of the SIRT1/NF-κB Signaling Pathway. Biomed Res Int. 2022;2022:7140961 pubmed 出版商
  11. Xu J, Li Z, Tower R, Negri S, Wang Y, Meyers C, et al. NGF-p75 signaling coordinates skeletal cell migration during bone repair. Sci Adv. 2022;8:eabl5716 pubmed 出版商
  12. Zinngrebe J, Moepps B, Monecke T, Gierschik P, Schlichtig F, Barth T, et al. Compound heterozygous variants in OTULIN are associated with fulminant atypical late-onset ORAS. EMBO Mol Med. 2022;14:e14901 pubmed 出版商
  13. Bajor M, Graczyk Jarzynka A, Marhelava K, Burdzińska A, Muchowicz A, Góral A, et al. PD-L1 CAR effector cells induce self-amplifying cytotoxic effects against target cells. J Immunother Cancer. 2022;10: pubmed 出版商
  14. Rodriguez E, Boelaars K, Brown K, Madunić K, van Ee T, Dijk F, et al. Analysis of the glyco-code in pancreatic ductal adenocarcinoma identifies glycan-mediated immune regulatory circuits. Commun Biol. 2022;5:41 pubmed 出版商
  15. Yadav A, Huang T, Chen S, Ramasamy T, Hsueh Y, Lin S, et al. Sodium phenylbutyrate inhibits Schwann cell inflammation via HDAC and NFκB to promote axonal regeneration and remyelination. J Neuroinflammation. 2021;18:238 pubmed 出版商
  16. Poletti F, González Fernández R, García M, Rotoli D, Avila J, Mobasheri A, et al. Molecular-Morphological Relationships of the Scaffold Protein FKBP51 and Inflammatory Processes in Knee Osteoarthritis. Cells. 2021;10: pubmed 出版商
  17. Stoffel W, Binczek E, Schmidt Soltau I, Brodesser S, Wegner I. High fat / high cholesterol diet does not provoke atherosclerosis in the ω3-and ω6-polyunsaturated fatty acid synthesis-inactivated Δ6-fatty acid desaturase-deficient mouse. Mol Metab. 2021;54:101335 pubmed 出版商
  18. Xu X, Lei Y, Chen L, Zhou H, Liu H, Jiang J, et al. Phosphorylation of NF-κBp65 drives inflammation-mediated hepatocellular carcinogenesis and is a novel therapeutic target. J Exp Clin Cancer Res. 2021;40:253 pubmed 出版商
  19. Santana K, Righetti R, Breda C, Domínguez Amorocho O, Ramalho T, Dantas F, et al. Cholesterol-Ester Transfer Protein Alters M1 and M2 Macrophage Polarization and Worsens Experimental Elastase-Induced Pulmonary Emphysema. Front Immunol. 2021;12:684076 pubmed 出版商
  20. Petley E, Koay H, Henderson M, Sek K, Todd K, Keam S, et al. MAIT cells regulate NK cell-mediated tumor immunity. Nat Commun. 2021;12:4746 pubmed 出版商
  21. Mohamed A, El Magd M, El Said K, El Sharnouby M, Tousson E, Salama A. Potential therapeutic effect of thymoquinone and/or bee pollen on fluvastatin-induced hepatitis in rats. Sci Rep. 2021;11:15688 pubmed 出版商
  22. Oberhardt V, Luxenburger H, Kemming J, Schulien I, Ciminski K, Giese S, et al. Rapid and stable mobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine. Nature. 2021;597:268-273 pubmed 出版商
  23. Spiegel J, Patel S, Muffly L, Hossain N, Oak J, Baird J, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med. 2021;27:1419-1431 pubmed 出版商
  24. Xiao J, Cai T, Fang Y, Liu R, Flores J, Wang W, et al. Activation of GPR40 attenuates neuroinflammation and improves neurological function via PAK4/CREB/KDM6B pathway in an experimental GMH rat model. J Neuroinflammation. 2021;18:160 pubmed 出版商
  25. Cao Y, Huang W, Wu F, Shang J, Ping F, Wang W, et al. ZFP36 protects lungs from intestinal I/R-induced injury and fibrosis through the CREBBP/p53/p21/Bax pathway. Cell Death Dis. 2021;12:685 pubmed 出版商
  26. Li H, Yang Q, Wang W, Tian X, Feng F, Zhang S, et al. Red nucleus IL-33 facilitates the early development of mononeuropathic pain in male rats by inducing TNF-α through activating ERK, p38 MAPK, and JAK2/STAT3. J Neuroinflammation. 2021;18:150 pubmed 出版商
  27. Jeong D, Kim H, Kim H, Kang M, Jung H, Oh Y, et al. Soluble Fas ligand drives autoantibody-induced arthritis by binding to DR5/TRAIL-R2. elife. 2021;10: pubmed 出版商
  28. Motozono C, Toyoda M, Zahradník J, Saito A, Nasser H, Tan T, et al. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe. 2021;29:1124-1136.e11 pubmed 出版商
  29. Ramos M, Tian L, de Ruiter E, Song C, Paucarmayta A, Singh A, et al. Cancer immunotherapy by NC410, a LAIR-2 Fc protein blocking human LAIR-collagen interaction. elife. 2021;10: pubmed 出版商
  30. Zhang H, Li J, Ren J, Sun S, Ma S, Zhang W, et al. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell. 2021;12:695-716 pubmed 出版商
  31. Chen L, Cheng S, Sun K, Wang J, Liu X, Zhao Y, et al. Changes in macrophage and inflammatory cytokine expressions during fracture healing in an ovariectomized mice model. BMC Musculoskelet Disord. 2021;22:494 pubmed 出版商
  32. Zhang W, Li J, Yao H, Li T. Restoring microRNA-499-5p Protects Sepsis-Induced Lung Injury Mice Via Targeting Sox6. Nanoscale Res Lett. 2021;16:89 pubmed 出版商
  33. Lindfors S, Polianskyte Prause Z, Bouslama R, Lehtonen E, Mannerla M, Nisen H, et al. Adiponectin receptor agonist AdipoRon ameliorates renal inflammation in diet-induced obese mice and endotoxin-treated human glomeruli ex vivo. Diabetologia. 2021;64:1866-1879 pubmed 出版商
  34. Liu Y, Cong P, Zhang T, Wang R, Wang X, Liu J, et al. Plasmalogen attenuates the development of hepatic steatosis and cognitive deficit through mechanism involving p75NTR inhibition. Redox Biol. 2021;43:102002 pubmed 出版商
  35. Ye S, Su L, Shan P, Ye B, Wu S, Liang G, et al. LCZ696 Attenuated Doxorubicin-Induced Chronic Cardiomyopathy Through the TLR2-MyD88 Complex Formation. Front Cell Dev Biol. 2021;9:654051 pubmed 出版商
  36. Weber E, Parker K, Sotillo E, Lynn R, Anbunathan H, Lattin J, et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science. 2021;372: pubmed 出版商
  37. Li Q, Cheng F, Zhou K, Fang L, Wu J, Xia Q, et al. Increased sensitivity to TNF-α promotes keloid fibroblast hyperproliferation by activating the NF-κB, JNK and p38 MAPK pathways. Exp Ther Med. 2021;21:502 pubmed 出版商
  38. Ingelfinger F, Krishnarajah S, Kramer M, Utz S, Galli E, Lutz M, et al. Single-cell profiling of myasthenia gravis identifies a pathogenic T cell signature. Acta Neuropathol. 2021;141:901-915 pubmed 出版商
  39. Jeong J, Choi S, Ahn S, Oh J, Kim Y, Lee C, et al. Neutrophil extracellular trap clearance by synovial macrophages in gout. Arthritis Res Ther. 2021;23:88 pubmed 出版商
  40. Li X, Ye Z, Guo Q, Wang E, Pan Y. PDTC ameliorates neuropathic pain by inhibiting microglial activation <em>via</em> blockage of the TNFα-CX3CR1 pathway. Eur J Histochem. 2021;65: pubmed 出版商
  41. Zhang Z, Zou X, Zhang R, Xie Y, Feng Z, Li F, et al. Human umbilical cord mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation via suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke. Aging (Albany NY). 2021;13:3060-3079 pubmed 出版商
  42. Tan X, Kobayashi K, Shen L, Inagaki J, Ide M, Hwang S, et al. Antioxidative attributes of rice bran extracts in ameliorative effects of atherosclerosis-associated risk factors. Heliyon. 2020;6:e05743 pubmed 出版商
  43. Gregorova M, Morse D, Brignoli T, Steventon J, Hamilton F, Albur M, et al. Post-acute COVID-19 associated with evidence of bystander T-cell activation and a recurring antibiotic-resistant bacterial pneumonia. elife. 2020;9: pubmed 出版商
  44. Snyder M, Sembrat J, Noda K, MYERBURG M, Craig A, Mitash N, et al. Human Lung-Resident Macrophages Colocalize with and Provide Costimulation to PD1hi Tissue-Resident Memory T Cells. Am J Respir Crit Care Med. 2021;203:1230-1244 pubmed 出版商
  45. Drake L, Brooks A, Stauff J, Sherman P, Arteaga J, Koeppe R, et al. Strategies for PET imaging of the receptor for advanced glycation endproducts (RAGE). J Pharm Anal. 2020;10:452-465 pubmed 出版商
  46. Kamali S, Rajendran R, Stadelmann C, Karnati S, Rajendran V, Giraldo Velasquez M, et al. Oligodendrocyte-specific deletion of FGFR2 ameliorates MOG35-55 -induced EAE through ERK and Akt signalling. Brain Pathol. 2021;31:297-311 pubmed 出版商
  47. Zhao L, Fan M, Zhao L, Yun H, Yang Y, Wang C, et al. Fibroblast growth factor 1 ameliorates adipose tissue inflammation and systemic insulin resistance via enhancing adipocyte mTORC2/Rictor signal. J Cell Mol Med. 2020;24:12813-12825 pubmed 出版商
  48. Wang Y, Gao G, Wu Y, Wang Y, Wu X, Zhou Q. S100A4 Silencing Facilitates Corneal Wound Healing After Alkali Burns by Promoting Autophagy via Blocking the PI3K/Akt/mTOR Signaling Pathway. Invest Ophthalmol Vis Sci. 2020;61:19 pubmed 出版商
  49. Araújo L, Torquato B, da Silva C, Dos Reis Monteiro M, Dos Santos Martins A, da Silva M, et al. Renal expression of cytokines and chemokines in diabetic nephropathy. BMC Nephrol. 2020;21:308 pubmed 出版商
  50. Bouhaddou M, Memon D, Meyer B, White K, Rezelj V, Correa Marrero M, et al. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell. 2020;182:685-712.e19 pubmed 出版商
  51. Oh D, Kwek S, Raju S, Li T, McCarthy E, Chow E, et al. Intratumoral CD4+ T Cells Mediate Anti-tumor Cytotoxicity in Human Bladder Cancer. Cell. 2020;181:1612-1625.e13 pubmed 出版商
  52. LeBlang C, Medalla M, Nicoletti N, Hays E, Zhao J, Shattuck J, et al. Reduction of the RNA Binding Protein TIA1 Exacerbates Neuroinflammation in Tauopathy. Front Neurosci. 2020;14:285 pubmed 出版商
  53. Choudhuri S, Garg N. PARP1-cGAS-NF-κB pathway of proinflammatory macrophage activation by extracellular vesicles released during Trypanosoma cruzi infection and Chagas disease. PLoS Pathog. 2020;16:e1008474 pubmed 出版商
  54. Jiao Q, Luo Y, Scheffel J, Geng P, Wang Y, Frischbutter S, et al. Skin Mast Cells Contribute to Sporothrix schenckii Infection. Front Immunol. 2020;11:469 pubmed 出版商
  55. Tang Z, Xiong D, Song J, Ye M, Liu J, Wang Z, et al. Antitumor Drug Combretastatin-A4 Phosphate Aggravates the Symptoms of Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice. Front Pharmacol. 2020;11:339 pubmed 出版商
  56. Oh W, Jung J, Choi Y, Mun J, Ku S, Song C. Protective effects of fermented rice extract on ulcerative colitis induced by dextran sodium sulfate in mice. Food Sci Nutr. 2020;8:1718-1728 pubmed 出版商
  57. Xu M, Ge C, Qin Y, Lou D, Li Q, Feng J, et al. Functional loss of inactive rhomboid-like protein 2 mitigates obesity by suppressing pro-inflammatory macrophage activation-triggered adipose inflammation. Mol Metab. 2020;34:112-123 pubmed 出版商
  58. Kim J, Jeong J, Jung J, Jeon H, Lee S, Lim J, et al. Immunological characteristics and possible pathogenic role of urinary CD11c+ macrophages in lupus nephritis. Rheumatology (Oxford). 2020;: pubmed 出版商
  59. Fu X, Peng J, Wang A, Luo Z. Tumor necrosis factor alpha mediates neuromuscular synapse elimination. Cell Discov. 2020;6:9 pubmed 出版商
  60. Lu Z, Zou J, Li S, Topper M, Tao Y, Zhang H, et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature. 2020;579:284-290 pubmed 出版商
  61. Tezera L, Bielecka M, Ogongo P, Walker N, Ellis M, Garay Baquero D, et al. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α. elife. 2020;9: pubmed 出版商
  62. Chen K, Gu H, Zhu L, Feng D. A New Model of Repetitive Traumatic Brain Injury in Mice. Front Neurosci. 2019;13:1417 pubmed 出版商
  63. Potilinski M, Ortiz G, Salica J, Lopez E, Fernández Acquier M, Chuluyan E, et al. Elucidating the mechanism of action of alpha-1-antitrypsin using retinal pigment epithelium cells exposed to high glucose. Potential use in diabetic retinopathy. PLoS ONE. 2020;15:e0228895 pubmed 出版商
  64. Xie Y, Chen H, Luo D, Yang X, Yao J, Zhang C, et al. Inhibiting Necroptosis of Spermatogonial Stem Cell as a Novel Strategy for Male Fertility Preservation. Stem Cells Dev. 2020;29:475-487 pubmed 出版商
  65. Marotte L, Simon S, Vignard V, Dupré E, Gantier M, Cruard J, et al. Increased antitumor efficacy of PD-1-deficient melanoma-specific human lymphocytes. J Immunother Cancer. 2020;8: pubmed 出版商
  66. Baptista J, Traynelis V, Liberti E, Fontes R. Expression of degenerative markers in intervertebral discs of young and elderly asymptomatic individuals. PLoS ONE. 2020;15:e0228155 pubmed 出版商
  67. Kim J, Byun M, Maeng C, Kim Y, Choi J. Selective Targeting of Cancer Stem Cells (CSCs) Based on Photodynamic Therapy (PDT) Penetration Depth Inhibits Colon Polyp Formation in Mice. Cancers (Basel). 2020;12: pubmed 出版商
  68. Tang X, Yan K, Wang Y, Wang Y, Chen H, Xu J, et al. Activation of PPAR-β/δ Attenuates Brain Injury by Suppressing Inflammation and Apoptosis in a Collagenase-Induced Intracerebral Hemorrhage Mouse Model. Neurochem Res. 2020;45:837-850 pubmed 出版商
  69. Lohard S, Bourgeois N, Maillet L, Gautier F, Fétiveau A, Lasla H, et al. STING-dependent paracriny shapes apoptotic priming of breast tumors in response to anti-mitotic treatment. Nat Commun. 2020;11:259 pubmed 出版商
  70. Ding H, Chen J, Su M, Lin Z, Zhan H, Yang F, et al. BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J Neuroinflammation. 2020;17:19 pubmed 出版商
  71. Wang G, Huang T, Hu Y, Wang K, Shi H, Yin L, et al. Corpus cavernosum smooth muscle cell dysfunction and phenotype transformation are related to erectile dysfunction in prostatitis rats with chronic prostatitis/chronic pelvic pain syndrome. J Inflamm (Lond). 2020;17:2 pubmed 出版商
  72. Wei J, Long L, Zheng W, Dhungana Y, Lim S, Guy C, et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature. 2019;576:471-476 pubmed 出版商
  73. Lynn R, Weber E, Sotillo E, Gennert D, Xu P, Good Z, et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature. 2019;576:293-300 pubmed 出版商
  74. Shi L, Wang J, Ding N, Zhang Y, Zhu Y, Dong S, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat Commun. 2019;10:5421 pubmed 出版商
  75. Wang X, Chang Y, He Y, Lyu C, Li H, Zhu J, et al. Glimepiride and glibenclamide have comparable efficacy in treating acute ischemic stroke in mice. Neuropharmacology. 2020;162:107845 pubmed 出版商
  76. Ma A, Motyka B, Gutfreund K, Shi Y, George R. A dendritic cell receptor-targeted chimeric immunotherapeutic protein (C-HBV) for the treatment of chronic hepatitis B. Hum Vaccin Immunother. 2020;16:756-778 pubmed 出版商
  77. Zhou Q, Wu X, Wang X, Yu Z, Pan T, Li Z, et al. The reciprocal interaction between tumor cells and activated fibroblasts mediated by TNF-α/IL-33/ST2L signaling promotes gastric cancer metastasis. Oncogene. 2019;: pubmed 出版商
  78. Di Blasi D, Boldanova T, Mori L, Terracciano L, Heim M, De Libero G. Unique T-Cell Populations Define Immune-Inflamed Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol. 2020;9:195-218 pubmed 出版商
  79. Zhang R, Liu Y, Chen Y, Li Q, Marshall C, Wu T, et al. Aquaporin 4 deletion exacerbates brain impairments in a mouse model of chronic sleep disruption. CNS Neurosci Ther. 2020;26:228-239 pubmed 出版商
  80. Meckiff B, Ladell K, McLaren J, Ryan G, Leese A, James E, et al. Primary EBV Infection Induces an Acute Wave of Activated Antigen-Specific Cytotoxic CD4+ T Cells. J Immunol. 2019;203:1276-1287 pubmed 出版商
  81. Dosh R, Jordan Mahy N, Sammon C, Le Maitre C. Interleukin 1 is a key driver of inflammatory bowel disease-demonstration in a murine IL-1Ra knockout model. Oncotarget. 2019;10:3559-3575 pubmed 出版商
  82. Sul O, Rajasekaran M, Park H, Suh J, Choi H. MicroRNA-29b Enhances Osteoclast Survival by Targeting BCL-2-Modifying Factor after Lipopolysaccharide Stimulation. Oxid Med Cell Longev. 2019;2019:6018180 pubmed 出版商
  83. Wu J, Ma S, Sandhoff R, Ming Y, Hotz Wagenblatt A, Timmerman V, et al. Loss of Neurological Disease HSAN-I-Associated Gene SPTLC2 Impairs CD8+ T Cell Responses to Infection by Inhibiting T Cell Metabolic Fitness. Immunity. 2019;50:1218-1231.e5 pubmed 出版商
  84. Oda H, Beck D, Kuehn H, Sampaio Moura N, Hoffmann P, Ibarra M, et al. Second Case of HOIP Deficiency Expands Clinical Features and Defines Inflammatory Transcriptome Regulated by LUBAC. Front Immunol. 2019;10:479 pubmed 出版商
  85. van de Garde M, van Westen E, Poelen M, Rots N, van Els C. Prediction and Validation of Immunogenic Domains of Pneumococcal Proteins Recognized by Human CD4+ T Cells. Infect Immun. 2019;87: pubmed 出版商
  86. Vickman R, Yang J, Lanman N, Cresswell G, Zheng F, Zhang C, et al. Cholesterol Sulfotransferase SULT2B1b Modulates Sensitivity to Death Receptor Ligand TNFα in Castration-Resistant Prostate Cancer. Mol Cancer Res. 2019;17:1253-1263 pubmed 出版商
  87. Lai X, Deng Z, Zhu X, Chen Z. Apc gene suppresses intracranial aneurysm formation and rupture through inhibiting the NF-κB signaling pathway mediated inflammatory response. Biosci Rep. 2019;39: pubmed 出版商
  88. Mayassi T, Ladell K, Gudjonson H, McLaren J, Shaw D, Tran M, et al. Chronic Inflammation Permanently Reshapes Tissue-Resident Immunity in Celiac Disease. Cell. 2019;176:967-981.e19 pubmed 出版商
  89. Banki Z, Krabbendam L, Klaver D, Leng T, Kruis S, Mehta H, et al. Antibody opsonization enhances MAIT cell responsiveness to bacteria via a TNF-dependent mechanism. Immunol Cell Biol. 2019;97:538-551 pubmed 出版商
  90. Zhang G, Liu Y, Xu L, Sha C, Zhang H, Xu W. Resveratrol alleviates lipopolysaccharide-induced inflammation in PC-12 cells and in rat model. BMC Biotechnol. 2019;19:10 pubmed 出版商
  91. Montel Hagen A, Seet C, Li S, Chick B, Zhu Y, Chang P, et al. Organoid-Induced Differentiation of Conventional T Cells from Human Pluripotent Stem Cells. Cell Stem Cell. 2019;24:376-389.e8 pubmed 出版商
  92. Hallner A, Bernson E, Hussein B, Sander F, Brune M, Aurelius J, et al. The HLA-B -21 dimorphism impacts on NK cell education and clinical outcome of immunotherapy in acute myeloid leukemia. Blood. 2019;: pubmed 出版商
  93. Hu Y, Guo F, Xu Y, Li P, Lu Z, McVey D, et al. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J Clin Invest. 2019;129:1115-1128 pubmed 出版商
  94. Gorth D, Shapiro I, Risbud M. Transgenic mice overexpressing human TNF-α experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death Dis. 2018;10:7 pubmed 出版商
  95. Amelio P, Portevin D, Hella J, Reither K, Kamwela L, Lweno O, et al. HIV Infection Functionally Impairs Mycobacterium tuberculosis-Specific CD4 and CD8 T-Cell Responses. J Virol. 2019;93: pubmed 出版商
  96. Kim C, Hu B, Jadhav R, Jin J, Zhang H, Cavanagh M, et al. Activation of miR-21-Regulated Pathways in Immune Aging Selects against Signatures Characteristic of Memory T Cells. Cell Rep. 2018;25:2148-2162.e5 pubmed 出版商
  97. Aulicino A, Rue Albrecht K, Preciado Llanes L, Napolitani G, Ashley N, Cribbs A, et al. Invasive Salmonella exploits divergent immune evasion strategies in infected and bystander dendritic cell subsets. Nat Commun. 2018;9:4883 pubmed 出版商
  98. Dias J, Boulouis C, Gorin J, van den Biggelaar R, Lal K, Gibbs A, et al. The CD4-CD8- MAIT cell subpopulation is a functionally distinct subset developmentally related to the main CD8+ MAIT cell pool. Proc Natl Acad Sci U S A. 2018;115:E11513-E11522 pubmed 出版商
  99. Wagner D, Amini L, Wendering D, Burkhardt L, Akyüz L, Reinke P, et al. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat Med. 2019;25:242-248 pubmed 出版商
  100. Yang Z, Li C, Wang Y, Yang J, Yin Y, Liu M, et al. Melatonin attenuates chronic pain related myocardial ischemic susceptibility through inhibiting RIP3-MLKL/CaMKII dependent necroptosis. J Mol Cell Cardiol. 2018;125:185-194 pubmed 出版商
  101. Kelly A, Günaltay S, McEntee C, Shuttleworth E, Smedley C, Houston S, et al. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J Exp Med. 2018;215:2725-2736 pubmed 出版商
  102. Kuranda K, Jean Alphonse P, Leborgne C, Hardet R, Collaud F, Marmier S, et al. Exposure to wild-type AAV drives distinct capsid immunity profiles in humans. J Clin Invest. 2018;128:5267-5279 pubmed 出版商
  103. Otsuka Y, Watanabe E, Shinya E, Okura S, Saeki H, Geijtenbeek T, et al. Differentiation of Langerhans Cells from Monocytes and Their Specific Function in Inducing IL-22-Specific Th Cells. J Immunol. 2018;201:3006-3016 pubmed 出版商
  104. Qiu T, Pei P, Yao X, Jiang L, Wei S, Wang Z, et al. Taurine attenuates arsenic-induced pyroptosis and nonalcoholic steatohepatitis by inhibiting the autophagic-inflammasomal pathway. Cell Death Dis. 2018;9:946 pubmed 出版商
  105. Han L, Wang L, Tang S, Yuan L, Wu S, Du X, et al. ITGB4 deficiency in bronchial epithelial cells directs airway inflammation and bipolar disorder-related behavior. J Neuroinflammation. 2018;15:246 pubmed 出版商
  106. Qin C, Li M, Bai T, Yang K, Xu T, Zhang J. Tisp40 deficiency limits renal inflammation and promotes tubular cell proliferation in renal ischemia reperfusion injury. Exp Cell Res. 2018;371:255-261 pubmed 出版商
  107. Burton A, Pallett L, McCoy L, Suveizdyte K, Amin O, Swadling L, et al. Circulating and intrahepatic antiviral B cells are defective in hepatitis B. J Clin Invest. 2018;128:4588-4603 pubmed 出版商
  108. Yang T, St John L, Garber H, Kerros C, Ruisaard K, Clise Dwyer K, et al. Membrane-Associated Proteinase 3 on Granulocytes and Acute Myeloid Leukemia Inhibits T Cell Proliferation. J Immunol. 2018;201:1389-1399 pubmed 出版商
  109. Jung I, Kim Y, Yu H, Lee M, Kim S, Lee J. CRISPR/Cas9-Mediated Knockout of DGK Improves Antitumor Activities of Human T Cells. Cancer Res. 2018;78:4692-4703 pubmed 出版商
  110. Liu Q, Liu C, Jiang L, Li M, Long T, He W, et al. α7 Nicotinic acetylcholine receptor-mediated anti-inflammatory effect in a chronic migraine rat model via the attenuation of glial cell activation. J Pain Res. 2018;11:1129-1140 pubmed 出版商
  111. Kirkling M, Cytlak U, Lau C, Lewis K, Resteu A, Khodadadi Jamayran A, et al. Notch Signaling Facilitates In Vitro Generation of Cross-Presenting Classical Dendritic Cells. Cell Rep. 2018;23:3658-3672.e6 pubmed 出版商
  112. Dorraji S, Hovd A, Kanapathippillai P, Bakland G, Eilertsen G, Figenschau S, et al. Mesenchymal stem cells and T cells in the formation of Tertiary Lymphoid Structures in Lupus Nephritis. Sci Rep. 2018;8:7861 pubmed 出版商
  113. Ray M, Gabunia K, Vrakas C, Herman A, Kako F, Kelemen S, et al. Genetic Deletion of IL-19 (Interleukin-19) Exacerbates Atherogenesis in Il19-/-×Ldlr-/- Double Knockout Mice by Dysregulation of mRNA Stability Protein HuR (Human Antigen R). Arterioscler Thromb Vasc Biol. 2018;38:1297-1308 pubmed 出版商
  114. Zhang C, Peng Y, Hublitz P, Zhang H, Dong T. Genetic abrogation of immune checkpoints in antigen-specific cytotoxic T-lymphocyte as a potential alternative to blockade immunotherapy. Sci Rep. 2018;8:5549 pubmed 出版商
  115. Zhang Z, Zhang H, Chen R, Wang Z. Oral supplementation with ursolic acid ameliorates sepsis-induced acute kidney injury in a mouse model by inhibiting oxidative stress and inflammatory responses. Mol Med Rep. 2018;17:7142-7148 pubmed 出版商
  116. Li N, van Unen V, Höllt T, Thompson A, van Bergen J, Pezzotti N, et al. Mass cytometry reveals innate lymphoid cell differentiation pathways in the human fetal intestine. J Exp Med. 2018;215:1383-1396 pubmed 出版商
  117. Wolf D, Anto Michel N, Blankenbach H, Wiedemann A, Buscher K, Hohmann J, et al. A ligand-specific blockade of the integrin Mac-1 selectively targets pathologic inflammation while maintaining protective host-defense. Nat Commun. 2018;9:525 pubmed 出版商
  118. Giannelou A, Wang H, Zhou Q, Park Y, Abu Asab M, Ylaya K, et al. Aberrant tRNA processing causes an autoinflammatory syndrome responsive to TNF inhibitors. Ann Rheum Dis. 2018;77:612-619 pubmed 出版商
  119. Rivino L, Le Bert N, Gill U, Kunasegaran K, Cheng Y, Tan D, et al. Hepatitis B virus-specific T cells associate with viral control upon nucleos(t)ide-analogue therapy discontinuation. J Clin Invest. 2018;128:668-681 pubmed 出版商
  120. Pizzolla A, Nguyen T, Sant S, Jaffar J, Loudovaris T, Mannering S, et al. Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles. J Clin Invest. 2018;128:721-733 pubmed 出版商
  121. Gugliandolo E, Fusco R, D Amico R, Militi A, Oteri G, Wallace J, et al. Anti-inflammatory effect of ATB-352, a H2S -releasing ketoprofen derivative, on lipopolysaccharide-induced periodontitis in rats. Pharmacol Res. 2018;132:220-231 pubmed 出版商
  122. Barrow A, Edeling M, Trifonov V, Luo J, Goyal P, Bohl B, et al. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor. Cell. 2018;172:534-548.e19 pubmed 出版商
  123. Jeong J, Hong S, Kwon O, Ghang B, Hwang I, Kim Y, et al. CD14+ Cells with the Phenotype of Infiltrated Monocytes Consist of Distinct Populations Characterized by Anti-inflammatory as well as Pro-inflammatory Activity in Gouty Arthritis. Front Immunol. 2017;8:1260 pubmed 出版商
  124. Hydes T, Noll A, Salinas Riester G, Abuhilal M, Armstrong T, Hamady Z, et al. IL-12 and IL-15 induce the expression of CXCR6 and CD49a on peripheral natural killer cells. Immun Inflamm Dis. 2018;6:34-46 pubmed 出版商
  125. Molnar C, Scherer A, Baraliakos X, de Hooge M, Micheroli R, Exer P, et al. TNF blockers inhibit spinal radiographic progression in ankylosing spondylitis by reducing disease activity: results from the Swiss Clinical Quality Management cohort. Ann Rheum Dis. 2018;77:63-69 pubmed 出版商
  126. Salio M, Gasser O, González López C, Martens A, Veerapen N, Gileadi U, et al. Activation of Human Mucosal-Associated Invariant T Cells Induces CD40L-Dependent Maturation of Monocyte-Derived and Primary Dendritic Cells. J Immunol. 2017;199:2631-2638 pubmed 出版商
  127. Burr M, Sparbier C, Chan Y, Williamson J, Woods K, Beavis P, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature. 2017;549:101-105 pubmed 出版商
  128. Vitallé J, Zenarruzabeitia O, Terrén I, Plana M, Guardo A, Leal L, et al. Monocytes Phenotype and Cytokine Production in Human Immunodeficiency Virus-1 Infected Patients Receiving a Modified Vaccinia Ankara-Based HIV-1 Vaccine: Relationship to CD300 Molecules Expression. Front Immunol. 2017;8:836 pubmed 出版商
  129. Ott P, Hu Z, Keskin D, Shukla S, Sun J, Bozym D, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547:217-221 pubmed 出版商
  130. Chew V, Lai L, Pan L, Lim C, Li J, Ong R, et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A. 2017;114:E5900-E5909 pubmed 出版商
  131. Dias J, Leeansyah E, Sandberg J. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc Natl Acad Sci U S A. 2017;114:E5434-E5443 pubmed 出版商
  132. Iampietro M, Younan P, Nishida A, Dutta M, Lubaki N, Santos R, et al. Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection. PLoS Pathog. 2017;13:e1006397 pubmed 出版商
  133. Mitterreiter J, Ouwendijk W, van Velzen M, van Nierop G, Osterhaus A, Verjans G. Satellite glial cells in human trigeminal ganglia have a broad expression of functional Toll-like receptors. Eur J Immunol. 2017;47:1181-1187 pubmed 出版商
  134. Tong A, Hashem H, Eid S, Allen F, Kingsley D, Huang A. Adoptive natural killer cell therapy is effective in reducing pulmonary metastasis of Ewing sarcoma. Oncoimmunology. 2017;6:e1303586 pubmed 出版商
  135. See P, Dutertre C, Chen J, Günther P, McGovern N, Irac S, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 2017;356: pubmed 出版商
  136. Koh J, Hancock C, Terada S, Higashida K, Holloszy J, Han D. PPARβ Is Essential for Maintaining Normal Levels of PGC-1α and Mitochondria and for the Increase in Muscle Mitochondria Induced by Exercise. Cell Metab. 2017;25:1176-1185.e5 pubmed 出版商
  137. Stevanović S, Pasetto A, Helman S, Gartner J, Prickett T, Howie B, et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science. 2017;356:200-205 pubmed 出版商
  138. Van Caeneghem Y, De Munter S, Tieppo P, Goetgeluk G, Weening K, Verstichel G, et al. Antigen receptor-redirected T cells derived from hematopoietic precursor cells lack expression of the endogenous TCR/CD3 receptor and exhibit specific antitumor capacities. Oncoimmunology. 2017;6:e1283460 pubmed 出版商
  139. Nelde A, Walz J, Kowalewski D, Schuster H, Wolz O, Peper J, et al. HLA class I-restricted MYD88 L265P-derived peptides as specific targets for lymphoma immunotherapy. Oncoimmunology. 2017;6:e1219825 pubmed 出版商
  140. Tsoutsou P, Annibaldi A, Viertl D, Ollivier J, Buchegger F, Vozenin M, et al. TAT-RasGAP317-326 Enhances Radiosensitivity of Human Carcinoma Cell Lines In Vitro and In Vivo through Promotion of Delayed Mitotic Cell Death. Radiat Res. 2017;187:562-569 pubmed 出版商
  141. Nishimura Y, Gautam R, Chun T, Sadjadpour R, Foulds K, Shingai M, et al. Early antibody therapy can induce long-lasting immunity to SHIV. Nature. 2017;543:559-563 pubmed 出版商
  142. Klinker M, Marklein R, Lo Surdo J, Wei C, Bauer S. Morphological features of IFN-γ-stimulated mesenchymal stromal cells predict overall immunosuppressive capacity. Proc Natl Acad Sci U S A. 2017;114:E2598-E2607 pubmed 出版商
  143. Wang S, Wang B, Wang Y, Tong Q, Liu Q, Sun J, et al. Zinc Prevents the Development of Diabetic Cardiomyopathy in db/db Mice. Int J Mol Sci. 2017;18: pubmed 出版商
  144. Cardinaud S, Urrutia A, Rouers A, Coulon P, Kervevan J, Richetta C, et al. Triggering of TLR-3, -4, NOD2, and DC-SIGN reduces viral replication and increases T-cell activation capacity of HIV-infected human dendritic cells. Eur J Immunol. 2017;47:818-829 pubmed 出版商
  145. Israel L, Wang Y, Bulek K, Della Mina E, Zhang Z, Pedergnana V, et al. Human Adaptive Immunity Rescues an Inborn Error of Innate Immunity. Cell. 2017;168:789-800.e10 pubmed 出版商
  146. Eyquem J, Mansilla Soto J, Giavridis T, van der Stegen S, Hamieh M, Cunanan K, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543:113-117 pubmed 出版商
  147. Cheuk S, Schlums H, Gallais Sérézal I, Martini E, Chiang S, Marquardt N, et al. CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin. Immunity. 2017;46:287-300 pubmed 出版商
  148. Mordmuller B, Surat G, Lagler H, Chakravarty S, Ishizuka A, Lalremruata A, et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature. 2017;542:445-449 pubmed 出版商
  149. Wu J, Sun L, Li H, Shen H, Zhai W, Yu Z, et al. Roles of programmed death protein 1/programmed death-ligand 1 in secondary brain injury after intracerebral hemorrhage in rats: selective modulation of microglia polarization to anti-inflammatory phenotype. J Neuroinflammation. 2017;14:36 pubmed 出版商
  150. Mylvaganam G, Rios D, Abdelaal H, Iyer S, Tharp G, Mavigner M, et al. Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection. Proc Natl Acad Sci U S A. 2017;114:1976-1981 pubmed 出版商
  151. Villar V, Nguyen T, Delcroix V, Terés S, Bouchecareilh M, Salin B, et al. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation. Nat Commun. 2017;8:14124 pubmed 出版商
  152. Liddelow S, Guttenplan K, Clarke L, Bennett F, Bohlen C, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481-487 pubmed 出版商
  153. Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren H, Sonnerborg A, et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep. 2017;7:40354 pubmed 出版商
  154. Chen M, Chen Y, Fu R, Liu S, Yang Q, Shen T. Activation of 5-HT and NR2B contributes to visceral hypersensitivity in irritable bowel syndrome in rats. Am J Transl Res. 2016;8:5580-5590 pubmed
  155. Guicciardi M, Krishnan A, Bronk S, Hirsova P, Griffith T, Gores G. Biliary tract instillation of a SMAC mimetic induces TRAIL-dependent acute sclerosing cholangitis-like injury in mice. Cell Death Dis. 2017;8:e2535 pubmed 出版商
  156. Roberts E, Carnathan D, Li H, Shaw G, Silvestri G, Betts M. Collapse of Cytolytic Potential in SIV-Specific CD8+ T Cells Following Acute SIV Infection in Rhesus Macaques. PLoS Pathog. 2016;12:e1006135 pubmed 出版商
  157. Stanfield B, Pahar B, Chouljenko V, Veazey R, Kousoulas K. Vaccination of rhesus macaques with the live-attenuated HSV-1 vaccine VC2 stimulates the proliferation of mucosal T cells and germinal center responses resulting in sustained production of highly neutralizing antibodies. Vaccine. 2017;35:536-543 pubmed 出版商
  158. Izawa K, Martin E, Soudais C, Bruneau J, Boutboul D, Rodriguez R, et al. Inherited CD70 deficiency in humans reveals a critical role for the CD70-CD27 pathway in immunity to Epstein-Barr virus infection. J Exp Med. 2017;214:73-89 pubmed 出版商
  159. Berry N, Manoussaka M, Ham C, Ferguson D, Tudor H, Mattiuzzo G, et al. Role of Occult and Post-acute Phase Replication in Protective Immunity Induced with a Novel Live Attenuated SIV Vaccine. PLoS Pathog. 2016;12:e1006083 pubmed 出版商
  160. Spivak A, Larragoite E, Coletti M, Macedo A, Martins L, Bosque A, et al. Janus kinase inhibition suppresses PKC-induced cytokine release without affecting HIV-1 latency reversal ex vivo. Retrovirology. 2016;13:88 pubmed 出版商
  161. Lizardo K, Almonte V, Law C, Aiyyappan J, Cui M, Nagajyothi J. Diet regulates liver autophagy differentially in murine acute Trypanosoma cruzi infection. Parasitol Res. 2017;116:711-723 pubmed 出版商
  162. Lin C, Lin W, Cho R, Wang C, Hsiao L, Yang C. TNF-?-Induced cPLA2 Expression via NADPH Oxidase/Reactive Oxygen Species-Dependent NF-?B Cascade on Human Pulmonary Alveolar Epithelial Cells. Front Pharmacol. 2016;7:447 pubmed
  163. Tomic A, Varanasi P, Golemac M, Malic S, Riese P, Borst E, et al. Activation of Innate and Adaptive Immunity by a Recombinant Human Cytomegalovirus Strain Expressing an NKG2D Ligand. PLoS Pathog. 2016;12:e1006015 pubmed 出版商
  164. Martínez Gómez J, Periasamy P, Dutertre C, Irving A, Ng J, Crameri G, et al. Phenotypic and functional characterization of the major lymphocyte populations in the fruit-eating bat Pteropus alecto. Sci Rep. 2016;6:37796 pubmed 出版商
  165. Omarniyaz Z, Yu Y, Yang T, Shan L, Miao W, Reyimu R, et al. Anti-tumor effects of Abnormal Savda Munziq on the transplanted cervical cancer (U27) mouse model. BMC Complement Altern Med. 2016;16:477 pubmed
  166. Riou C, Bunjun R, Müller T, Kiravu A, Ginbot Z, Oni T, et al. Selective reduction of IFN-γ single positive mycobacteria-specific CD4+ T cells in HIV-1 infected individuals with latent tuberculosis infection. Tuberculosis (Edinb). 2016;101:25-30 pubmed 出版商
  167. Jiang D, Gao F, Zhang Y, Wong D, Li Q, Tse H, et al. Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis. 2016;7:e2467 pubmed 出版商
  168. Sumatoh H, Teng K, Cheng Y, Newell E. Optimization of mass cytometry sample cryopreservation after staining. Cytometry A. 2017;91:48-61 pubmed 出版商
  169. Cuff A, Robertson F, Stegmann K, Pallett L, Maini M, Davidson B, et al. Eomeshi NK Cells in Human Liver Are Long-Lived and Do Not Recirculate but Can Be Replenished from the Circulation. J Immunol. 2016;197:4283-4291 pubmed
  170. Yu P, Hu Y, Liu Z, Kawai T, Taubman M, Li W, et al. Local Induction of B Cell Interleukin-10 Competency Alleviates Inflammation and Bone Loss in Ligature-Induced Experimental Periodontitis in Mice. Infect Immun. 2017;85: pubmed 出版商
  171. Nagase H, Takeoka T, Urakawa S, Morimoto Okazawa A, Kawashima A, Iwahori K, et al. ICOS+ Foxp3+ TILs in gastric cancer are prognostic markers and effector regulatory T cells associated with Helicobacter pylori. Int J Cancer. 2017;140:686-695 pubmed 出版商
  172. Seemann S, Lupp A. Administration of AMD3100 in endotoxemia is associated with pro-inflammatory, pro-oxidative, and pro-apoptotic effects in vivo. J Biomed Sci. 2016;23:68 pubmed
  173. Swaminathan G, Thoryk E, Cox K, Smith J, Wolf J, Gindy M, et al. A Tetravalent Sub-unit Dengue Vaccine Formulated with Ionizable Cationic Lipid Nanoparticle induces Significant Immune Responses in Rodents and Non-Human Primates. Sci Rep. 2016;6:34215 pubmed 出版商
  174. Sadeghi K, Wisgrill L, Wessely I, Diesner S, Schuller S, Dürr C, et al. GM-CSF Down-Regulates TLR Expression via the Transcription Factor PU.1 in Human Monocytes. PLoS ONE. 2016;11:e0162667 pubmed 出版商
  175. Yeap W, Wong K, Shimasaki N, Teo E, Quek J, Yong H, et al. CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes. Sci Rep. 2016;6:34310 pubmed 出版商
  176. Savill S, Leitch H, Harvey J, Thomas T. Inflammatory Adipokines Decrease Expression of Two High Molecular Weight Isoforms of Tropomyosin Similar to the Change in Type 2 Diabetic Patients. PLoS ONE. 2016;11:e0162908 pubmed 出版商
  177. Sugita S, Iwasaki Y, Makabe K, Kimura T, Futagami T, Suegami S, et al. Lack of T Cell Response to iPSC-Derived Retinal Pigment Epithelial Cells from HLA Homozygous Donors. Stem Cell Reports. 2016;7:619-634 pubmed 出版商
  178. Wahid R, Fresnay S, Levine M, Sztein M. Cross-reactive multifunctional CD4+ T cell responses against Salmonella enterica serovars Typhi, Paratyphi A and Paratyphi B in humans following immunization with live oral typhoid vaccine Ty21a. Clin Immunol. 2016;173:87-95 pubmed 出版商
  179. Dadsetan S, Balzano T, Forteza J, Agusti A, Cabrera Pastor A, Taoro Gonzalez L, et al. Infliximab reduces peripheral inflammation, neuroinflammation, and extracellular GABA in the cerebellum and improves learning and motor coordination in rats with hepatic encephalopathy. J Neuroinflammation. 2016;13:245 pubmed 出版商
  180. Fuchs S, Kaiser Labusch P, Bank J, Ammann S, Kolb Kokocinski A, Edelbusch C, et al. Tyrosine kinase 2 is not limiting human antiviral type III interferon responses. Eur J Immunol. 2016;46:2639-2649 pubmed 出版商
  181. Jiang J, Chen X, An H, Yang B, Zhang F, Cheng X. Enhanced immune response of MAIT cells in tuberculous pleural effusions depends on cytokine signaling. Sci Rep. 2016;6:32320 pubmed 出版商
  182. Bentzen A, Marquard A, Lyngaa R, Saini S, Ramskov S, Donia M, et al. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat Biotechnol. 2016;34:1037-1045 pubmed 出版商
  183. Zhou Q, Yu X, Demirkaya E, Deuitch N, Stone D, Tsai W, et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci U S A. 2016;113:10127-32 pubmed 出版商
  184. Kagoya Y, Nakatsugawa M, Yamashita Y, Ochi T, Guo T, Anczurowski M, et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest. 2016;126:3479-94 pubmed 出版商
  185. Chen J, Jian D, Lien C, Lin Y, Ting C, Chen L, et al. Adipocytes play an etiological role in the podocytopathy of high-fat diet-fed rats. J Endocrinol. 2016;231:109-120 pubmed
  186. Hervier B, Perez M, Allenbach Y, Devilliers H, Cohen F, Uzunhan Y, et al. Involvement of NK Cells and NKp30 Pathway in Antisynthetase Syndrome. J Immunol. 2016;197:1621-30 pubmed 出版商
  187. He R, Hou S, Liu C, Zhang A, Bai Q, Han M, et al. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature. 2016;537:412-428 pubmed 出版商
  188. Portillo J, Lopez Corcino Y, Miao Y, Tang J, Sheibani N, Kern T, et al. CD40 in Retinal Müller Cells Induces P2X7-Dependent Cytokine Expression in Macrophages/Microglia in Diabetic Mice and Development of Early Experimental Diabetic Retinopathy. Diabetes. 2017;66:483-493 pubmed 出版商
  189. Rölle A, Halenius A, Ewen E, Cerwenka A, Hengel H, Momburg F. CD2-CD58 interactions are pivotal for the activation and function of adaptive natural killer cells in human cytomegalovirus infection. Eur J Immunol. 2016;46:2420-2425 pubmed 出版商
  190. Franzese O, Palermo B, Di Donna C, Sperduti I, Ferraresi V, Stabile H, et al. Polyfunctional Melan-A-specific tumor-reactive CD8(+) T cells elicited by dacarbazine treatment before peptide-vaccination depends on AKT activation sustained by ICOS. Oncoimmunology. 2016;5:e1114203 pubmed 出版商
  191. Neumann L, Mueller M, Moos V, Heller F, Meyer T, Loddenkemper C, et al. Mucosal Inducible NO Synthase-Producing IgA+ Plasma Cells in Helicobacter pylori-Infected Patients. J Immunol. 2016;197:1801-8 pubmed 出版商
  192. Deléage C, Schuetz A, Alvord W, Johnston L, Hao X, Morcock D, et al. Impact of early cART in the gut during acute HIV infection. JCI Insight. 2016;1: pubmed
  193. Walter B, Purmessur D, Moon A, Occhiogrosso J, Laudier D, Hecht A, et al. Reduced tissue osmolarity increases TRPV4 expression and pro-inflammatory cytokines in intervertebral disc cells. Eur Cell Mater. 2016;32:123-36 pubmed
  194. Zhao D, Lizardo K, Cui M, Ambadipudi K, Lora J, Jelicks L, et al. Antagonistic effect of atorvastatin on high fat diet induced survival during acute Chagas disease. Microbes Infect. 2016;18:675-686 pubmed 出版商
  195. Suliman S, Geldenhuys H, Johnson J, Hughes J, Smit E, Murphy M, et al. Bacillus Calmette-Guérin (BCG) Revaccination of Adults with Latent Mycobacterium tuberculosis Infection Induces Long-Lived BCG-Reactive NK Cell Responses. J Immunol. 2016;197:1100-1110 pubmed 出版商
  196. Chuang T, Guo Y, Seki S, Rosen A, Johanson D, Mandell J, et al. LRP1 expression in microglia is protective during CNS autoimmunity. Acta Neuropathol Commun. 2016;4:68 pubmed 出版商
  197. Garcia P, Seiva F, Carniato A, de Mello Júnior W, Duran N, Macedo A, et al. Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier. BMC Cancer. 2016;16:422 pubmed 出版商
  198. Nooh H, Nour Eldien N. The dual anti-inflammatory and antioxidant activities of natural honey promote cell proliferation and neural regeneration in a rat model of colitis. Acta Histochem. 2016;118:588-595 pubmed 出版商
  199. van Wilgenburg B, Scherwitzl I, Hutchinson E, Leng T, Kurioka A, Kulicke C, et al. MAIT cells are activated during human viral infections. Nat Commun. 2016;7:11653 pubmed 出版商
  200. Dai Y, Miao Y, Wu W, Li Y, D Errico F, Su W, et al. Ablation of Liver X receptors ? and ? leads to spontaneous peripheral squamous cell lung cancer in mice. Proc Natl Acad Sci U S A. 2016;113:7614-9 pubmed 出版商
  201. Cheng W, van Asten S, Burns L, Evans H, Walter G, Hashim A, et al. Periodontitis-associated pathogens P. gingivalis and A. actinomycetemcomitans activate human CD14(+) monocytes leading to enhanced Th17/IL-17 responses. Eur J Immunol. 2016;46:2211-21 pubmed 出版商
  202. Ahmad F, Chung Y, Tang Y, Hockman S, Liu S, Khan Y, et al. Phosphodiesterase 3B (PDE3B) regulates NLRP3 inflammasome in adipose tissue. Sci Rep. 2016;6:28056 pubmed 出版商
  203. Gadd V, Patel P, Jose S, Horsfall L, Powell E, Irvine K. Altered Peripheral Blood Monocyte Phenotype and Function in Chronic Liver Disease: Implications for Hepatic Recruitment and Systemic Inflammation. PLoS ONE. 2016;11:e0157771 pubmed 出版商
  204. Domingues R, de Carvalho G, Aoki V, da Silva Duarte A, Sato M. Activation of myeloid dendritic cells, effector cells and regulatory T cells in lichen planus. J Transl Med. 2016;14:171 pubmed 出版商
  205. Kinsella S, König H, Prehn J. Bid Promotes K63-Linked Polyubiquitination of Tumor Necrosis Factor Receptor Associated Factor 6 (TRAF6) and Sensitizes to Mutant SOD1-Induced Proinflammatory Signaling in Microglia. Eneuro. 2016;3: pubmed 出版商
  206. Vaccari M, Gordon S, Fourati S, Schifanella L, Liyanage N, Cameron M, et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat Med. 2016;22:762-70 pubmed 出版商
  207. Lee S, Kim H, Kim K, Lee H, Lee S, Lee D. Arhgap17, a RhoGTPase activating protein, regulates mucosal and epithelial barrier function in the mouse colon. Sci Rep. 2016;6:26923 pubmed 出版商
  208. Kwon H, Choi G, Ryu S, Kwon S, Kim S, Booth C, et al. Stepwise phosphorylation of p65 promotes NF-?B activation and NK cell responses during target cell recognition. Nat Commun. 2016;7:11686 pubmed 出版商
  209. Neumann B, Shi T, Gan L, Klippert A, Daskalaki M, Stolte Leeb N, et al. Comprehensive panel of cross-reacting monoclonal antibodies for analysis of different immune cells and their distribution in the common marmoset (Callithrix jacchus). J Med Primatol. 2016;45:139-46 pubmed 出版商
  210. Kay A, Strauss Albee D, Blish C. Application of Mass Cytometry (CyTOF) for Functional and Phenotypic Analysis of Natural Killer Cells. Methods Mol Biol. 2016;1441:13-26 pubmed 出版商
  211. Bähr A, Käser T, Kemter E, Gerner W, Kurome M, Baars W, et al. Ubiquitous LEA29Y Expression Blocks T Cell Co-Stimulation but Permits Sexual Reproduction in Genetically Modified Pigs. PLoS ONE. 2016;11:e0155676 pubmed 出版商
  212. Marafini I, Monteleone I, Di Fusco D, Sedda S, Cupi M, Fina D, et al. Celiac Disease-Related Inflammation Is Marked by Reduction of Nkp44/Nkp46-Double Positive Natural Killer Cells. PLoS ONE. 2016;11:e0155103 pubmed 出版商
  213. Roth S, Spalinger M, Gottier C, Biedermann L, Zeitz J, Lang S, et al. Bilberry-Derived Anthocyanins Modulate Cytokine Expression in the Intestine of Patients with Ulcerative Colitis. PLoS ONE. 2016;11:e0154817 pubmed 出版商
  214. Vorvis C, Hatziapostolou M, Mahurkar Joshi S, Koutsioumpa M, Williams J, Donahue T, et al. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 2016;310:G1124-37 pubmed 出版商
  215. Amarilla S, Gómez Laguna J, Carrasco L, Rodríguez Gómez I, Caridad Y Ocerín J, Graham S, et al. Thymic depletion of lymphocytes is associated with the virulence of PRRSV-1 strains. Vet Microbiol. 2016;188:47-58 pubmed 出版商
  216. Xu X, Meng Q, Erben U, Wang P, Glauben R, Kuhl A, et al. Myeloid-derived suppressor cells promote B-cell production of IgA in a TNFR2-dependent manner. Cell Mol Immunol. 2017;14:597-606 pubmed 出版商
  217. Graves S, Kouriba B, Diarra I, Daou M, Niangaly A, Coulibaly D, et al. Strain-specific Plasmodium falciparum multifunctional CD4(+) T cell cytokine expression in Malian children immunized with the FMP2.1/AS02A vaccine candidate. Vaccine. 2016;34:2546-55 pubmed 出版商
  218. Zurawski G, Zurawski S, Flamar A, Richert L, Wagner R, Tomaras G, et al. Targeting HIV-1 Env gp140 to LOX-1 Elicits Immune Responses in Rhesus Macaques. PLoS ONE. 2016;11:e0153484 pubmed 出版商
  219. Dimitrova M, Zenarruzabeitia O, Borrego F, Simhadri V. CD300c is uniquely expressed on CD56 bright Natural Killer Cells and differs from CD300a upon ligand recognition. Sci Rep. 2016;6:23942 pubmed 出版商
  220. Li J, Chen K, Li S, Liu T, Wang F, Xia Y, et al. Pretreatment with Fucoidan from Fucus vesiculosus Protected against ConA-Induced Acute Liver Injury by Inhibiting Both Intrinsic and Extrinsic Apoptosis. PLoS ONE. 2016;11:e0152570 pubmed 出版商
  221. Ganesan S, Reynolds C, Hollinger K, Pearce S, Gabler N, Baumgard L, et al. Twelve hours of heat stress induces inflammatory signaling in porcine skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2016;310:R1288-96 pubmed 出版商
  222. Moreira M, Costa Pereira C, Alves M, Marteleto B, Ribeiro V, Peruhype Magalhães V, et al. Vaccination against canine leishmaniosis increases the phagocytic activity, nitric oxide production and expression of cell activation/migration molecules in neutrophils and monocytes. Vet Parasitol. 2016;220:33-45 pubmed 出版商
  223. Lee Chang C, Bodogai M, Moritoh K, Chen X, Wersto R, Sen R, et al. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers. J Immunol. 2016;196:3385-97 pubmed 出版商
  224. Huang Y, Chen C, Tang K, Sheen J, Tiao M, Tain Y, et al. Postnatal High-Fat Diet Increases Liver Steatosis and Apoptosis Threatened by Prenatal Dexamethasone through the Oxidative Effect. Int J Mol Sci. 2016;17:369 pubmed 出版商
  225. Gao J, Duan Z, Zhang L, Huang X, Long L, Tu J, et al. Failure recovery of circulating NKG2D+CD56dimNK cells in HBV-associated hepatocellular carcinoma after hepatectomy predicts early recurrence. Oncoimmunology. 2016;5:e1048061 pubmed
  226. Szylberg Å, Janiczek M, Popiel A, MarszaÅ‚ek A. Expression of COX-2, IL-1β, TNF-α and IL-4 in epithelium of serrated adenoma, adenoma and hyperplastic polyp. Arch Med Sci. 2016;12:172-8 pubmed 出版商
  227. Phuah J, Wong E, Gideon H, Maiello P, Coleman M, Hendricks M, et al. Effects of B Cell Depletion on Early Mycobacterium tuberculosis Infection in Cynomolgus Macaques. Infect Immun. 2016;84:1301-1311 pubmed 出版商
  228. Haas S, Zhou X, Machado V, Wree A, Krieglstein K, Spittau B. Expression of Tgfβ1 and Inflammatory Markers in the 6-hydroxydopamine Mouse Model of Parkinson's Disease. Front Mol Neurosci. 2016;9:7 pubmed 出版商
  229. Crompton R, Williams H, Ansell D, Campbell L, Holden K, Cruickshank S, et al. Oestrogen promotes healing in a bacterial LPS model of delayed cutaneous wound repair. Lab Invest. 2016;96:439-49 pubmed 出版商
  230. Vallera D, Felices M, McElmurry R, McCullar V, Zhou X, Schmohl J, et al. IL15 Trispecific Killer Engagers (TriKE) Make Natural Killer Cells Specific to CD33+ Targets While Also Inducing Persistence, In Vivo Expansion, and Enhanced Function. Clin Cancer Res. 2016;22:3440-50 pubmed 出版商
  231. Roan F, Stoklasek T, Whalen E, Molitor J, Bluestone J, Buckner J, et al. CD4+ Group 1 Innate Lymphoid Cells (ILC) Form a Functionally Distinct ILC Subset That Is Increased in Systemic Sclerosis. J Immunol. 2016;196:2051-2062 pubmed 出版商
  232. Tham M, Schlör G, Yerly D, Mueller C, Surbek D, Villiger P, et al. Reduced pro-inflammatory profile of γδT cells in pregnant patients with rheumatoid arthritis. Arthritis Res Ther. 2016;18:26 pubmed 出版商
  233. Li L, Jiang Y, Lao S, Yang B, Yu S, Zhang Y, et al. Mycobacterium tuberculosis-Specific IL-21+IFN-γ+CD4+ T Cells Are Regulated by IL-12. PLoS ONE. 2016;11:e0147356 pubmed 出版商
  234. Wu H, Shi L, Wang Q, Cheng L, Zhao X, Chen Q, et al. Mumps virus-induced innate immune responses in mouse Sertoli and Leydig cells. Sci Rep. 2016;6:19507 pubmed 出版商
  235. Roth J, Köhler D, Schneider M, Granja T, Rosenberger P. Semaphorin 7A Aggravates Pulmonary Inflammation during Lung Injury. PLoS ONE. 2016;11:e0146930 pubmed 出版商
  236. Vieira Ramos G, Pinheiro C, Messa S, Delfino G, Marqueti R, Salvini T, et al. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle. Sci Rep. 2016;6:18525 pubmed 出版商
  237. Bolton D, Pegu A, Wang K, McGinnis K, Nason M, Foulds K, et al. Human Immunodeficiency Virus Type 1 Monoclonal Antibodies Suppress Acute Simian-Human Immunodeficiency Virus Viremia and Limit Seeding of Cell-Associated Viral Reservoirs. J Virol. 2016;90:1321-32 pubmed 出版商
  238. Li Y, Long X, Huang L, Yang M, Yuan Y, Wang Y, et al. Epstein-Barr Virus BZLF1-Mediated Downregulation of Proinflammatory Factors Is Essential for Optimal Lytic Viral Replication. J Virol. 2016;90:887-903 pubmed 出版商
  239. EskicioÄŸlu F, Özdemir A, Özdemir R, Turan G, Akan Z, Hasdemir S. The association of HLA-G and immune markers in recurrent miscarriages. J Matern Fetal Neonatal Med. 2016;29:3056-60 pubmed 出版商
  240. Venkatasubramanian S, Tripathi D, Tucker T, Paidipally P, Cheekatla S, Welch E, et al. Tissue factor expression by myeloid cells contributes to protective immune response against Mycobacterium tuberculosis infection. Eur J Immunol. 2016;46:464-79 pubmed 出版商
  241. Bass J, Friesen C, Deacy A, Neilan N, Bracken J, Shakhnovich V, et al. Investigation of potential early Histologic markers of pediatric inflammatory bowel disease. BMC Gastroenterol. 2015;15:129 pubmed 出版商
  242. Wardill H, Logan R, Bowen J, Van Sebille Y, Gibson R. Tight junction defects are seen in the buccal mucosa of patients receiving standard dose chemotherapy for cancer. Support Care Cancer. 2016;24:1779-88 pubmed 出版商
  243. Perotti V, Baldassari P, Molla A, Vegetti C, Bersani I, Maurichi A, et al. NFATc2 is an intrinsic regulator of melanoma dedifferentiation. Oncogene. 2016;35:2862-72 pubmed 出版商
  244. Moreira M, Dorneles E, Soares R, Magalhães C, Costa Pereira C, Lage A, et al. Cross-reactivity of commercially available anti-human monoclonal antibodies with canine cytokines: establishment of a reliable panel to detect the functional profile of peripheral blood lymphocytes by intracytoplasmic staining. Acta Vet Scand. 2015;57:51 pubmed 出版商
  245. Zhang Z, Yang P, Yao P, Dai D, Yu Y, Zhou Y, et al. Identification of transcription factors and gene clusters in rabbit smooth muscle cells during high flow-induced vascular remodeling via microarray. Gene. 2016;575:407-414 pubmed 出版商
  246. Campi Azevedo A, Costa Pereira C, Antonelli L, Fonseca C, Teixeira Carvalho A, Villela Rezende G, et al. Booster dose after 10 years is recommended following 17DD-YF primary vaccination. Hum Vaccin Immunother. 2016;12:491-502 pubmed 出版商
  247. Yapislar H, Taşkın E, Ozdas S, Akin D, Sonmez E. Counteraction of Apoptotic and Inflammatory Effects of Adriamycin in the Liver Cell Culture by Clinopitolite. Biol Trace Elem Res. 2016;170:373-81 pubmed 出版商
  248. Leeansyah E, Svärd J, Dias J, Buggert M, Nyström J, Quigley M, et al. Arming of MAIT Cell Cytolytic Antimicrobial Activity Is Induced by IL-7 and Defective in HIV-1 Infection. PLoS Pathog. 2015;11:e1005072 pubmed 出版商
  249. Schnorfeil F, Lichtenegger F, Emmerig K, Schlueter M, Neitz J, Draenert R, et al. T cells are functionally not impaired in AML: increased PD-1 expression is only seen at time of relapse and correlates with a shift towards the memory T cell compartment. J Hematol Oncol. 2015;8:93 pubmed 出版商
  250. Riou C, Tanko R, Soares A, Masson L, Werner L, Garrett N, et al. Restoration of CD4+ Responses to Copathogens in HIV-Infected Individuals on Antiretroviral Therapy Is Dependent on T Cell Memory Phenotype. J Immunol. 2015;195:2273-2281 pubmed 出版商
  251. Wang Y, Zhong H, Xie X, Chen C, Huang D, Shen L, et al. Long noncoding RNA derived from CD244 signaling epigenetically controls CD8+ T-cell immune responses in tuberculosis infection. Proc Natl Acad Sci U S A. 2015;112:E3883-92 pubmed 出版商
  252. Yawata N, Selva K, Liu Y, Tan K, Lee A, Siak J, et al. Dynamic change in natural killer cell type in the human ocular mucosa in situ as means of immune evasion by adenovirus infection. Mucosal Immunol. 2016;9:159-70 pubmed 出版商
  253. Kim J, Ku S, Kim K, Kim S, Han M, Kim G, et al. Schisandrae Fructus Supplementation Ameliorates Sciatic Neurectomy-Induced Muscle Atrophy in Mice. Oxid Med Cell Longev. 2015;2015:872428 pubmed 出版商
  254. Talker S, Koinig H, Stadler M, Graage R, Klingler E, Ladinig A, et al. Magnitude and kinetics of multifunctional CD4+ and CD8β+ T cells in pigs infected with swine influenza A virus. Vet Res. 2015;46:52 pubmed 出版商
  255. Wang Z, Wan Y, Qiu C, Quiñones Parra S, Zhu Z, Loh L, et al. Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8⁺ T cells. Nat Commun. 2015;6:6833 pubmed 出版商
  256. Riccio E, Pratt Riccio L, Bianco Júnior C, Sanchez V, Totino P, Carvalho L, et al. Molecular and immunological tools for the evaluation of the cellular immune response in the neotropical monkey Saimiri sciureus, a non-human primate model for malaria research. Malar J. 2015;14:166 pubmed 出版商
  257. DaFonseca S, Niessl J, Pouvreau S, Wacleche V, Gosselin A, Cleret Buhot A, et al. Impaired Th17 polarization of phenotypically naive CD4(+) T-cells during chronic HIV-1 infection and potential restoration with early ART. Retrovirology. 2015;12:38 pubmed 出版商
  258. Lenz N, Schindler T, Kagina B, Zhang J, Lukindo T, Mpina M, et al. Antiviral Innate Immune Activation in HIV-Infected Adults Negatively Affects H1/IC31-Induced Vaccine-Specific Memory CD4+ T Cells. Clin Vaccine Immunol. 2015;22:688-96 pubmed 出版商
  259. Schmueck Henneresse M, Sharaf R, Vogt K, Weist B, Landwehr Kenzel S, Fuehrer H, et al. Peripheral blood-derived virus-specific memory stem T cells mature to functional effector memory subsets with self-renewal potency. J Immunol. 2015;194:5559-67 pubmed 出版商
  260. Willy J, Young S, Stevens J, Masuoka H, Wek R. CHOP links endoplasmic reticulum stress to NF-κB activation in the pathogenesis of nonalcoholic steatohepatitis. Mol Biol Cell. 2015;26:2190-204 pubmed 出版商
  261. Pombo C, Wherry E, Gostick E, Price D, Betts M. Elevated Expression of CD160 and 2B4 Defines a Cytolytic HIV-Specific CD8+ T-Cell Population in Elite Controllers. J Infect Dis. 2015;212:1376-86 pubmed 出版商
  262. Zhou J, Amran F, Kramski M, Angelovich T, Elliott J, Hearps A, et al. An NK Cell Population Lacking FcRγ Is Expanded in Chronically Infected HIV Patients. J Immunol. 2015;194:4688-97 pubmed 出版商
  263. Hong M, Sandalova E, Low D, Gehring A, Fieni S, Amadei B, et al. Trained immunity in newborn infants of HBV-infected mothers. Nat Commun. 2015;6:6588 pubmed 出版商
  264. Patki G, Salvi A, Liu H, Atrooz F, Alkadhi I, Kelly M, et al. Tempol treatment reduces anxiety-like behaviors induced by multiple anxiogenic drugs in rats. PLoS ONE. 2015;10:e0117498 pubmed 出版商
  265. Lin Y, Chen L, Li W, Fang J. Role of high-mobility group box-1 in myocardial ischemia/reperfusion injury and the effect of ethyl pyruvate. Exp Ther Med. 2015;9:1537-1541 pubmed
  266. Chen M, Hu P, Ling N, Peng H, Lei Y, Hu H, et al. Enhanced functions of peripheral γδ T cells in chronic hepatitis B infection during interferon α treatment in vivo and in vitro. PLoS ONE. 2015;10:e0120086 pubmed 出版商
  267. Bowcutt R, Malter L, Chen L, Wolff M, Robertson I, Rifkin D, et al. Isolation and cytokine analysis of lamina propria lymphocytes from mucosal biopsies of the human colon. J Immunol Methods. 2015;421:27-35 pubmed 出版商
  268. López González I, Schlüter A, Aso E, Garcia Esparcia P, Ansoleaga B, Llorens F, et al. Neuroinflammatory signals in Alzheimer disease and APP/PS1 transgenic mice: correlations with plaques, tangles, and oligomeric species. J Neuropathol Exp Neurol. 2015;74:319-44 pubmed 出版商
  269. Tsai C, Liong K, Gunalan M, Li N, Lim D, Fisher D, et al. Type I IFNs and IL-18 regulate the antiviral response of primary human γδ T cells against dendritic cells infected with Dengue virus. J Immunol. 2015;194:3890-900 pubmed 出版商
  270. Rodriguez J, Marchicio J, López M, Ziblat A, Elias F, Fló J, et al. PyNTTTTGT and CpG immunostimulatory oligonucleotides: effect on granulocyte/monocyte colony-stimulating factor (GM-CSF) secretion by human CD56+ (NK and NKT) cells. PLoS ONE. 2015;10:e0117484 pubmed 出版商
  271. Severson J, Serracino H, Mateescu V, Raeburn C, McIntyre R, Sams S, et al. PD-1+Tim-3+ CD8+ T Lymphocytes Display Varied Degrees of Functional Exhaustion in Patients with Regionally Metastatic Differentiated Thyroid Cancer. Cancer Immunol Res. 2015;3:620-30 pubmed 出版商
  272. Ma Y, Usuwanthim K, Munawara U, Quach A, Gorgani N, Abbott C, et al. Protein kinase cα regulates the expression of complement receptor Ig in human monocyte-derived macrophages. J Immunol. 2015;194:2855-61 pubmed 出版商
  273. Volpetti F, Garcia Cordero J, Maerkl S. A microfluidic platform for high-throughput multiplexed protein quantitation. PLoS ONE. 2015;10:e0117744 pubmed 出版商
  274. Marquardt N, Béziat V, Nyström S, Hengst J, Ivarsson M, Kekäläinen E, et al. Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J Immunol. 2015;194:2467-71 pubmed 出版商
  275. Lu Y, Xue Q, Eisele M, Sulistijo E, Brower K, Han L, et al. Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. Proc Natl Acad Sci U S A. 2015;112:E607-15 pubmed 出版商
  276. Boyle M, Jagannathan P, Bowen K, McIntyre T, Vance H, Farrington L, et al. Effector Phenotype of Plasmodium falciparum-Specific CD4+ T Cells Is Influenced by Both Age and Transmission Intensity in Naturally Exposed Populations. J Infect Dis. 2015;212:416-25 pubmed 出版商
  277. Saveljeva S, Mc Laughlin S, Vandenabeele P, Samali A, Bertrand M. Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells. Cell Death Dis. 2015;6:e1587 pubmed 出版商
  278. Zhou L, Park S, Xu L, Xia X, Ye J, Su L, et al. Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice. Nat Commun. 2015;6:5949 pubmed 出版商
  279. Heninger A, Wentrup S, Al Saeedi M, Schiessling S, Giese T, Wartha F, et al. Immunomodulation of human intestinal T cells by the synthetic CD80 antagonist RhuDex®. Immun Inflamm Dis. 2014;2:166-80 pubmed 出版商
  280. Cohen N, Sabhachandani P, Golberg A, Konry T. Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection. Biosens Bioelectron. 2015;66:454-60 pubmed 出版商
  281. Gerner W, Talker S, Koinig H, Sedlak C, Mair K, Saalmüller A. Phenotypic and functional differentiation of porcine αβ T cells: current knowledge and available tools. Mol Immunol. 2015;66:3-13 pubmed 出版商
  282. Zhang P, Lu X, Tao K, Shi L, Li W, Wang G, et al. Siglec-10 is associated with survival and natural killer cell dysfunction in hepatocellular carcinoma. J Surg Res. 2015;194:107-13 pubmed 出版商
  283. Hautefort A, Girerd B, Montani D, Cohen Kaminsky S, Price L, Lambrecht B, et al. T-helper 17 cell polarization in pulmonary arterial hypertension. Chest. 2015;147:1610-1620 pubmed 出版商
  284. Vogelpoel L, Hansen I, Rispens T, Muller F, van Capel T, Turina M, et al. Fc gamma receptor-TLR cross-talk elicits pro-inflammatory cytokine production by human M2 macrophages. Nat Commun. 2014;5:5444 pubmed 出版商
  285. Ortiz F, Acuña Castroviejo D, Doerrier C, Dayoub J, López L, Venegas C, et al. Melatonin blunts the mitochondrial/NLRP3 connection and protects against radiation-induced oral mucositis. J Pineal Res. 2015;58:34-49 pubmed 出版商
  286. Mohanty S, Joshi S, Ueda I, Wilson J, Blevins T, Siconolfi B, et al. Prolonged proinflammatory cytokine production in monocytes modulated by interleukin 10 after influenza vaccination in older adults. J Infect Dis. 2015;211:1174-84 pubmed 出版商
  287. Boltjes A, van Montfoort N, Biesta P, Op den Brouw M, Kwekkeboom J, van der Laan L, et al. Kupffer cells interact with hepatitis B surface antigen in vivo and in vitro, leading to proinflammatory cytokine production and natural killer cell function. J Infect Dis. 2015;211:1268-78 pubmed 出版商
  288. Bodine B, Bennion B, Leatham E, Jimenez F, Wright A, Jergensen Z, et al. Conditionally induced RAGE expression by proximal airway epithelial cells in transgenic mice causes lung inflammation. Respir Res. 2014;15:133 pubmed 出版商
  289. He D, Kou X, Luo Q, Yang R, Liu D, Wang X, et al. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption. J Dent Res. 2015;94:129-39 pubmed 出版商
  290. Weiskopf D, Angelo M, Bangs D, Sidney J, Paul S, Peters B, et al. The human CD8+ T cell responses induced by a live attenuated tetravalent dengue vaccine are directed against highly conserved epitopes. J Virol. 2015;89:120-8 pubmed 出版商
  291. Lim D, Yawata N, Selva K, Li N, Tsai C, Yeong L, et al. The combination of type I IFN, TNF-α, and cell surface receptor engagement with dendritic cells enables NK cells to overcome immune evasion by dengue virus. J Immunol. 2014;193:5065-75 pubmed 出版商
  292. Yu C, Becker C, Metang P, Marches F, Wang Y, Toshiyuki H, et al. Human CD141+ dendritic cells induce CD4+ T cells to produce type 2 cytokines. J Immunol. 2014;193:4335-43 pubmed 出版商
  293. Gibbons D, Fleming P, Virasami A, Michel M, Sebire N, Costeloe K, et al. Interleukin-8 (CXCL8) production is a signatory T cell effector function of human newborn infants. Nat Med. 2014;20:1206-10 pubmed 出版商
  294. Valentin A, McKinnon K, Li J, Rosati M, Kulkarni V, Pilkington G, et al. Comparative analysis of SIV-specific cellular immune responses induced by different vaccine platforms in rhesus macaques. Clin Immunol. 2014;155:91-107 pubmed 出版商
  295. Kagina B, Tameris M, Geldenhuys H, Hatherill M, Abel B, Hussey G, et al. The novel tuberculosis vaccine, AERAS-402, is safe in healthy infants previously vaccinated with BCG, and induces dose-dependent CD4 and CD8T cell responses. Vaccine. 2014;32:5908-17 pubmed 出版商
  296. Frencher J, Shen H, Yan L, Wilson J, Freitag N, Rizzo A, et al. HMBPP-deficient Listeria mutant immunization alters pulmonary/systemic responses, effector functions, and memory polarization of Vγ2Vδ2 T cells. J Leukoc Biol. 2014;96:957-67 pubmed 出版商
  297. Arlehamn C, Seumois G, Gerasimova A, Huang C, Fu Z, Yue X, et al. Transcriptional profile of tuberculosis antigen-specific T cells reveals novel multifunctional features. J Immunol. 2014;193:2931-40 pubmed 出版商
  298. Weist B, Schmueck M, Fuehrer H, Sattler A, Reinke P, Babel N. The role of CD4(+) T cells in BKV-specific T cell immunity. Med Microbiol Immunol. 2014;203:395-408 pubmed 出版商
  299. Domitrovic R, Cvijanovic O, Susnić V, Katalinić N. Renoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injury. Toxicology. 2014;324:98-107 pubmed 出版商
  300. Buggert M, Tauriainen J, Yamamoto T, Frederiksen J, Ivarsson M, Michaelsson J, et al. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T cells in HIV infection. PLoS Pathog. 2014;10:e1004251 pubmed 出版商
  301. Booth J, Toapanta F, Salerno Goncalves R, Patil S, Kader H, Safta A, et al. Characterization and functional properties of gastric tissue-resident memory T cells from children, adults, and the elderly. Front Immunol. 2014;5:294 pubmed 出版商
  302. Hagel C, Krasemann S, Löffler J, Puschel K, Magnus T, Glatzel M. Upregulation of Shiga toxin receptor CD77/Gb3 and interleukin-1? expression in the brain of EHEC patients with hemolytic uremic syndrome and neurologic symptoms. Brain Pathol. 2015;25:146-56 pubmed 出版商
  303. Benzina S, Harquail J, Jean S, Beauregard A, Colquhoun C, Carroll M, et al. Deoxypodophyllotoxin isolated from Juniperus communis induces apoptosis in breast cancer cells. Anticancer Agents Med Chem. 2015;15:79-88 pubmed
  304. Hong J, Amancha P, Rogers K, Courtney C, Havenar Daughton C, Crotty S, et al. Early lymphoid responses and germinal center formation correlate with lower viral load set points and better prognosis of simian immunodeficiency virus infection. J Immunol. 2014;193:797-806 pubmed 出版商
  305. Payne T, Blackinton J, Frisbee A, Pickeral J, Sawant S, Vandergrift N, et al. Transcriptional and posttranscriptional regulation of cytokine gene expression in HIV-1 antigen-specific CD8+ T cells that mediate virus inhibition. J Virol. 2014;88:9514-28 pubmed 出版商
  306. Sueur C, Lupo J, Mas P, Morand P, Boyer V. Difference in cytokine production and cell cycle progression induced by Epstein-Barr virus Lmp1 deletion variants in Kmh2, a Hodgkin lymphoma cell line. Virol J. 2014;11:94 pubmed 出版商
  307. Staumont Sallé D, Fleury S, Lazzari A, Molendi Coste O, Hornez N, Lavogiez C, et al. CX?CL1 (fractalkine) and its receptor CX?CR1 regulate atopic dermatitis by controlling effector T cell retention in inflamed skin. J Exp Med. 2014;211:1185-96 pubmed 出版商
  308. Poussin C, Gallitz I, Schlage W, Steffen Y, Stolle K, Lebrun S, et al. Mechanism of an indirect effect of aqueous cigarette smoke extract on the adhesion of monocytic cells to endothelial cells in an in vitro assay revealed by transcriptomics analysis. Toxicol In Vitro. 2014;28:896-908 pubmed 出版商
  309. Buggert M, Norstr m M, Salemi M, Hecht F, Karlsson A. Functional avidity and IL-2/perforin production is linked to the emergence of mutations within HLA-B*5701-restricted epitopes and HIV-1 disease progression. J Immunol. 2014;192:4685-96 pubmed 出版商
  310. Dhodapkar M, Sznol M, Zhao B, Wang D, Carvajal R, Keohan M, et al. Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci Transl Med. 2014;6:232ra51 pubmed 出版商
  311. Aksu V, Yuksel V, Chousein S, Tastekin E, Iscan S, Sagiroglu G, et al. The effects of sildenafil and n-acetylcysteine on ischemia and reperfusion injury in gastrocnemius muscle and femoral artery endothelium. Vascular. 2015;23:21-30 pubmed 出版商
  312. Duggal N, Beswetherick A, Upton J, Hampson P, Phillips A, Lord J. Depressive symptoms in hip fracture patients are associated with reduced monocyte superoxide production. Exp Gerontol. 2014;54:27-34 pubmed 出版商
  313. Chen D, Mao M, Bellussi L, Passali D, Chen L. Increase of high mobility group box chromosomal protein 1 in eosinophilic chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2014;4:453-62 pubmed 出版商
  314. Altonsy M, Sasse S, Phang T, Gerber A. Context-dependent cooperation between nuclear factor ?B (NF-?B) and the glucocorticoid receptor at a TNFAIP3 intronic enhancer: a mechanism to maintain negative feedback control of inflammation. J Biol Chem. 2014;289:8231-9 pubmed 出版商
  315. Sereti I, Estes J, Thompson W, Morcock D, Fischl M, Croughs T, et al. Decreases in colonic and systemic inflammation in chronic HIV infection after IL-7 administration. PLoS Pathog. 2014;10:e1003890 pubmed 出版商
  316. Kulkarni V, Valentin A, Rosati M, Alicea C, Singh A, Jalah R, et al. Altered response hierarchy and increased T-cell breadth upon HIV-1 conserved element DNA vaccination in macaques. PLoS ONE. 2014;9:e86254 pubmed 出版商
  317. Salerno Goncalves R, Rezwan T, Sztein M. B cells modulate mucosal associated invariant T cell immune responses. Front Immunol. 2014;4:511 pubmed 出版商
  318. Narita T, Ishida T, Masaki A, Suzuki S, Ito A, Mori F, et al. HTLV-1 bZIP factor-specific CD4 T cell responses in adult T cell leukemia/lymphoma patients after allogeneic hematopoietic stem cell transplantation. J Immunol. 2014;192:940-7 pubmed 出版商
  319. Fischer R, Wajant H, Kontermann R, Pfizenmaier K, Maier O. Astrocyte-specific activation of TNFR2 promotes oligodendrocyte maturation by secretion of leukemia inhibitory factor. Glia. 2014;62:272-83 pubmed 出版商
  320. Krishnan S, Wilson E, Sheikh V, Rupert A, Mendoza D, Yang J, et al. Evidence for innate immune system activation in HIV type 1-infected elite controllers. J Infect Dis. 2014;209:931-9 pubmed 出版商
  321. Lutwama F, Kagina B, Wajja A, Waiswa F, Mansoor N, Kirimunda S, et al. Distinct T-cell responses when BCG vaccination is delayed from birth to 6 weeks of age in Ugandan infants. J Infect Dis. 2014;209:887-97 pubmed 出版商
  322. Bhaskar K, Maphis N, Xu G, Varvel N, Kokiko Cochran O, Weick J, et al. Microglial derived tumor necrosis factor-? drives Alzheimer's disease-related neuronal cell cycle events. Neurobiol Dis. 2014;62:273-85 pubmed 出版商
  323. Domitrovic R, Cvijanovic O, Pernjak Pugel E, Skoda M, Mikelić L, Crncevic Orlic Z. Berberine exerts nephroprotective effect against cisplatin-induced kidney damage through inhibition of oxidative/nitrosative stress, inflammation, autophagy and apoptosis. Food Chem Toxicol. 2013;62:397-406 pubmed 出版商
  324. Nagy L, Grishina I, Macal M, Hirao L, Hu W, Sankaran Walters S, et al. Chronic HIV infection enhances the responsiveness of antigen presenting cells to commensal Lactobacillus. PLoS ONE. 2013;8:e72789 pubmed 出版商
  325. Ishikawa H, Tajiri N, Vasconcellos J, Kaneko Y, Mimura O, Dezawa M, et al. Ischemic stroke brain sends indirect cell death signals to the heart. Stroke. 2013;44:3175-82 pubmed 出版商
  326. Domitrovic R, Cvijanovic O, Pugel E, Zagorac G, Mahmutefendić H, Skoda M. Luteolin ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of platinum accumulation, inflammation and apoptosis in the kidney. Toxicology. 2013;310:115-23 pubmed 出版商
  327. Melis L, Van Praet L, Pircher H, Venken K, Elewaut D. Senescence marker killer cell lectin-like receptor G1 (KLRG1) contributes to TNF-? production by interaction with its soluble E-cadherin ligand in chronically inflamed joints. Ann Rheum Dis. 2014;73:1223-31 pubmed 出版商
  328. Marin N, Paris S, Rojas M, Garcia L. Functional profile of CD4+ and CD8+ T cells in latently infected individuals and patients with active TB. Tuberculosis (Edinb). 2013;93:155-66 pubmed 出版商
  329. Yamada H, Nakashima Y, Okazaki K, Mawatari T, Fukushi J, Kaibara N, et al. Th1 but not Th17 cells predominate in the joints of patients with rheumatoid arthritis. Ann Rheum Dis. 2008;67:1299-304 pubmed
  330. Lai L, Vödrös D, Kozlowski P, Montefiori D, Wilson R, Akerstrom V, et al. GM-CSF DNA: an adjuvant for higher avidity IgG, rectal IgA, and increased protection against the acute phase of a SHIV-89.6P challenge by a DNA/MVA immunodeficiency virus vaccine. Virology. 2007;369:153-67 pubmed
  331. Freysdottir J, Zhang S, Tilakaratne W, Fortune F. Oral biopsies from patients with orofacial granulomatosis with histology resembling Crohn's disease have a prominent Th1 environment. Inflamm Bowel Dis. 2007;13:439-45 pubmed
  332. Gorden K, Qiu X, Battiste J, Wightman P, Vasilakos J, Alkan S. Oligodeoxynucleotides differentially modulate activation of TLR7 and TLR8 by imidazoquinolines. J Immunol. 2006;177:8164-70 pubmed
  333. Kvist P, Iburg T, Bielecki M, Gerstenberg M, Buch Rasmussen T, Hasselager E, et al. Biocompatibility of electrochemical glucose sensors implanted in the subcutis of pigs. Diabetes Technol Ther. 2006;8:463-75 pubmed
  334. Janke M, Witsch E, Mages H, Hutloff A, Kroczek R. Eminent role of ICOS costimulation for T cells interacting with plasmacytoid dendritic cells. Immunology. 2006;118:353-60 pubmed
  335. Inglefield J, Larson C, Gibson S, Lebrec H, Miller R. Apoptotic responses in squamous carcinoma and epithelial cells to small-molecule toll-like receptor agonists evaluated with automated cytometry. J Biomol Screen. 2006;11:575-85 pubmed
  336. Njemini R, Lambert M, Demanet C, Mets T. The effect of aging and inflammation on heat shock protein 27 in human monocytes and lymphocytes. Exp Gerontol. 2006;41:312-9 pubmed
  337. Shen C, Maerten P, Geboes K, Van Assche G, Rutgeerts P, Ceuppens J. Infliximab induces apoptosis of monocytes and T lymphocytes in a human-mouse chimeric model. Clin Immunol. 2005;115:250-9 pubmed
  338. Shen C, Assche G, Colpaert S, Maerten P, Geboes K, Rutgeerts P, et al. Adalimumab induces apoptosis of human monocytes: a comparative study with infliximab and etanercept. Aliment Pharmacol Ther. 2005;21:251-8 pubmed
  339. Arredouani M, Kasran A, Vanoirbeek J, Berger F, Baumann H, Ceuppens J. Haptoglobin dampens endotoxin-induced inflammatory effects both in vitro and in vivo. Immunology. 2005;114:263-71 pubmed
  340. Vinogradov E, Paul C, Li J, Zhou Y, Lyle E, Tapping R, et al. The structure and biological characteristics of the Spirochaeta aurantia outer membrane glycolipid LGLB. Eur J Biochem. 2004;271:4685-95 pubmed
  341. Gee K, Kozlowski M, Kumar A. Tumor necrosis factor-alpha induces functionally active hyaluronan-adhesive CD44 by activating sialidase through p38 mitogen-activated protein kinase in lipopolysaccharide-stimulated human monocytic cells. J Biol Chem. 2003;278:37275-87 pubmed
  342. Gee K, Lim W, Ma W, Nandan D, Diaz Mitoma F, Kozlowski M, et al. Differential regulation of CD44 expression by lipopolysaccharide (LPS) and TNF-alpha in human monocytic cells: distinct involvement of c-Jun N-terminal kinase in LPS-induced CD44 expression. J Immunol. 2002;169:5660-72 pubmed
  343. Soop M, Duxbury H, Agwunobi A, Gibson J, Hopkins S, Childs C, et al. Euglycemic hyperinsulinemia augments the cytokine and endocrine responses to endotoxin in humans. Am J Physiol Endocrinol Metab. 2002;282:E1276-85 pubmed
  344. Kooijman R, Coppens A, Hooghe Peters E. Igf-I inhibits spontaneous apoptosis in human granulocytes. Endocrinology. 2002;143:1206-12 pubmed
  345. Braun M, Wang J, Lahey E, Rabin R, Kelsall B. Activation of the formyl peptide receptor by the HIV-derived peptide T-20 suppresses interleukin-12 p70 production by human monocytes. Blood. 2001;97:3531-6 pubmed
  346. Bullens D, Kasran A, Thielemans K, Bakkus M, Ceuppens J. CD40L-induced IL-12 production is further enhanced by the Th2 cytokines IL-4 and IL-13. Scand J Immunol. 2001;53:455-63 pubmed
  347. Bullens D, Rafiq K, Charitidou L, Peng X, Kasran A, Warmerdam P, et al. Effects of co-stimulation by CD58 on human T cell cytokine production: a selective cytokine pattern with induction of high IL-10 production. Int Immunol. 2001;13:181-91 pubmed
  348. Shields D, Avgeropoulos N, Banik N, Tyor W. Acute multiple sclerosis characterized by extensive mononuclear phagocyte infiltration. Neurochem Res. 2000;25:1517-20 pubmed
  349. Tapping R, Akashi S, Miyake K, Godowski P, Tobias P. Toll-like receptor 4, but not toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides. J Immunol. 2000;165:5780-7 pubmed
  350. Braun M, Lahey E, Kelsall B. Selective suppression of IL-12 production by chemoattractants. J Immunol. 2000;164:3009-17 pubmed
  351. Braun M, He J, Wu C, Kelsall B. Cholera toxin suppresses interleukin (IL)-12 production and IL-12 receptor beta1 and beta2 chain expression. J Exp Med. 1999;189:541-52 pubmed