这是一篇来自已证抗体库的有关人类 TNFR1的综述,是根据41篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合TNFR1 抗体。
TNFR1 同义词: CD120a; FPF; TBP1; TNF-R; TNF-R-I; TNF-R55; TNFAR; TNFR1; TNFR55; TNFR60; p55; p55-R; p60

圣克鲁斯生物技术
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 2d
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, sc-8436)被用于被用于免疫印迹在人类样本上 (图 2d). Sci Adv (2019) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 3f
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-8436)被用于被用于免疫印迹在人类样本上 (图 3f). Cell Death Differ (2019) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology Inc, sc-8436)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). J Neuroinflammation (2018) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 大鼠; 图 2c
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, sc-8436)被用于被用于免疫印迹在大鼠样本上 (图 2c). J Neurosci (2018) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, sc-8436)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(H398)
  • 免疫沉淀; 人类; 图 3b
  • 免疫印迹; 人类; 1:1000; 图 3b
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-52739)被用于被用于免疫沉淀在人类样本上 (图 3b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Front Pharmacol (2016) ncbi
仓鼠 单克隆(55R-170)
  • 流式细胞仪; 小鼠; 图 1a
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, sc-12746)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Cell Death Dis (2016) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, 8436)被用于被用于免疫印迹在人类样本上 (图 1). Cell Rep (2016) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-8436)被用于被用于免疫印迹在人类样本上 (图 1). Int J Mol Med (2016) ncbi
仓鼠 单克隆(55R-170)
  • 免疫沉淀; 小鼠; 图 5
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-12746)被用于被用于免疫沉淀在小鼠样本上 (图 5). Cell Rep (2016) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-8436)被用于被用于免疫印迹在小鼠样本上 (图 5). Cell Rep (2016) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-8436)被用于被用于免疫印迹在人类样本上 (图 3). Biochem Biophys Res Commun (2016) ncbi
小鼠 单克隆(E-11)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-374186)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). J Biol Chem (2016) ncbi
小鼠 单克隆(H-5)
  • 免疫沉淀; 人类; 1:100; 图 5
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-8436)被用于被用于免疫沉淀在人类样本上浓度为1:100 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 5). J Biol Chem (2016) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 6A
  • 免疫组化; 小鼠; 图 8A
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-8436)被用于被用于免疫印迹在人类样本上 (图 6A) 和 被用于免疫组化在小鼠样本上 (图 8A). PLoS ONE (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫组化; 大鼠; 1:50; 图 4
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc8436)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫沉淀; 人类
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, sc-8436)被用于被用于免疫沉淀在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(H398)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-52739)被用于被用于免疫印迹在人类样本上. J Biomed Sci (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, sc-8436)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, Sc-8436)被用于被用于免疫印迹在大鼠样本上. Cell Biol Toxicol (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, SC-8436)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, H5)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 大鼠; 1:100
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, SC-8436)被用于被用于免疫印迹在大鼠样本上浓度为1:100. Mol Vis (2014) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, sc-8436)被用于被用于免疫印迹在人类样本上 (图 3). Breast Cancer Res Treat (2014) ncbi
小鼠 单克隆(H-5)
  • 免疫沉淀; 小鼠
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, SC-8436)被用于被用于免疫沉淀在小鼠样本上. Cell Signal (2014) ncbi
小鼠 单克隆(H-5)
  • 免疫沉淀; 人类; 图 4a
  • 免疫印迹; 人类; 1:1000; 图 4a
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, sc-8436)被用于被用于免疫沉淀在人类样本上 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Carcinogenesis (2014) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, sc-8436)被用于被用于免疫印迹在人类样本上. Carcinogenesis (2009) ncbi
安迪生物R&D
小鼠 单克隆(16803)
  • 流式细胞仪; 人类; 图 3d
安迪生物R&D TNFR1抗体(R&D, FAB225P)被用于被用于流式细胞仪在人类样本上 (图 3d). Cell Death Differ (2019) ncbi
小鼠 单克隆(16803)
  • 流式细胞仪; 人类; 表 1
安迪生物R&D TNFR1抗体(R and D Systems, 16803)被用于被用于流式细胞仪在人类样本上 (表 1). J Immunol Res (2016) ncbi
小鼠 单克隆(16805)
  • 抑制或激活实验; 人类; 图 6a
安迪生物R&D TNFR1抗体(R&D Systems, mab625)被用于被用于抑制或激活实验在人类样本上 (图 6a). Sci Rep (2016) ncbi
小鼠 单克隆(16803)
  • 流式细胞仪; 人类; 图 s2b
安迪生物R&D TNFR1抗体(R&D Systems, 16803)被用于被用于流式细胞仪在人类样本上 (图 s2b). Sci Rep (2016) ncbi
小鼠 单克隆(16803)
  • 流式细胞仪; 人类; 1:100; 图 4a
安迪生物R&D TNFR1抗体(R&D Systems, FAB225A)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 4a). Nat Commun (2016) ncbi
小鼠 单克隆(16803)
  • 流式细胞仪; 人类; 图 st1
安迪生物R&D TNFR1抗体(R&D Systems, FAB225P)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(16803)
  • 流式细胞仪; 人类
安迪生物R&D TNFR1抗体(R & D Systems, FAB225P)被用于被用于流式细胞仪在人类样本上. Oncotarget (2012) ncbi
美天旎
人类 单克隆(REA252)
  • 流式细胞仪; 人类; 图 6a
美天旎 TNFR1抗体(Miltenyi Biotec, REA252)被用于被用于流式细胞仪在人类样本上 (图 6a). Stem Cells (2018) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 TNFR1抗体(Abcam, ab19139)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Mol Metab (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 TNFR1抗体(Abcam, ab19139)被用于被用于免疫印迹在小鼠样本上 (图 2a). Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 牛; 图 s1
艾博抗(上海)贸易有限公司 TNFR1抗体(Abcam, ab19139)被用于被用于免疫印迹在牛样本上 (图 s1). Reprod Fertil Dev (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C25C1)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 TNFR1抗体(Cell Signaling, 3736)被用于被用于免疫印迹在人类样本上 (图 6a). J Virol (2017) ncbi
domestic rabbit 单克隆(C25C1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 TNFR1抗体(Cell Signaling, 3736)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(C25C1)
  • 免疫沉淀; 人类; 1:100; 图 5
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 TNFR1抗体(Cell Signaling, 3736)被用于被用于免疫沉淀在人类样本上浓度为1:100 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C25C1)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 TNFR1抗体(Cell Signaling Technology, 3736)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C25C1)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 TNFR1抗体(Cell Signaling, 3736)被用于被用于免疫印迹在人类样本上 (图 3). Int J Mol Sci (2015) ncbi
domestic rabbit 单克隆(C25C1)
  • 免疫印迹; 大鼠
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 TNFR1抗体(Cell Signaling, 3736)被用于被用于免疫印迹在大鼠样本上 和 被用于免疫细胞化学在人类样本上. Toxicol Lett (2015) ncbi
domestic rabbit 单克隆(C25C1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 TNFR1抗体(Cell Signaling, C25C1)被用于被用于免疫印迹在人类样本上. FASEB J (2013) ncbi
碧迪BD
小鼠 单克隆(MABTNFR1-B1)
  • 流式细胞仪; 人类; 图 2f
碧迪BD TNFR1抗体(BD Biosciences, 550514)被用于被用于流式细胞仪在人类样本上 (图 2f). J Immunol (2018) ncbi
文章列表
  1. Xu M, Ge C, Qin Y, Lou D, Li Q, Feng J, et al. Functional loss of inactive rhomboid-like protein 2 mitigates obesity by suppressing pro-inflammatory macrophage activation-triggered adipose inflammation. Mol Metab. 2020;34:112-123 pubmed 出版商
  2. Izadi D, Layton T, Williams L, McCann F, Cabrita M, Espirito Santo A, et al. Identification of TNFR2 and IL-33 as therapeutic targets in localized fibrosis. Sci Adv. 2019;5:eaay0370 pubmed 出版商
  3. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed 出版商
  4. Han L, Wang L, Tang S, Yuan L, Wu S, Du X, et al. ITGB4 deficiency in bronchial epithelial cells directs airway inflammation and bipolar disorder-related behavior. J Neuroinflammation. 2018;15:246 pubmed 出版商
  5. Peltzer N, Darding M, Montinaro A, Dráber P, Draberova H, Kupka S, et al. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature. 2018;557:112-117 pubmed 出版商
  6. Ahmad R, Al Roub A, Kochumon S, Akther N, Thomas R, Kumari M, et al. The Synergy between Palmitate and TNF-α for CCL2 Production Is Dependent on the TRIF/IRF3 Pathway: Implications for Metabolic Inflammation. J Immunol. 2018;200:3599-3611 pubmed 出版商
  7. Mironets E, Osei Owusu P, Bracchi Ricard V, Fischer R, Owens E, Ricard J, et al. Soluble TNFα Signaling within the Spinal Cord Contributes to the Development of Autonomic Dysreflexia and Ensuing Vascular and Immune Dysfunction after Spinal Cord Injury. J Neurosci. 2018;38:4146-4162 pubmed 出版商
  8. Melzer C, von der Ohe J, Hass R. In Vitro Fusion of Normal and Neoplastic Breast Epithelial Cells with Human Mesenchymal Stroma/Stem Cells Partially Involves Tumor Necrosis Factor Receptor Signaling. Stem Cells. 2018;36:977-989 pubmed 出版商
  9. Franz S, Rennert P, Woznik M, Grützke J, Lüdde A, Arriero Pais E, et al. Mumps Virus SH Protein Inhibits NF-κB Activation by Interacting with Tumor Necrosis Factor Receptor 1, Interleukin-1 Receptor 1, and Toll-Like Receptor 3 Complexes. J Virol. 2017;91: pubmed 出版商
  10. Zhao L, Zhang B. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Sci Rep. 2017;7:44735 pubmed 出版商
  11. Lin C, Lin W, Cho R, Wang C, Hsiao L, Yang C. TNF-?-Induced cPLA2 Expression via NADPH Oxidase/Reactive Oxygen Species-Dependent NF-?B Cascade on Human Pulmonary Alveolar Epithelial Cells. Front Pharmacol. 2016;7:447 pubmed
  12. Siegmund D, Kums J, Ehrenschwender M, Wajant H. Activation of TNFR2 sensitizes macrophages for TNFR1-mediated necroptosis. Cell Death Dis. 2016;7:e2375 pubmed 出版商
  13. Gane J, Stockley R, Sapey E. TNF-? Autocrine Feedback Loops in Human Monocytes: The Pro- and Anti-Inflammatory Roles of the TNF-? Receptors Support the Concept of Selective TNFR1 Blockade In Vivo. J Immunol Res. 2016;2016:1079851 pubmed
  14. Yeap W, Wong K, Shimasaki N, Teo E, Quek J, Yong H, et al. CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes. Sci Rep. 2016;6:34310 pubmed 出版商
  15. Zhou Q, Yu X, Demirkaya E, Deuitch N, Stone D, Tsai W, et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci U S A. 2016;113:10127-32 pubmed 出版商
  16. Kupka S, De Miguel D, Dráber P, Martino L, Surinova S, Rittinger K, et al. SPATA2-Mediated Binding of CYLD to HOIP Enables CYLD Recruitment to Signaling Complexes. Cell Rep. 2016;16:2271-80 pubmed 出版商
  17. Wu S, Kanda T, Nakamoto S, Jiang X, Nakamura M, Sasaki R, et al. Cooperative effects of hepatitis B virus and TNF may play important roles in the activation of metabolic pathways through the activation of NF-?B. Int J Mol Med. 2016;38:475-81 pubmed 出版商
  18. Horihata K, Yoshioka S, Sano M, Yamamoto Y, Kimura K, Skarzynski D, et al. Expressions of lipoprotein receptors and cholesterol efflux regulatory proteins during luteolysis in bovine corpus luteum. Reprod Fertil Dev. 2017;29:1280-1286 pubmed 出版商
  19. Sommer A, Kordowski F, Büch J, Maretzky T, Evers A, Andrä J, et al. Phosphatidylserine exposure is required for ADAM17 sheddase function. Nat Commun. 2016;7:11523 pubmed 出版商
  20. Tortola L, Nitsch R, Bertrand M, Kogler M, Redouane Y, Kozieradzki I, et al. The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate. Cell Rep. 2016;15:1481-1492 pubmed 出版商
  21. Emmerich C, Bakshi S, Kelsall I, Ortiz Guerrero J, Shpiro N, Cohen P. Lys63/Met1-hybrid ubiquitin chains are commonly formed during the activation of innate immune signalling. Biochem Biophys Res Commun. 2016;474:452-461 pubmed 出版商
  22. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  23. Chhibber Goel J, Coleman Vaughan C, Agrawal V, Sawhney N, Hickey E, Powell J, et al. γ-Secretase Activity Is Required for Regulated Intramembrane Proteolysis of Tumor Necrosis Factor (TNF) Receptor 1 and TNF-mediated Pro-apoptotic Signaling. J Biol Chem. 2016;291:5971-85 pubmed 出版商
  24. Lin C, Huang P, Lai C, Chen J, Lin S, Chen J. Simvastatin Attenuates Oxidative Stress, NF-κB Activation, and Artery Calcification in LDLR-/- Mice Fed with High Fat Diet via Down-regulation of Tumor Necrosis Factor-α and TNF Receptor 1. PLoS ONE. 2015;10:e0143686 pubmed 出版商
  25. Yang H, Zhang M, Wang X, Zhang H, Zhang J, Jing L, et al. TNF Accelerates Death of Mandibular Condyle Chondrocytes in Rats with Biomechanical Stimulation-Induced Temporomandibular Joint Disease. PLoS ONE. 2015;10:e0141774 pubmed 出版商
  26. Mahata B, Biswas S, Rayman P, Chahlavi A, Ko J, Bhattacharjee A, et al. GBM Derived Gangliosides Induce T Cell Apoptosis through Activation of the Caspase Cascade Involving Both the Extrinsic and the Intrinsic Pathway. PLoS ONE. 2015;10:e0134425 pubmed 出版商
  27. Lee C, Yang Y, Chen C, Liu J. Syk-mediated tyrosine phosphorylation of mule promotes TNF-induced JNK activation and cell death. Oncogene. 2016;35:1988-95 pubmed 出版商
  28. Lin C, Pan C, Wang C, Liu S, Hsiao L, Yang C. Tumor necrosis factor-alpha induces VCAM-1-mediated inflammation via c-Src-dependent transactivation of EGF receptors in human cardiac fibroblasts. J Biomed Sci. 2015;22:53 pubmed 出版商
  29. Huang P, Yang J, Ning J, Wang M, Song Q. Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells. Int J Mol Sci. 2015;16:14353-68 pubmed 出版商
  30. Zhang L, Wang H, Ding K, Xu J. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett. 2015;236:43-59 pubmed 出版商
  31. Clark P, Kim R, Pober J, Kluger M. Tumor necrosis factor disrupts claudin-5 endothelial tight junction barriers in two distinct NF-κB-dependent phases. PLoS ONE. 2015;10:e0120075 pubmed 出版商
  32. Opperman C, Sishi B. Tumor necrosis factor alpha stimulates p62 accumulation and enhances proteasome activity independently of ROS. Cell Biol Toxicol. 2015;31:83-94 pubmed 出版商
  33. Wang Y, Tan B, Mu R, Chang Y, Wu M, Tu H, et al. Ubiquitin-associated domain-containing ubiquitin regulatory X (UBX) protein UBXN1 is a negative regulator of nuclear factor κB (NF-κB) signaling. J Biol Chem. 2015;290:10395-405 pubmed 出版商
  34. Morlé A, Garrido C, Micheau O. Hyperthermia restores apoptosis induced by death receptors through aggregation-induced c-FLIP cytosolic depletion. Cell Death Dis. 2015;6:e1633 pubmed 出版商
  35. Gao S, Andreeva K, Cooper N. Ischemia-reperfusion injury of the retina is linked to necroptosis via the ERK1/2-RIP3 pathway. Mol Vis. 2014;20:1374-87 pubmed
  36. Varley K, Gertz J, Roberts B, Davis N, Bowling K, Kirby M, et al. Recurrent read-through fusion transcripts in breast cancer. Breast Cancer Res Treat. 2014;146:287-97 pubmed 出版商
  37. Li M, Liu Y, Xia F, Wu Z, Deng L, Jiang R, et al. Progranulin is required for proper ER stress response and inhibits ER stress-mediated apoptosis through TNFR2. Cell Signal. 2014;26:1539-48 pubmed 出版商
  38. Kim T, Kang Y, Park Z, Kim Y, Hong S, Oh S, et al. SH3RF2 functions as an oncogene by mediating PAK4 protein stability. Carcinogenesis. 2014;35:624-34 pubmed 出版商
  39. Moh M, Lorenzini P, Gullo C, Schwarz H. Tumor necrosis factor receptor 1 associates with CD137 ligand and mediates its reverse signaling. FASEB J. 2013;27:2957-66 pubmed 出版商
  40. Chen J, Shen H, Rivera Rosado L, Zhang Y, Di X, Zhang B. Mislocalization of death receptors correlates with cellular resistance to their cognate ligands in human breast cancer cells. Oncotarget. 2012;3:833-42 pubmed
  41. Luce A, Courtin A, Levalois C, Altmeyer Morel S, Romeo P, Chevillard S, et al. Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells. Carcinogenesis. 2009;30:432-9 pubmed 出版商