这是一篇来自已证抗体库的有关人类 TNFR1的综述,是根据49篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合TNFR1 抗体。
TNFR1 同义词: CD120a; FPF; TBP1; TNF-R; TNF-R-I; TNF-R55; TNFAR; TNFR1; TNFR55; TNFR60; p55; p55-R; p60

圣克鲁斯生物技术
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 1:1000; 图 6b
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-8436)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). EMBO Mol Med (2022) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, sc-8436)被用于被用于免疫印迹在人类样本上 (图 3b). Sci Rep (2021) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 1:1000; 图 5a, 5e
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-8436)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a, 5e). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 小鼠; 图 2e
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, SC-8436)被用于被用于免疫印迹在小鼠样本上 (图 2e). Nat Commun (2020) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 2d
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, sc-8436)被用于被用于免疫印迹在人类样本上 (图 2d). Sci Adv (2019) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 3f
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-8436)被用于被用于免疫印迹在人类样本上 (图 3f). Cell Death Differ (2019) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology Inc, sc-8436)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). J Neuroinflammation (2018) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 大鼠; 图 2c
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, sc-8436)被用于被用于免疫印迹在大鼠样本上 (图 2c). J Neurosci (2018) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, sc-8436)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(H398)
  • 免疫沉淀; 人类; 图 3b
  • 免疫印迹; 人类; 1:1000; 图 3b
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-52739)被用于被用于免疫沉淀在人类样本上 (图 3b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Front Pharmacol (2016) ncbi
仓鼠 单克隆(55R-170)
  • 流式细胞仪; 小鼠; 图 1a
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, sc-12746)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Cell Death Dis (2016) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, 8436)被用于被用于免疫印迹在人类样本上 (图 1). Cell Rep (2016) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-8436)被用于被用于免疫印迹在人类样本上 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-8436)被用于被用于免疫印迹在小鼠样本上 (图 5). Cell Rep (2016) ncbi
仓鼠 单克隆(55R-170)
  • 免疫沉淀; 小鼠; 图 5
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-12746)被用于被用于免疫沉淀在小鼠样本上 (图 5). Cell Rep (2016) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-8436)被用于被用于免疫印迹在人类样本上 (图 3). Biochem Biophys Res Commun (2016) ncbi
小鼠 单克隆(H-5)
  • 免疫沉淀; 人类; 1:100; 图 5
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-8436)被用于被用于免疫沉淀在人类样本上浓度为1:100 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 5). J Biol Chem (2016) ncbi
小鼠 单克隆(E-11)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-374186)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). J Biol Chem (2016) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 6A
  • 免疫组化; 小鼠; 图 8A
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-8436)被用于被用于免疫印迹在人类样本上 (图 6A) 和 被用于免疫组化在小鼠样本上 (图 8A). PLoS ONE (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫组化; 大鼠; 1:50; 图 4
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc8436)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫沉淀; 人类
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, sc-8436)被用于被用于免疫沉淀在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(H398)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, sc-52739)被用于被用于免疫印迹在人类样本上. J Biomed Sci (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, sc-8436)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, Sc-8436)被用于被用于免疫印迹在大鼠样本上. Cell Biol Toxicol (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, SC-8436)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz, H5)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 大鼠; 1:100
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, SC-8436)被用于被用于免疫印迹在大鼠样本上浓度为1:100. Mol Vis (2014) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, sc-8436)被用于被用于免疫印迹在人类样本上 (图 3). Breast Cancer Res Treat (2014) ncbi
小鼠 单克隆(H-5)
  • 免疫沉淀; 小鼠
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, SC-8436)被用于被用于免疫沉淀在小鼠样本上. Cell Signal (2014) ncbi
小鼠 单克隆(H-5)
  • 免疫沉淀; 人类; 图 4a
  • 免疫印迹; 人类; 1:1000; 图 4a
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, sc-8436)被用于被用于免疫沉淀在人类样本上 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Carcinogenesis (2014) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TNFR1抗体(Santa Cruz Biotechnology, sc-8436)被用于被用于免疫印迹在人类样本上. Carcinogenesis (2009) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 4c
艾博抗(上海)贸易有限公司 TNFR1抗体(Abcam, ab223352)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 4c). Nat Immunol (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1d
艾博抗(上海)贸易有限公司 TNFR1抗体(Abcam, ab19139)被用于被用于免疫组化在人类样本上 (图 1d). Exp Ther Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2e
艾博抗(上海)贸易有限公司 TNFR1抗体(Abcam, ab223352)被用于被用于免疫印迹在小鼠样本上 (图 2e). Cell Death Dis (2021) ncbi
小鼠 单克隆(H398)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 2b
艾博抗(上海)贸易有限公司 TNFR1抗体(abcam, H398)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 2b). BMC Nephrol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 TNFR1抗体(Abcam, ab19139)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Mol Metab (2020) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 s4a
艾博抗(上海)贸易有限公司 TNFR1抗体(Abcam, ab19139)被用于被用于流式细胞仪在人类样本上 (图 s4a). Mol Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 TNFR1抗体(Abcam, ab19139)被用于被用于免疫印迹在小鼠样本上 (图 2a). Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 牛; 图 s1
艾博抗(上海)贸易有限公司 TNFR1抗体(Abcam, ab19139)被用于被用于免疫印迹在牛样本上 (图 s1). Reprod Fertil Dev (2017) ncbi
BioLegend
小鼠 单克隆(W15099A)
  • 流式细胞仪; 人类; 图 4d
BioLegend TNFR1抗体(Biolegend, 369906)被用于被用于流式细胞仪在人类样本上 (图 4d). Stem Cell Res Ther (2020) ncbi
美天旎
人类 单克隆(REA252)
  • 流式细胞仪; 人类; 图 6a
美天旎 TNFR1抗体(Miltenyi Biotec, REA252)被用于被用于流式细胞仪在人类样本上 (图 6a). Stem Cells (2018) ncbi
安迪生物R&D
domestic goat 多克隆
安迪生物R&D TNFR1抗体(R&D Systems, AF225)被用于. J Biol Chem (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C25C1)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 TNFR1抗体(Cell Signaling Technology, 3736)被用于被用于免疫印迹在人类样本上 (图 3b). Sci Adv (2021) ncbi
domestic rabbit 单克隆(C25C1)
  • 免疫沉淀; 人类; 1:100; 图 1e
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 TNFR1抗体(Cell Signaling, 3736)被用于被用于免疫沉淀在人类样本上浓度为1:100 (图 1e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Theranostics (2020) ncbi
domestic rabbit 单克隆(C25C1)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 TNFR1抗体(CST, 3736)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(C25C1)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 TNFR1抗体(Cell Signaling, 3736)被用于被用于免疫印迹在人类样本上 (图 6a). J Virol (2017) ncbi
domestic rabbit 单克隆(C25C1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 TNFR1抗体(Cell Signaling, 3736)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(C25C1)
  • 免疫沉淀; 人类; 1:100; 图 5
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 TNFR1抗体(Cell Signaling, 3736)被用于被用于免疫沉淀在人类样本上浓度为1:100 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C25C1)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 TNFR1抗体(Cell Signaling Technology, 3736)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C25C1)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 TNFR1抗体(Cell Signaling, 3736)被用于被用于免疫印迹在人类样本上 (图 3). Int J Mol Sci (2015) ncbi
domestic rabbit 单克隆(C25C1)
  • 免疫印迹; 大鼠
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 TNFR1抗体(Cell Signaling, 3736)被用于被用于免疫印迹在大鼠样本上 和 被用于免疫细胞化学在人类样本上. Toxicol Lett (2015) ncbi
domestic rabbit 单克隆(C25C1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 TNFR1抗体(Cell Signaling, C25C1)被用于被用于免疫印迹在人类样本上. FASEB J (2013) ncbi
碧迪BD
小鼠 单克隆(MABTNFR1-B1)
  • 流式细胞仪; 人类; 图 2f
碧迪BD TNFR1抗体(BD Biosciences, 550514)被用于被用于流式细胞仪在人类样本上 (图 2f). J Immunol (2018) ncbi
文章列表
  1. Fischer A, Wannemacher J, Christ S, Koopmans T, Kadri S, Zhao J, et al. Neutrophils direct preexisting matrix to initiate repair in damaged tissues. Nat Immunol. 2022;23:518-531 pubmed 出版商
  2. Zinngrebe J, Moepps B, Monecke T, Gierschik P, Schlichtig F, Barth T, et al. Compound heterozygous variants in OTULIN are associated with fulminant atypical late-onset ORAS. EMBO Mol Med. 2022;14:e14901 pubmed 出版商
  3. Gao C, Deng J, Zhang H, Li X, Gu S, Zheng M, et al. HSPA13 facilitates NF-κB-mediated transcription and attenuates cell death responses in TNFα signaling. Sci Adv. 2021;7:eabh1756 pubmed 出版商
  4. Lin C, Huang P, Chen C, Wu M, Chen J, Chen J, et al. Sitagliptin attenuates arterial calcification by downregulating oxidative stress-induced receptor for advanced glycation end products in LDLR knockout mice. Sci Rep. 2021;11:17851 pubmed 出版商
  5. Pang K, Ghim M, Liu C, Tay H, Fhu C, Chia R, et al. Leucine-Rich α-2-Glycoprotein 1 Suppresses Endothelial Cell Activation Through ADAM10-Mediated Shedding of TNF-α Receptor. Front Cell Dev Biol. 2021;9:706143 pubmed 出版商
  6. Li Q, Cheng F, Zhou K, Fang L, Wu J, Xia Q, et al. Increased sensitivity to TNF-α promotes keloid fibroblast hyperproliferation by activating the NF-κB, JNK and p38 MAPK pathways. Exp Ther Med. 2021;21:502 pubmed 出版商
  7. Moujalled D, Gangatirkar P, Kauppi M, Corbin J, Lebois M, Murphy J, et al. The necroptotic cell death pathway operates in megakaryocytes, but not in platelet synthesis. Cell Death Dis. 2021;12:133 pubmed 出版商
  8. Li X, Zhang M, Huang X, Liang W, Li G, Lu X, et al. Ubiquitination of RIPK1 regulates its activation mediated by TNFR1 and TLRs signaling in distinct manners. Nat Commun. 2020;11:6364 pubmed 出版商
  9. Zou X, Zhang D, Song Y, Liu S, Long Q, Yao L, et al. HRG switches TNFR1-mediated cell survival to apoptosis in Hepatocellular Carcinoma. Theranostics. 2020;10:10434-10447 pubmed 出版商
  10. Araújo L, Torquato B, da Silva C, Dos Reis Monteiro M, Dos Santos Martins A, da Silva M, et al. Renal expression of cytokines and chemokines in diabetic nephropathy. BMC Nephrol. 2020;21:308 pubmed 出版商
  11. Ding B, Yuan F, Damle P, Litovchick L, Drapkin R, Grossman S. CtBP determines ovarian cancer cell fate through repression of death receptors. Cell Death Dis. 2020;11:286 pubmed 出版商
  12. Xu M, Ge C, Qin Y, Lou D, Li Q, Feng J, et al. Functional loss of inactive rhomboid-like protein 2 mitigates obesity by suppressing pro-inflammatory macrophage activation-triggered adipose inflammation. Mol Metab. 2020;34:112-123 pubmed 出版商
  13. Queckborner S, Syk Lundberg E, Gemzell Danielsson K, Davies L. Endometrial stromal cells exhibit a distinct phenotypic and immunomodulatory profile. Stem Cell Res Ther. 2020;11:15 pubmed 出版商
  14. Izadi D, Layton T, Williams L, McCann F, Cabrita M, Espirito Santo A, et al. Identification of TNFR2 and IL-33 as therapeutic targets in localized fibrosis. Sci Adv. 2019;5:eaay0370 pubmed 出版商
  15. Vickman R, Yang J, Lanman N, Cresswell G, Zheng F, Zhang C, et al. Cholesterol Sulfotransferase SULT2B1b Modulates Sensitivity to Death Receptor Ligand TNFα in Castration-Resistant Prostate Cancer. Mol Cancer Res. 2019;17:1253-1263 pubmed 出版商
  16. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed 出版商
  17. Han L, Wang L, Tang S, Yuan L, Wu S, Du X, et al. ITGB4 deficiency in bronchial epithelial cells directs airway inflammation and bipolar disorder-related behavior. J Neuroinflammation. 2018;15:246 pubmed 出版商
  18. Peltzer N, Darding M, Montinaro A, Dráber P, Draberova H, Kupka S, et al. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature. 2018;557:112-117 pubmed 出版商
  19. Ahmad R, Al Roub A, Kochumon S, Akther N, Thomas R, Kumari M, et al. The Synergy between Palmitate and TNF-α for CCL2 Production Is Dependent on the TRIF/IRF3 Pathway: Implications for Metabolic Inflammation. J Immunol. 2018;200:3599-3611 pubmed 出版商
  20. Mironets E, Osei Owusu P, Bracchi Ricard V, Fischer R, Owens E, Ricard J, et al. Soluble TNFα Signaling within the Spinal Cord Contributes to the Development of Autonomic Dysreflexia and Ensuing Vascular and Immune Dysfunction after Spinal Cord Injury. J Neurosci. 2018;38:4146-4162 pubmed 出版商
  21. Melzer C, von der Ohe J, Hass R. In Vitro Fusion of Normal and Neoplastic Breast Epithelial Cells with Human Mesenchymal Stroma/Stem Cells Partially Involves Tumor Necrosis Factor Receptor Signaling. Stem Cells. 2018;36:977-989 pubmed 出版商
  22. Franz S, Rennert P, Woznik M, Grützke J, Lüdde A, Arriero Pais E, et al. Mumps Virus SH Protein Inhibits NF-κB Activation by Interacting with Tumor Necrosis Factor Receptor 1, Interleukin-1 Receptor 1, and Toll-Like Receptor 3 Complexes. J Virol. 2017;91: pubmed 出版商
  23. Zhao L, Zhang B. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Sci Rep. 2017;7:44735 pubmed 出版商
  24. Lin C, Lin W, Cho R, Wang C, Hsiao L, Yang C. TNF-?-Induced cPLA2 Expression via NADPH Oxidase/Reactive Oxygen Species-Dependent NF-?B Cascade on Human Pulmonary Alveolar Epithelial Cells. Front Pharmacol. 2016;7:447 pubmed
  25. Siegmund D, Kums J, Ehrenschwender M, Wajant H. Activation of TNFR2 sensitizes macrophages for TNFR1-mediated necroptosis. Cell Death Dis. 2016;7:e2375 pubmed 出版商
  26. Zhou Q, Yu X, Demirkaya E, Deuitch N, Stone D, Tsai W, et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci U S A. 2016;113:10127-32 pubmed 出版商
  27. Kupka S, De Miguel D, Dráber P, Martino L, Surinova S, Rittinger K, et al. SPATA2-Mediated Binding of CYLD to HOIP Enables CYLD Recruitment to Signaling Complexes. Cell Rep. 2016;16:2271-80 pubmed 出版商
  28. Wu S, Kanda T, Nakamoto S, Jiang X, Nakamura M, Sasaki R, et al. Cooperative effects of hepatitis B virus and TNF may play important roles in the activation of metabolic pathways through the activation of NF-?B. Int J Mol Med. 2016;38:475-81 pubmed 出版商
  29. Horihata K, Yoshioka S, Sano M, Yamamoto Y, Kimura K, Skarzynski D, et al. Expressions of lipoprotein receptors and cholesterol efflux regulatory proteins during luteolysis in bovine corpus luteum. Reprod Fertil Dev. 2017;29:1280-1286 pubmed 出版商
  30. Tortola L, Nitsch R, Bertrand M, Kogler M, Redouane Y, Kozieradzki I, et al. The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate. Cell Rep. 2016;15:1481-1492 pubmed 出版商
  31. Emmerich C, Bakshi S, Kelsall I, Ortiz Guerrero J, Shpiro N, Cohen P. Lys63/Met1-hybrid ubiquitin chains are commonly formed during the activation of innate immune signalling. Biochem Biophys Res Commun. 2016;474:452-461 pubmed 出版商
  32. Chhibber Goel J, Coleman Vaughan C, Agrawal V, Sawhney N, Hickey E, Powell J, et al. γ-Secretase Activity Is Required for Regulated Intramembrane Proteolysis of Tumor Necrosis Factor (TNF) Receptor 1 and TNF-mediated Pro-apoptotic Signaling. J Biol Chem. 2016;291:5971-85 pubmed 出版商
  33. Lin C, Huang P, Lai C, Chen J, Lin S, Chen J. Simvastatin Attenuates Oxidative Stress, NF-κB Activation, and Artery Calcification in LDLR-/- Mice Fed with High Fat Diet via Down-regulation of Tumor Necrosis Factor-α and TNF Receptor 1. PLoS ONE. 2015;10:e0143686 pubmed 出版商
  34. Yang H, Zhang M, Wang X, Zhang H, Zhang J, Jing L, et al. TNF Accelerates Death of Mandibular Condyle Chondrocytes in Rats with Biomechanical Stimulation-Induced Temporomandibular Joint Disease. PLoS ONE. 2015;10:e0141774 pubmed 出版商
  35. Mahata B, Biswas S, Rayman P, Chahlavi A, Ko J, Bhattacharjee A, et al. GBM Derived Gangliosides Induce T Cell Apoptosis through Activation of the Caspase Cascade Involving Both the Extrinsic and the Intrinsic Pathway. PLoS ONE. 2015;10:e0134425 pubmed 出版商
  36. Lee C, Yang Y, Chen C, Liu J. Syk-mediated tyrosine phosphorylation of mule promotes TNF-induced JNK activation and cell death. Oncogene. 2016;35:1988-95 pubmed 出版商
  37. Lin C, Pan C, Wang C, Liu S, Hsiao L, Yang C. Tumor necrosis factor-alpha induces VCAM-1-mediated inflammation via c-Src-dependent transactivation of EGF receptors in human cardiac fibroblasts. J Biomed Sci. 2015;22:53 pubmed 出版商
  38. Huang P, Yang J, Ning J, Wang M, Song Q. Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells. Int J Mol Sci. 2015;16:14353-68 pubmed 出版商
  39. Zhang L, Wang H, Ding K, Xu J. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett. 2015;236:43-59 pubmed 出版商
  40. Clark P, Kim R, Pober J, Kluger M. Tumor necrosis factor disrupts claudin-5 endothelial tight junction barriers in two distinct NF-κB-dependent phases. PLoS ONE. 2015;10:e0120075 pubmed 出版商
  41. Opperman C, Sishi B. Tumor necrosis factor alpha stimulates p62 accumulation and enhances proteasome activity independently of ROS. Cell Biol Toxicol. 2015;31:83-94 pubmed 出版商
  42. Wang Y, Tan B, Mu R, Chang Y, Wu M, Tu H, et al. Ubiquitin-associated domain-containing ubiquitin regulatory X (UBX) protein UBXN1 is a negative regulator of nuclear factor κB (NF-κB) signaling. J Biol Chem. 2015;290:10395-405 pubmed 出版商
  43. Morlé A, Garrido C, Micheau O. Hyperthermia restores apoptosis induced by death receptors through aggregation-induced c-FLIP cytosolic depletion. Cell Death Dis. 2015;6:e1633 pubmed 出版商
  44. Gao S, Andreeva K, Cooper N. Ischemia-reperfusion injury of the retina is linked to necroptosis via the ERK1/2-RIP3 pathway. Mol Vis. 2014;20:1374-87 pubmed
  45. Varley K, Gertz J, Roberts B, Davis N, Bowling K, Kirby M, et al. Recurrent read-through fusion transcripts in breast cancer. Breast Cancer Res Treat. 2014;146:287-97 pubmed 出版商
  46. Li M, Liu Y, Xia F, Wu Z, Deng L, Jiang R, et al. Progranulin is required for proper ER stress response and inhibits ER stress-mediated apoptosis through TNFR2. Cell Signal. 2014;26:1539-48 pubmed 出版商
  47. Kim T, Kang Y, Park Z, Kim Y, Hong S, Oh S, et al. SH3RF2 functions as an oncogene by mediating PAK4 protein stability. Carcinogenesis. 2014;35:624-34 pubmed 出版商
  48. Moh M, Lorenzini P, Gullo C, Schwarz H. Tumor necrosis factor receptor 1 associates with CD137 ligand and mediates its reverse signaling. FASEB J. 2013;27:2957-66 pubmed 出版商
  49. Luce A, Courtin A, Levalois C, Altmeyer Morel S, Romeo P, Chevillard S, et al. Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells. Carcinogenesis. 2009;30:432-9 pubmed 出版商