这是一篇来自已证抗体库的有关人类 TNNT2的综述,是根据136篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合TNNT2 抗体。
TNNT2 同义词: CMD1D; CMH2; CMPD2; LVNC6; RCM3; TnTC; cTnT

赛默飞世尔
小鼠 单克隆(13-11)
  • 免疫组化; 小鼠; 1:1000; 图 3e
赛默飞世尔 TNNT2抗体(Thermo Fisher Scientific, MA5-12960)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3e). Cell Rep Methods (2022) ncbi
小鼠 单克隆(13-11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
赛默飞世尔 TNNT2抗体(Thermo Fisher, MA5-12960)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Front Cardiovasc Med (2022) ncbi
小鼠 单克隆(13-11)
  • 免疫组化; 小鼠; 1:200; 图 2e
赛默飞世尔 TNNT2抗体(Invitrogen, MA5-12960)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2e). Nat Commun (2021) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3g
赛默飞世尔 TNNT2抗体(Thermo, MA5-12960)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3g). Cell Death Discov (2021) ncbi
小鼠 单克隆(13-11)
  • 免疫印迹基因敲除验证; 人类; 图 5e
  • 免疫印迹; 人类; 图 5e
赛默飞世尔 TNNT2抗体(ThermoFisher, MA5-12960)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 5e) 和 被用于免疫印迹在人类样本上 (图 5e). Cell Rep (2021) ncbi
小鼠 单克隆(13-11)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1a
赛默飞世尔 TNNT2抗体(Thermo Scientific, MS-295-P0)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1a). J Mol Cell Biol (2021) ncbi
小鼠 单克隆(13-11)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1c
赛默飞世尔 TNNT2抗体(Thermo, MS-295-P0)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1c). Sci Rep (2021) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 人类; 图 s7
赛默飞世尔 TNNT2抗体(ThermoFisher, MA5-12960)被用于被用于免疫细胞化学在人类样本上 (图 s7). Cancers (Basel) (2020) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 小鼠; 图 1c
赛默飞世尔 TNNT2抗体(Thermo scientific, MS-295-P1)被用于被用于免疫细胞化学在小鼠样本上 (图 1c). Sci Rep (2020) ncbi
小鼠 单克隆(13-11)
  • 免疫组化-石蜡切片; 人类; 图 2b
  • 免疫组化-石蜡切片; 小鼠; 图 e3a
赛默飞世尔 TNNT2抗体(ThermoFisher, MS-295)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2b) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 e3a). Nature (2019) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 人类; 1:1000; 图 2a
赛默飞世尔 TNNT2抗体(Invitrogen, MA5-12960)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2a). Cardiovasc Res (2019) ncbi
小鼠 单克隆(13-11)
  • 流式细胞仪; 人类; 1:200; 图 s3e, s3g
  • 免疫细胞化学; 人类; 1:200; 图 s3c
  • 免疫组化; 人类; 1:100; 图 4e
赛默飞世尔 TNNT2抗体(ThermoFisher, MS-295-p1)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s3e, s3g), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 s3c) 和 被用于免疫组化在人类样本上浓度为1:100 (图 4e). Cell Rep (2019) ncbi
小鼠 单克隆(13-11)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 s2a
  • 免疫细胞化学; 人类; 1:100; 图 2f
赛默飞世尔 TNNT2抗体(Thermo Fisher, MS-295-P1)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 s2a) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 2f). Dev Cell (2019) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 人类; 1:200; 图 3e
赛默飞世尔 TNNT2抗体(Thermo Fisher Scientific, MS295-P)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3e). Cell (2019) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 小鼠; 图 1c
  • 免疫细胞化学; 人类; 图 7c
赛默飞世尔 TNNT2抗体(Thermo Fisher Scientific, 13-11)被用于被用于免疫细胞化学在小鼠样本上 (图 1c) 和 被用于免疫细胞化学在人类样本上 (图 7c). Cell (2018) ncbi
小鼠 单克隆(13-11)
赛默飞世尔 TNNT2抗体(Thermo Fisher, MA5-12960)被用于. Front Endocrinol (Lausanne) (2017) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 人类; 1:500; 图 5d
赛默飞世尔 TNNT2抗体(NeoMarkers/Thermo Scientific, 13-11)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5d). Stem Cell Reports (2017) ncbi
小鼠 单克隆(13-11)
  • 免疫印迹; 人类
赛默飞世尔 TNNT2抗体(Thermo Fisher, 13-11)被用于被用于免疫印迹在人类样本上. PLoS ONE (2017) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 小鼠; 1:400; 图 1e
赛默飞世尔 TNNT2抗体(Thermo Scientific, MS-295-P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 1e). Stem Cell Reports (2017) ncbi
小鼠 单克隆(13-11)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
赛默飞世尔 TNNT2抗体(Thermo Scientific, 13-11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). J Clin Invest (2017) ncbi
小鼠 单克隆(13-11)
  • 流式细胞仪; 人类; 图 2a
  • 免疫细胞化学; 人类; 图 s2a
赛默飞世尔 TNNT2抗体(Thermo Fisher, MS-295-PO)被用于被用于流式细胞仪在人类样本上 (图 2a) 和 被用于免疫细胞化学在人类样本上 (图 s2a). Cell (2016) ncbi
小鼠 单克隆(13-11)
  • 流式细胞仪; 人类; 1:2000; 图 6b
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 s1e
赛默飞世尔 TNNT2抗体(Thermo Scientific, MA5-12960)被用于被用于流式细胞仪在人类样本上浓度为1:2000 (图 6b) 和 被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 s1e). Nat Biotechnol (2017) ncbi
小鼠 单克隆(13-11)
  • 流式细胞仪; 人类; 1:200; 图 1d
赛默飞世尔 TNNT2抗体(ThermoFisher Scientific, 13-11)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1d). Nat Commun (2016) ncbi
小鼠 单克隆(13-11)
  • 免疫组化; 小鼠
赛默飞世尔 TNNT2抗体(Thermo Fisher, MS-295-PO)被用于被用于免疫组化在小鼠样本上. Methods Mol Biol (2017) ncbi
小鼠 单克隆(13-11)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5e
赛默飞世尔 TNNT2抗体(Thermo Fisher Scientific, 13-11)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5e). Nat Commun (2016) ncbi
小鼠 单克隆(13-11)
  • 流式细胞仪; 人类; 图 s3a
  • 免疫细胞化学; 人类; 图 s3a
赛默飞世尔 TNNT2抗体(Thermo Scientific, 13-11)被用于被用于流式细胞仪在人类样本上 (图 s3a) 和 被用于免疫细胞化学在人类样本上 (图 s3a). Nat Med (2016) ncbi
小鼠 单克隆(13-11)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
赛默飞世尔 TNNT2抗体(Thermo Fisher, MA5-12960)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). FASEB J (2017) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 人类; 1:200; 图 s1
赛默飞世尔 TNNT2抗体(Thermo Fisher Scientific, MS-295-PABX)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(13-11)
  • 流式细胞仪; 人类; 图 1d
  • 免疫细胞化学; 人类; 1:100; 图 2a
赛默飞世尔 TNNT2抗体(Thermo Fisher Scientific, MA5-12960)被用于被用于流式细胞仪在人类样本上 (图 1d) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 2a). Stem Cell Reports (2016) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 小鼠; 1:200; 图 2a
赛默飞世尔 TNNT2抗体(Thermo Scientific, MS-295-P0)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2a). Stem Cell Rev (2016) ncbi
小鼠 单克隆(13-11)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TNNT2抗体(Thermo Scientific, MA5-12960)被用于被用于免疫印迹在人类样本上 (图 1). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 小鼠; 1:100; 图 1e
赛默飞世尔 TNNT2抗体(NeoMarkers, 13-11)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1e). J Cell Biol (2016) ncbi
小鼠 单克隆(13-11)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2h
赛默飞世尔 TNNT2抗体(Thermo Scientific, MS-295-P1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2h). Dev Growth Differ (2016) ncbi
小鼠 单克隆(13-11)
  • 流式细胞仪; 人类; 1:200; 图 4
  • 免疫细胞化学; 人类; 1:200
赛默飞世尔 TNNT2抗体(ThermoFisher Scientific, MA5-12960)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 4) 和 被用于免疫细胞化学在人类样本上浓度为1:200. Sci Rep (2016) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 人类; 1:200; 图 1
赛默飞世尔 TNNT2抗体(Thermo Scientific, MA5-12960)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). Nat Med (2016) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 小鼠; 1:1000; 图 8
赛默飞世尔 TNNT2抗体(Thermo Scientific, MS-295-P1)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 8). Nat Commun (2016) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 小鼠; 1:400; 图 4
赛默飞世尔 TNNT2抗体(ThermoFisher Scientific, MA5-12960)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 4). Adv Healthc Mater (2016) ncbi
小鼠 单克隆(13-11)
  • 免疫组化-冰冻切片; 小鼠; 图 2
赛默飞世尔 TNNT2抗体(Pierce, MA5-12960)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). Cell Rep (2016) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 小鼠; 1:200; 图 s2f
赛默飞世尔 TNNT2抗体(Thermo Scientific, MS-295)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s2f). Biol Open (2016) ncbi
小鼠 单克隆(13-11)
  • 流式细胞仪; 人类; 图 s1
赛默飞世尔 TNNT2抗体(NeoMarkers, 13-11)被用于被用于流式细胞仪在人类样本上 (图 s1). Nat Commun (2016) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 小鼠; 1:200; 图 s2
赛默飞世尔 TNNT2抗体(Thermo Scientific, MS-295-P0)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s2). Sci Rep (2015) ncbi
小鼠 单克隆(13-11)
  • 流式细胞仪; 小鼠; 图 2
  • 免疫细胞化学; 小鼠; 1:100; 图 4
赛默飞世尔 TNNT2抗体(Thermo Fisher Scientific, MS295P1)被用于被用于流式细胞仪在小鼠样本上 (图 2) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4). Stem Cell Reports (2015) ncbi
小鼠 单克隆(13-11)
  • 流式细胞仪; 人类; 1:200; 图 3
赛默飞世尔 TNNT2抗体(Lab Vision, ms-295-p1)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(13-11)
  • 流式细胞仪; 小鼠; 1:200; 图 2
  • 免疫细胞化学; 小鼠; 1:500; 图 2
赛默飞世尔 TNNT2抗体(Thermo Scientific, ms-295-p)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(13-11)
  • 免疫组化-冰冻切片; 小鼠; 1:350; 图 1b
赛默飞世尔 TNNT2抗体(Thermo, 13-11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:350 (图 1b). Nature (2015) ncbi
小鼠 单克隆(13-11)
  • 流式细胞仪; 人类
赛默飞世尔 TNNT2抗体(Pierce, MA5-12960)被用于被用于流式细胞仪在人类样本上. Genome Biol (2015) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 小鼠; 1:500; 图 2
赛默飞世尔 TNNT2抗体(Thermo Scientific, MS-295-P1)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2). Nat Protoc (2015) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 小鼠; 1:500; 图 2
赛默飞世尔 TNNT2抗体(Thermo Scientific, MA5-12960)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2). Stem Cell Reports (2015) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 人类; 1:100; 图 2
  • 免疫印迹; 人类; 1:500; 图 5
赛默飞世尔 TNNT2抗体(Thermo Scientific, MS-295-P)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 5). Mol Ther Methods Clin Dev (2014) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 人类; 1:400; 图 6
赛默飞世尔 TNNT2抗体(Thermo Scientific, MS-295-P1)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(13-11)
  • 免疫印迹; 小鼠
赛默飞世尔 TNNT2抗体(Thermo Scientific, MA5-12960)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(13-11)
  • 免疫印迹; 小鼠; 1:100; 图 1
赛默飞世尔 TNNT2抗体(Thermo Scientific, MS295)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 1). Development (2015) ncbi
小鼠 单克隆(13-11)
  • 流式细胞仪; 人类
赛默飞世尔 TNNT2抗体(Thermo Scientific, MS-295-R7)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 小鼠; 1:400; 图 1e
赛默飞世尔 TNNT2抗体(Thermo Scientific, MS295)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 1e). PLoS ONE (2015) ncbi
小鼠 单克隆(13-11)
  • 流式细胞仪; 人类; 1:1000
赛默飞世尔 TNNT2抗体(Thermo Scientific, MS-295-P1)被用于被用于流式细胞仪在人类样本上浓度为1:1000. Methods Mol Biol (2016) ncbi
小鼠 单克隆(13-11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
  • 免疫印迹; 人类; 图 s1
赛默飞世尔 TNNT2抗体(Thermo Fisher Scientific, MS-295-P1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3) 和 被用于免疫印迹在人类样本上 (图 s1). EMBO Mol Med (2015) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 人类; 1:200
赛默飞世尔 TNNT2抗体(Thermo Scientific, MA5-12960)被用于被用于免疫细胞化学在人类样本上浓度为1:200. J Biomol Screen (2015) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 小鼠; 1:400; 图 3
赛默飞世尔 TNNT2抗体(Thermo Scientific, MS-295-P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 3). Development (2014) ncbi
小鼠 单克隆(13-11)
  • 免疫组化; 人类; 1:150; 图 4
赛默飞世尔 TNNT2抗体(Thermo Scientific, MS-295-P)被用于被用于免疫组化在人类样本上浓度为1:150 (图 4). Sci Rep (2014) ncbi
小鼠 单克隆(13-11)
  • 免疫组化-冰冻切片; 小鼠; 1:100
赛默飞世尔 TNNT2抗体(Thermo, MS-295)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Clin Invest (2014) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 小鼠; 1:100; 图 4
赛默飞世尔 TNNT2抗体(Thermo Scientific, MA5-12960)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4). Nat Protoc (2014) ncbi
小鼠 单克隆(13-11)
  • 流式细胞仪; 人类; 1:100
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔 TNNT2抗体(ThermoScientific, 13-11)被用于被用于流式细胞仪在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(13-11)
  • 流式细胞仪; 人类; 1:200
  • 免疫细胞化学; 人类; 1:200
赛默飞世尔 TNNT2抗体(Thermo, 13-11)被用于被用于流式细胞仪在人类样本上浓度为1:200 和 被用于免疫细胞化学在人类样本上浓度为1:200. Nat Methods (2014) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 小鼠; 图 4
赛默飞世尔 TNNT2抗体(NeoMarkers, MS-295-P1)被用于被用于免疫细胞化学在小鼠样本上 (图 4). PLoS ONE (2014) ncbi
小鼠 单克隆(13-11)
  • 流式细胞仪; 小鼠; 1:500
赛默飞世尔 TNNT2抗体(Thermo scientific, 13-11)被用于被用于流式细胞仪在小鼠样本上浓度为1:500. Nat Commun (2014) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 小鼠; 1:200
赛默飞世尔 TNNT2抗体(Thermo, MS-295-P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(13-11)
赛默飞世尔 TNNT2抗体(Lab Vision Corporation, MS-295-PO)被用于. Stem Cell Res (2014) ncbi
小鼠 单克隆(13-11)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 TNNT2抗体(Thermo Scientific, ms-295)被用于被用于免疫组化在小鼠样本上浓度为1:200. Development (2013) ncbi
小鼠 单克隆(13-11)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 TNNT2抗体(Thermo Scientific, 13-11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. FASEB J (2014) ncbi
小鼠 单克隆(13-11)
赛默飞世尔 TNNT2抗体(LabVision, MS-295-PO)被用于. Stem Cell Res (2014) ncbi
小鼠 单克隆(13-11)
  • 免疫组化; 小鼠; 1:500; 图 6
赛默飞世尔 TNNT2抗体(Thermo Scientific, MS-295-P)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6). Nat Med (2013) ncbi
小鼠 单克隆(13-11)
赛默飞世尔 TNNT2抗体(Thermo Scientific, MS295PO)被用于. Dev Biol (2013) ncbi
小鼠 单克隆(13-11)
赛默飞世尔 TNNT2抗体(Thermo, MS-295-P)被用于. J Mol Cell Cardiol (2013) ncbi
小鼠 单克隆(13-11)
赛默飞世尔 TNNT2抗体(Thermofisher, MS-295-P)被用于. Stem Cells Dev (2013) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 大鼠; 1:100; 图 2
赛默飞世尔 TNNT2抗体(NeoMarkers, 13-11)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(13-11)
  • 流式细胞仪; 小鼠; 图 4
  • 免疫组化; 小鼠; 1:500; 图 3
赛默飞世尔 TNNT2抗体(Thermo, MS-295-P)被用于被用于流式细胞仪在小鼠样本上 (图 4) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 3). J Biol Chem (2012) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 人类; 图 6
赛默飞世尔 TNNT2抗体(Lab Vision Corporation, MS-295)被用于被用于免疫细胞化学在人类样本上 (图 6). Cytotherapy (2010) ncbi
小鼠 单克隆(13-11)
  • 免疫细胞化学; 鸡; 图 1
赛默飞世尔 TNNT2抗体(Neomarkers, AB-1)被用于被用于免疫细胞化学在鸡样本上 (图 1). J Cell Biol (2004) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(1C11)
  • 免疫细胞化学; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab8295)被用于被用于免疫细胞化学在小鼠样本上 (图 1b). Sci Adv (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 4a
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab45932)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 4a). Stem Cell Res Ther (2022) ncbi
小鼠 单克隆(1C11)
  • 酶联免疫吸附测定; 小鼠; 1:3000; 图 2a
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab8295)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:3000 (图 2a). PLoS ONE (2021) ncbi
小鼠 单克隆(1C11)
  • 免疫细胞化学; 人类; 1:200; 图 1p
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab8295)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1p). elife (2021) ncbi
小鼠 单克隆(1C11)
  • 免疫组化; 人类; 1:200; 图 1d
艾博抗(上海)贸易有限公司 TNNT2抗体(abcam, ab8295)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1d). Circulation (2021) ncbi
小鼠 单克隆(1C11)
  • 免疫组化-石蜡切片; 小鼠; 图 1g
  • 免疫组化-石蜡切片; 人类; 图 1h
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab8295)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1g) 和 被用于免疫组化-石蜡切片在人类样本上 (图 1h). Nat Commun (2021) ncbi
小鼠 单克隆(1C11)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4c
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab8295)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4c). Theranostics (2020) ncbi
小鼠 单克隆(1C11)
  • 免疫组化; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab8295)被用于被用于免疫组化在小鼠样本上 (图 1b). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(1C11)
  • 免疫细胞化学; 人类; 图 3a
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab8295)被用于被用于免疫细胞化学在人类样本上 (图 3a). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; African green monkey; 1:400; 图 s1b
  • 免疫细胞化学; 人类; 1:400; 图 s1b
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab45932)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:400 (图 s1b) 和 被用于免疫细胞化学在人类样本上浓度为1:400 (图 s1b). elife (2019) ncbi
小鼠 单克隆(1C11)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab8295)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5a). PLoS ONE (2019) ncbi
小鼠 单克隆(1C11)
  • 免疫组化-石蜡切片; 人类; 1:150; 图 3o
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab8295)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 3o). elife (2018) ncbi
domestic rabbit 单克隆(EPR3695)
  • 免疫细胞化学; 人类; 1:500; 图 4d
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, 91605)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4d). Stem Cells Int (2017) ncbi
小鼠 单克隆(1F11)
  • 免疫细胞化学; 小鼠; 1:200; 图 6a
  • 免疫细胞化学; 斑马鱼; 1:200; 图 s6
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab10214)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 6a) 和 被用于免疫细胞化学在斑马鱼样本上浓度为1:200 (图 s6). Sci Adv (2016) ncbi
小鼠 单克隆(1C11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2c
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab8295)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2c). EMBO Mol Med (2017) ncbi
小鼠 单克隆(1F11)
  • 免疫细胞化学; 人类; 图 1f
  • 免疫印迹; 人类; 1:1000; 图 1d
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab10214)被用于被用于免疫细胞化学在人类样本上 (图 1f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Front Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab45932)被用于被用于免疫印迹在人类样本上 (图 4c). Mol Med Rep (2016) ncbi
小鼠 单克隆(1C11)
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司 TNNT2抗体(abcam, ab8295)被用于被用于免疫细胞化学在人类样本上 (图 1). Stem Cell Res Ther (2016) ncbi
小鼠 单克隆(1F11)
  • 流式细胞仪; 小鼠
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab10214)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 1:800; 图 s1
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab45932)被用于被用于流式细胞仪在人类样本上浓度为1:800 (图 s1). Stem Cell Reports (2016) ncbi
小鼠 单克隆(1F11)
  • 免疫组化-石蜡切片; domestic rabbit; 1:100; 图 8
艾博抗(上海)贸易有限公司 TNNT2抗体(abcam, ab10214)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:100 (图 8). Mol Med Rep (2016) ncbi
小鼠 单克隆(1F11)
  • 流式细胞仪; 人类; 图 s1
  • 免疫细胞化学; 人类; 图 s1
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab10214)被用于被用于流式细胞仪在人类样本上 (图 s1) 和 被用于免疫细胞化学在人类样本上 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(1C11)
  • 免疫细胞化学; 人类; 图 5
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab8295)被用于被用于免疫细胞化学在人类样本上 (图 5). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab45932)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Nature (2016) ncbi
小鼠 单克隆(1F11)
  • 免疫细胞化学; 人类; 1:200; 图 2
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab10214)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(1C11)
  • 免疫组化-石蜡切片; 人类
  • 流式细胞仪; 人类; 1:200; 图 1
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab8295)被用于被用于免疫组化-石蜡切片在人类样本上, 被用于流式细胞仪在人类样本上浓度为1:200 (图 1) 和 被用于免疫细胞化学在人类样本上浓度为1:200. Sci Rep (2016) ncbi
小鼠 单克隆(1C11)
  • 流式细胞仪; 小鼠; 1:200; 图 2f
  • 免疫细胞化学; 小鼠; 1:300; 图 2d
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab8295)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2f) 和 被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 2d). Stem Cells (2016) ncbi
domestic rabbit 单克隆(EPR3696)
  • 免疫印迹; 小鼠; 图 3d
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab92546)被用于被用于免疫印迹在小鼠样本上 (图 3d). Mol Med Rep (2016) ncbi
小鼠 单克隆(1F11)
  • 流式细胞仪; 人类; 1:500; 图 4
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab10214)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 4). Stem Cells Int (2016) ncbi
小鼠 单克隆(1C11)
  • 免疫细胞化学; 人类; 1:500; 图 4
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab8295)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Stem Cells Int (2016) ncbi
小鼠 单克隆(1F11)
  • 流式细胞仪; 犬; 图 4
  • 免疫细胞化学; 犬; 1:200
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab10214)被用于被用于流式细胞仪在犬样本上 (图 4), 被用于免疫细胞化学在犬样本上浓度为1:200 和 被用于免疫细胞化学在人类样本上浓度为1:200. Stem Cells Int (2016) ncbi
小鼠 单克隆(1C11)
  • 免疫组化; 小鼠; 1:100-1:200; 图 2
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, 8295)被用于被用于免疫组化在小鼠样本上浓度为1:100-1:200 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(1F11)
  • 免疫组化; 小鼠; 图 2
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab10214)被用于被用于免疫组化在小鼠样本上 (图 2). J Am Heart Assoc (2015) ncbi
小鼠 单克隆(1F11)
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab10214)被用于被用于免疫细胞化学在小鼠样本上. Cell Res (2015) ncbi
小鼠 单克隆(1C11)
  • 免疫细胞化学; 人类; 图 s5
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, Ab8295)被用于被用于免疫细胞化学在人类样本上 (图 s5). Stem Cells (2015) ncbi
小鼠 单克隆(1C11)
  • 流式细胞仪; 人类; 1:500
  • 免疫细胞化学; 人类; 1:1000
艾博抗(上海)贸易有限公司 TNNT2抗体(abcom, ab8295)被用于被用于流式细胞仪在人类样本上浓度为1:500 和 被用于免疫细胞化学在人类样本上浓度为1:1000. Int J Biochem Cell Biol (2015) ncbi
小鼠 单克隆(1C11)
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司 TNNT2抗体(abcam, ab8295)被用于被用于免疫细胞化学在小鼠样本上. Tissue Eng Part A (2015) ncbi
小鼠 单克隆(1C11)
  • 流式细胞仪; African green monkey; 图 6
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab8295)被用于被用于流式细胞仪在African green monkey样本上 (图 6). Methods Mol Biol (2015) ncbi
小鼠 单克隆(1C11)
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab8295)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Macromol Biosci (2015) ncbi
小鼠 单克隆(1C11)
  • 免疫组化-冰冻切片; 小鼠; 1:400
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab8295)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400. Cell Res (2014) ncbi
小鼠 单克隆(1C11)
  • 免疫组化-石蜡切片; 大鼠
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab8295)被用于被用于免疫组化-石蜡切片在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(1C11)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab8295)被用于被用于免疫组化-石蜡切片在小鼠样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(1F11)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, AB10214)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Cell Death Dis (2013) ncbi
domestic rabbit 单克隆(EPR3695)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, Ab91605)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Stem Cells Dev (2013) ncbi
小鼠 单克隆(1F11)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab10214)被用于被用于免疫组化-石蜡切片在人类样本上. Biomed Res Int (2013) ncbi
小鼠 单克隆(1C11)
  • 免疫印迹; 小鼠; 1:3000
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab8295)被用于被用于免疫印迹在小鼠样本上浓度为1:3000. Stem Cells Dev (2013) ncbi
小鼠 单克隆(1C11)
  • 流式细胞仪; 人类
艾博抗(上海)贸易有限公司 TNNT2抗体(Abcam, ab8295)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
安迪生物R&D
小鼠 单克隆(990033)
  • 免疫细胞化学; 人类; 1:200; 图 5b
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3g
安迪生物R&D TNNT2抗体(R&D Systems, MAB18742)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5b) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3g). Nat Commun (2021) ncbi
小鼠 单克隆(200805)
  • 免疫细胞化学; 人类; 1:1000; 图 3b
安迪生物R&D TNNT2抗体(R and D Systems, 200805)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3b). elife (2019) ncbi
小鼠 单克隆(200805)
  • 免疫细胞化学; 人类; 图 2a
安迪生物R&D TNNT2抗体(R&D Systems, MAB1874)被用于被用于免疫细胞化学在人类样本上 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(200805)
  • 免疫细胞化学; 小鼠
安迪生物R&D TNNT2抗体(R&D Systems, MAB1874)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(CT3)
  • 免疫印迹; 小鼠; 1:200
圣克鲁斯生物技术 TNNT2抗体(Santa Cruz, sc-20025)被用于被用于免疫印迹在小鼠样本上浓度为1:200. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(1F2)
  • 免疫细胞化学; 小鼠; 图 8a
圣克鲁斯生物技术 TNNT2抗体(Santa Cruz, sc52284)被用于被用于免疫细胞化学在小鼠样本上 (图 8a). PLoS ONE (2015) ncbi
小鼠 单克隆(CT3)
  • 免疫细胞化学; domestic rabbit; 1:100; 图 6
  • 免疫印迹; domestic rabbit; 图 9
圣克鲁斯生物技术 TNNT2抗体(Santa Cruz, sc-20025)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:100 (图 6) 和 被用于免疫印迹在domestic rabbit样本上 (图 9). Mol Med Rep (2015) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(CT3)
  • 免疫组化; 小鼠; 图 3c
Developmental Studies Hybridoma Bank TNNT2抗体(DSHB, CT3)被用于被用于免疫组化在小鼠样本上 (图 3c). iScience (2021) ncbi
小鼠 单克隆(CT3)
  • 免疫组化; 小鼠; 图 2c
Developmental Studies Hybridoma Bank TNNT2抗体(DSHB, ct3)被用于被用于免疫组化在小鼠样本上 (图 2c). Cell Rep (2020) ncbi
小鼠 单克隆(CT3)
  • 免疫组化-冰冻切片; 小鼠; 1:10; 图 3b
  • 免疫组化-冰冻切片; 鸡; 1:10; 图 1h
Developmental Studies Hybridoma Bank TNNT2抗体(DSHB, ct3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10 (图 3b) 和 被用于免疫组化-冰冻切片在鸡样本上浓度为1:10 (图 1h). elife (2019) ncbi
小鼠 单克隆(CT3)
  • 免疫组化; 大鼠; 图 7c
  • 免疫细胞化学; 小鼠; 图 5b
Developmental Studies Hybridoma Bank TNNT2抗体(Developmental Studies Hybridoma Bank, CT3)被用于被用于免疫组化在大鼠样本上 (图 7c) 和 被用于免疫细胞化学在小鼠样本上 (图 5b). Stem Cells Int (2016) ncbi
小鼠 单克隆(CT3)
  • 免疫印迹; 鸡; 1:100; 图 2d
Developmental Studies Hybridoma Bank TNNT2抗体(DSHB, CT3)被用于被用于免疫印迹在鸡样本上浓度为1:100 (图 2d). Dev Dyn (2016) ncbi
小鼠 单克隆(CT3)
  • 免疫细胞化学; 人类; 4 ug/ml; 图 1
Developmental Studies Hybridoma Bank TNNT2抗体(DSHB, CT3)被用于被用于免疫细胞化学在人类样本上浓度为4 ug/ml (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(CT3)
  • 免疫组化-石蜡切片; 小鼠
Developmental Studies Hybridoma Bank TNNT2抗体(Developmental Studies Hybridoma Bank, CT3)被用于被用于免疫组化-石蜡切片在小鼠样本上. Science (2015) ncbi
小鼠 单克隆(CT3)
  • 免疫印迹; 小鼠; 1:500
Developmental Studies Hybridoma Bank TNNT2抗体(Developmental Studies Hybridoma Bank, CT3)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Am J Pathol (2014) ncbi
文章列表
  1. Tischler J, Swank Z, Hsiung H, Vianello S, Lutolf M, Maerkl S. An automated do-it-yourself system for dynamic stem cell and organoid culture in standard multi-well plates. Cell Rep Methods. 2022;2:100244 pubmed 出版商
  2. Wu P, Li Y, Cai M, Ye B, Geng B, Li F, et al. Ubiquitin Carboxyl-Terminal Hydrolase L1 of Cardiomyocytes Promotes Macroautophagy and Proteostasis and Protects Against Post-myocardial Infarction Cardiac Remodeling and Heart Failure. Front Cardiovasc Med. 2022;9:866901 pubmed 出版商
  3. Kim H, Song B, Park S, Choi S, Moon H, Hwang K, et al. Ultraefficient extracellular vesicle-guided direct reprogramming of fibroblasts into functional cardiomyocytes. Sci Adv. 2022;8:eabj6621 pubmed 出版商
  4. Zhu H, Liu X, DING Y, Tan K, Ni W, Ouyang W, et al. IL-6 coaxes cellular dedifferentiation as a pro-regenerative intermediate that contributes to pericardial ADSC-induced cardiac repair. Stem Cell Res Ther. 2022;13:44 pubmed 出版商
  5. Bhagat S, Biswas I, Alam M, Khan M, Khan G. Key role of Extracellular RNA in hypoxic stress induced myocardial injury. PLoS ONE. 2021;16:e0260835 pubmed 出版商
  6. Zhang X, Wang Z, Xu Q, Chen Y, Liu W, Zhong T, et al. Splicing factor Srsf5 deletion disrupts alternative splicing and causes noncompaction of ventricular myocardium. iScience. 2021;24:103097 pubmed 出版商
  7. Cui M, Atmanli A, Morales M, Tan W, Chen K, Xiao X, et al. Nrf1 promotes heart regeneration and repair by regulating proteostasis and redox balance. Nat Commun. 2021;12:5270 pubmed 出版商
  8. Qian B, Wang P, Zhang D, Wu L. m6A modification promotes miR-133a repression during cardiac development and hypertrophy via IGF2BP2. Cell Death Discov. 2021;7:157 pubmed 出版商
  9. Liang F, Wang B, Geng J, You G, Fa J, Zhang M, et al. SORBS2 is a genetic factor contributing to cardiac malformation of 4q deletion syndrome patients. elife. 2021;10: pubmed 出版商
  10. Zhang Y, Da Q, Cao S, Yan K, Shi Z, Miao Q, et al. HINT1 (Histidine Triad Nucleotide-Binding Protein 1) Attenuates Cardiac Hypertrophy Via Suppressing HOXA5 (Homeobox A5) Expression. Circulation. 2021;144:638-654 pubmed 出版商
  11. Nam J, Kim A, Choi S, Kim J, Choi K, Cho S, et al. An antibody against L1 cell adhesion molecule inhibits cardiotoxicity by regulating persistent DNA damage. Nat Commun. 2021;12:3279 pubmed 出版商
  12. Pettinato A, Yoo D, VanOudenhove J, Chen Y, Cohn R, Ladha F, et al. Sarcomere function activates a p53-dependent DNA damage response that promotes polyploidization and limits in vivo cell engraftment. Cell Rep. 2021;35:109088 pubmed 出版商
  13. Zheng F, Chen Z, Tang Q, Wang X, Chong D, Zhang T, et al. Cholesterol metabolic enzyme Ggpps regulates epicardium development and ventricular wall architecture integrity in mice. J Mol Cell Biol. 2021;13:445-454 pubmed 出版商
  14. Hu W, Dong A, Karasaki K, Sogabe S, Okamoto D, Saigo M, et al. Smad4 regulates the nuclear translocation of Nkx2-5 in cardiac differentiation. Sci Rep. 2021;11:3588 pubmed 出版商
  15. Gladka M, Kohela A, Molenaar B, Versteeg D, Kooijman L, Monshouwer Kloots J, et al. Cardiomyocytes stimulate angiogenesis after ischemic injury in a ZEB2-dependent manner. Nat Commun. 2021;12:84 pubmed 出版商
  16. Royer Pokora B, Busch M, Tenbusch S, Schmidt M, Beier M, Woods A, et al. Comprehensive Biology and Genetics Compendium of Wilms Tumor Cell Lines with Different WT1 Mutations. Cancers (Basel). 2020;13: pubmed 出版商
  17. Yoshida S, Miyagawa S, Toyofuku T, Fukushima S, Kawamura T, Kawamura A, et al. Syngeneic Mesenchymal Stem Cells Reduce Immune Rejection After Induced Pluripotent Stem Cell-Derived Allogeneic Cardiomyocyte Transplantation. Sci Rep. 2020;10:4593 pubmed 出版商
  18. Li Q, Mao F, Zhou B, Huang Y, Zou Z, Dendekker A, et al. p53 Integrates Temporal WDR5 Inputs during Neuroectoderm and Mesoderm Differentiation of Mouse Embryonic Stem Cells. Cell Rep. 2020;30:465-480.e6 pubmed 出版商
  19. Wan Z, Zhao L, Lu F, Gao X, Dong Y, Zhao Y, et al. Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Theranostics. 2020;10:218-230 pubmed 出版商
  20. Li B, Li M, Li X, Li H, Lai Y, Huang S, et al. Sirt1-inducible deacetylation of p21 promotes cardiomyocyte proliferation. Aging (Albany NY). 2019;11:12546-12567 pubmed 出版商
  21. Atmanli A, Hu D, Deiman F, van de Vrugt A, Cherbonneau F, Black L, et al. Multiplex live single-cell transcriptional analysis demarcates cellular functional heterogeneity. elife. 2019;8: pubmed 出版商
  22. Aghajanian H, Kimura T, Rurik J, Hancock A, Leibowitz M, Li L, et al. Targeting cardiac fibrosis with engineered T cells. Nature. 2019;573:430-433 pubmed 出版商
  23. Tang W, Martik M, Li Y, Bronner M. Cardiac neural crest contributes to cardiomyocytes in amniotes and heart regeneration in zebrafish. elife. 2019;8: pubmed 出版商
  24. Lee J, Termglinchan V, Diecke S, Itzhaki I, Lam C, Garg P, et al. Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy. Nature. 2019;572:335-340 pubmed 出版商
  25. Tsai S, Ghazizadeh Z, Wang H, Ortega F, Badieyan Z, Hsu Z, et al. A Human Embryonic Stem Cell Reporter Line for Monitoring Chemical-induced Cardiotoxicity. Cardiovasc Res. 2019;: pubmed 出版商
  26. WARD M, Gilad Y. A generally conserved response to hypoxia in iPSC-derived cardiomyocytes from humans and chimpanzees. elife. 2019;8: pubmed 出版商
  27. Yap L, Wang J, Moreno Moral A, Chong L, Sun Y, Harmston N, et al. In Vivo Generation of Post-infarct Human Cardiac Muscle by Laminin-Promoted Cardiovascular Progenitors. Cell Rep. 2019;26:3231-3245.e9 pubmed 出版商
  28. Liu R, Jagannathan R, Li F, Lee J, Balasubramanyam N, Kim B, et al. Tead1 is required for perinatal cardiomyocyte proliferation. PLoS ONE. 2019;14:e0212017 pubmed 出版商
  29. Sahara M, Santoro F, Sohlmér J, Zhou C, Witman N, Leung C, et al. Population and Single-Cell Analysis of Human Cardiogenesis Reveals Unique LGR5 Ventricular Progenitors in Embryonic Outflow Tract. Dev Cell. 2019;48:475-490.e7 pubmed 出版商
  30. Zhao Y, Rafatian N, Feric N, Cox B, Aschar Sobbi R, Wang E, et al. A Platform for Generation of Chamber-Specific Cardiac Tissues and Disease Modeling. Cell. 2019;176:913-927.e18 pubmed 出版商
  31. Eley L, Alqahtani A, MacGrogan D, Richardson R, Murphy L, Salguero Jimenez A, et al. A novel source of arterial valve cells linked to bicuspid aortic valve without raphe in mice. elife. 2018;7: pubmed 出版商
  32. Mohamed T, Ang Y, Radzinsky E, Zhou P, Huang Y, Elfenbein A, et al. Regulation of Cell Cycle to Stimulate Adult Cardiomyocyte Proliferation and Cardiac Regeneration. Cell. 2018;173:104-116.e12 pubmed 出版商
  33. Lin B, Lin X, Stachel M, Wang E, Luo Y, Lader J, et al. Culture in Glucose-Depleted Medium Supplemented with Fatty Acid and 3,3',5-Triiodo-l-Thyronine Facilitates Purification and Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Front Endocrinol (Lausanne). 2017;8:253 pubmed 出版商
  34. Freire A, Waghray A, Soares da Silva F, Resende T, Lee D, Pereira C, et al. Transient HES5 Activity Instructs Mesodermal Cells toward a Cardiac Fate. Stem Cell Reports. 2017;9:136-148 pubmed 出版商
  35. Dai D, Danoviz M, Wiczer B, Laflamme M, Tian R. Mitochondrial Maturation in Human Pluripotent Stem Cell Derived Cardiomyocytes. Stem Cells Int. 2017;2017:5153625 pubmed 出版商
  36. Al Maqtari T, Hong K, Vajravelu B, Moktar A, Cao P, Moore J, et al. Transcription factor-induced activation of cardiac gene expression in human c-kit+ cardiac progenitor cells. PLoS ONE. 2017;12:e0174242 pubmed 出版商
  37. Abad M, Hashimoto H, Zhou H, Morales M, Chen B, Bassel Duby R, et al. Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity. Stem Cell Reports. 2017;8:548-560 pubmed 出版商
  38. Chen W, Wang Z, Missinato M, Park D, Long D, Liu H, et al. Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration. Sci Adv. 2016;2:e1600844 pubmed 出版商
  39. Maltabe V, Barka E, Kontonika M, Florou D, Kouvara Pritsouli M, Roumpi M, et al. Isolation of an ES-Derived Cardiovascular Multipotent Cell Population Based on VE-Cadherin Promoter Activity. Stem Cells Int. 2016;2016:8305624 pubmed 出版商
  40. Christoforou N, Chakraborty S, Kirkton R, Adler A, Addis R, Leong K. Core Transcription Factors, MicroRNAs, and Small Molecules Drive Transdifferentiation of Human Fibroblasts Towards The Cardiac Cell Lineage. Sci Rep. 2017;7:40285 pubmed 出版商
  41. Hirai M, Arita Y, McGlade C, Lee K, Chen J, Evans S. Adaptor proteins NUMB and NUMBL promote cell cycle withdrawal by targeting ERBB2 for degradation. J Clin Invest. 2017;127:569-582 pubmed 出版商
  42. Malek Mohammadi M, Kattih B, Grund A, Froese N, Korf Klingebiel M, Gigina A, et al. The transcription factor GATA4 promotes myocardial regeneration in neonatal mice. EMBO Mol Med. 2017;9:265-279 pubmed 出版商
  43. Ang Y, Rivas R, Ribeiro A, Srivas R, Rivera J, Stone N, et al. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell. 2016;167:1734-1749.e22 pubmed 出版商
  44. Protze S, Liu J, Nussinovitch U, Ohana L, Backx P, Gepstein L, et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat Biotechnol. 2017;35:56-68 pubmed 出版商
  45. Kempf H, Olmer R, Haase A, Franke A, Bolesani E, Schwanke K, et al. Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells. Nat Commun. 2016;7:13602 pubmed 出版商
  46. Ma H, Wang L, Liu J, Qian L. Direct Cardiac Reprogramming as a Novel Therapeutic Strategy for Treatment of Myocardial Infarction. Methods Mol Biol. 2017;1521:69-88 pubmed
  47. Prieto P, Fernandez Velasco M, Fernández Santos M, Sanchez P, Terrón V, Martín Sanz P, et al. Cell Expansion-Dependent Inflammatory and Metabolic Profile of Human Bone Marrow Mesenchymal Stem Cells. Front Physiol. 2016;7:548 pubmed
  48. Monnerat G, Alarcón M, Vasconcellos L, Hochman Mendez C, Brasil G, Bassani R, et al. Macrophage-dependent IL-1β production induces cardiac arrhythmias in diabetic mice. Nat Commun. 2016;7:13344 pubmed 出版商
  49. Zeltner N, Fattahi F, Dubois N, Saurat N, Lafaille F, Shang L, et al. Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med. 2016;22:1421-1427 pubmed 出版商
  50. Yu Z, Zou Y, Fan J, Li C, Ma L. Notch1 is associated with the differentiation of human bone marrow?derived mesenchymal stem cells to cardiomyocytes. Mol Med Rep. 2016;14:5065-5071 pubmed 出版商
  51. Zhou L, Dai H, Wu J, Zhou M, Yuan H, Du J, et al. Role of FEN1 S187 phosphorylation in counteracting oxygen-induced stress and regulating postnatal heart development. FASEB J. 2017;31:132-147 pubmed 出版商
  52. Okata S, Yuasa S, Suzuki T, Ito S, Makita N, Yoshida T, et al. Embryonic type Na+ channel ?-subunit, SCN3B masks the disease phenotype of Brugada syndrome. Sci Rep. 2016;6:34198 pubmed 出版商
  53. Josowitz R, Mulero Navarro S, Rodriguez N, Falce C, Cohen N, Ullian E, et al. Autonomous and Non-autonomous Defects Underlie Hypertrophic Cardiomyopathy in BRAF-Mutant hiPSC-Derived Cardiomyocytes. Stem Cell Reports. 2016;7:355-369 pubmed 出版商
  54. Hofbauer P, Jung J, McArdle T, Ogle B. Simple Monolayer Differentiation of Murine Cardiomyocytes via Nutrient Deprivation-Mediated Activation of β-Catenin. Stem Cell Rev. 2016;12:731-743 pubmed
  55. Seo H, Lee C, Lee J, Lim S, Choi E, Park J, et al. The role of nuclear factor of activated T cells during phorbol myristate acetate-induced cardiac differentiation of mesenchymal stem cells. Stem Cell Res Ther. 2016;7:90 pubmed 出版商
  56. Kudová J, Prochazkova J, Vašíček O, Perecko T, Sedláčková M, Pesl M, et al. HIF-1alpha Deficiency Attenuates the Cardiomyogenesis of Mouse Embryonic Stem Cells. PLoS ONE. 2016;11:e0158358 pubmed 出版商
  57. Elhamine F, Iorga B, Kruger M, Hunger M, Eckhardt J, Sreeram N, et al. Postnatal Development of Right Ventricular Myofibrillar Biomechanics in Relation to the Sarcomeric Protein Phenotype in Pediatric Patients with Conotruncal Heart Defects. J Am Heart Assoc. 2016;5: pubmed 出版商
  58. Mannhardt I, Breckwoldt K, Letuffe Brenière D, Schaaf S, Schulz H, Neuber C, et al. Human Engineered Heart Tissue: Analysis of Contractile Force. Stem Cell Reports. 2016;7:29-42 pubmed 出版商
  59. Chiapparo G, Lin X, Lescroart F, Chabab S, Paulissen C, Pitisci L, et al. Mesp1 controls the speed, polarity, and directionality of cardiovascular progenitor migration. J Cell Biol. 2016;213:463-77 pubmed 出版商
  60. Wang Y, Li Y, Song L, Li Y, Jiang S, Zhang S. The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits. Mol Med Rep. 2016;14:234-42 pubmed 出版商
  61. Blech Hermoni Y, Sullivan C, Jenkins M, Wessely O, Ladd A. CUG-BP, Elav-like family member 1 (CELF1) is required for normal myofibrillogenesis, morphogenesis, and contractile function in the embryonic heart. Dev Dyn. 2016;245:854-73 pubmed 出版商
  62. Maillet A, TAN K, Chai X, Sadananda S, Mehta A, Ooi J, et al. Modeling Doxorubicin-Induced Cardiotoxicity in Human Pluripotent Stem Cell Derived-Cardiomyocytes. Sci Rep. 2016;6:25333 pubmed 出版商
  63. Nakamura R, Koshiba Takeuchi K, Tsuchiya M, Kojima M, Miyazawa A, Ito K, et al. Expression analysis of Baf60c during heart regeneration in axolotls and neonatal mice. Dev Growth Differ. 2016;58:367-82 pubmed 出版商
  64. Titmarsh D, Glass N, Mills R, Hidalgo A, Wolvetang E, Porrello E, et al. Induction of Human iPSC-Derived Cardiomyocyte Proliferation Revealed by Combinatorial Screening in High Density Microbioreactor Arrays. Sci Rep. 2016;6:24637 pubmed 出版商
  65. Burridge P, Li Y, Matsa E, Wu H, Ong S, Sharma A, et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med. 2016;22:547-56 pubmed 出版商
  66. Månsson Broberg A, Rodin S, Bulatovic I, Ibarra C, Löfling M, Genead R, et al. Wnt/?-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells. Stem Cell Reports. 2016;6:607-617 pubmed 出版商
  67. Langer D, Martianov I, Alpern D, Rhinn M, Keime C, Dolle P, et al. Essential role of the TFIID subunit TAF4 in murine embryogenesis and embryonic stem cell differentiation. Nat Commun. 2016;7:11063 pubmed 出版商
  68. Sagi I, Chia G, Golan Lev T, Peretz M, Weissbein U, Sui L, et al. Derivation and differentiation of haploid human embryonic stem cells. Nature. 2016;532:107-11 pubmed 出版商
  69. Ye L, Qiu L, Zhang H, Chen H, Jiang C, Hong H, et al. Cardiomyocytes in Young Infants With Congenital Heart Disease: a Three-Month Window of Proliferation. Sci Rep. 2016;6:23188 pubmed 出版商
  70. Fischer K, Morgan K, Hearon K, Sklaviadis D, Tochka Z, Fenton O, et al. Poly(Limonene Thioether) Scaffold for Tissue Engineering. Adv Healthc Mater. 2016;5:813-21 pubmed 出版商
  71. Passer D, van de Vrugt A, Atmanli A, Domian I. Atypical Protein Kinase C-Dependent Polarized Cell Division Is Required for Myocardial Trabeculation. Cell Rep. 2016;14:1662-1672 pubmed 出版商
  72. Tang Y, Hong Y, Bai H, Wu Q, Chen C, Lang J, et al. Plant Homeo Domain Finger Protein 8 Regulates Mesodermal and Cardiac Differentiation of Embryonic Stem Cells Through Mediating the Histone Demethylation of pmaip1. Stem Cells. 2016;34:1527-40 pubmed 出版商
  73. Chen B, Song G, Liu M, Qian L, Wang L, Gu H, et al. Inhibition of miR-29c promotes proliferation, and inhibits apoptosis and differentiation in P19 embryonic carcinoma cells. Mol Med Rep. 2016;13:2527-35 pubmed 出版商
  74. Liu H, Zhang S, Zhao L, Zhang Y, Li Q, Chai X, et al. Resveratrol Enhances Cardiomyocyte Differentiation of Human Induced Pluripotent Stem Cells through Inhibiting Canonical WNT Signal Pathway and Enhancing Serum Response Factor-miR-1 Axis. Stem Cells Int. 2016;2016:2524092 pubmed 出版商
  75. Fuchs C, Gawlas S, Heher P, Nikouli S, Paar H, Ivankovic M, et al. Desmin enters the nucleus of cardiac stem cells and modulates Nkx2.5 expression by participating in transcription factor complexes that interact with the nkx2.5 gene. Biol Open. 2016;5:140-53 pubmed 出版商
  76. Eng G, Lee B, Protas L, Gagliardi M, Brown K, Kass R, et al. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat Commun. 2016;7:10312 pubmed 出版商
  77. Jung J, Hu D, Domian I, Ogle B. An integrated statistical model for enhanced murine cardiomyocyte differentiation via optimized engagement of 3D extracellular matrices. Sci Rep. 2015;5:18705 pubmed 出版商
  78. Palazzolo G, Quattrocelli M, Toelen J, Dominici R, Anastasia L, Tettamenti G, et al. Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells. Stem Cells Int. 2016;2016:4969430 pubmed 出版商
  79. Ban K, Wile B, Cho K, Kim S, Song M, Kim S, et al. Non-genetic Purification of Ventricular Cardiomyocytes from Differentiating Embryonic Stem Cells through Molecular Beacons Targeting IRX-4. Stem Cell Reports. 2015;5:1239-1249 pubmed 出版商
  80. Kraut B, Maier H, Kókai E, Fiedler K, Boettger T, Illing A, et al. Cardiac-Specific Activation of IKK2 Leads to Defects in Heart Development and Embryonic Lethality. PLoS ONE. 2015;10:e0141591 pubmed 出版商
  81. Busser B, Lin Y, Yang Y, Zhu J, Chen G, Michelson A. An Orthologous Epigenetic Gene Expression Signature Derived from Differentiating Embryonic Stem Cells Identifies Regulators of Cardiogenesis. PLoS ONE. 2015;10:e0141066 pubmed 出版商
  82. Jackson R, Tilokee E, Latham N, Mount S, Rafatian G, Strydhorst J, et al. Paracrine Engineering of Human Cardiac Stem Cells With Insulin-Like Growth Factor 1 Enhances Myocardial Repair. J Am Heart Assoc. 2015;4:e002104 pubmed 出版商
  83. Zhao Y, Londono P, Cao Y, Sharpe E, Proenza C, O Rourke R, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun. 2015;6:8243 pubmed 出版商
  84. Fu Y, Huang C, Xu X, Gu H, Ye Y, Jiang C, et al. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res. 2015;25:1013-24 pubmed 出版商
  85. Wang Y, Li Z, Zhang P, Poon E, Kong C, Boheler K, et al. Nitric Oxide-cGMP-PKG Pathway Acts on Orai1 to Inhibit the Hypertrophy of Human Embryonic Stem Cell-Derived Cardiomyocytes. Stem Cells. 2015;33:2973-84 pubmed 出版商
  86. Meraviglia V, Azzimato V, Colussi C, Florio M, Binda A, Panariti A, et al. Acetylation mediates Cx43 reduction caused by electrical stimulation. J Mol Cell Cardiol. 2015;87:54-64 pubmed 出版商
  87. Kimura W, Xiao F, Canseco D, Muralidhar S, Thet S, Zhang H, et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature. 2015;523:226-30 pubmed 出版商
  88. Szabo L, Morey R, Palpant N, Wang P, Afari N, Jiang C, et al. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol. 2015;16:126 pubmed 出版商
  89. Li Q, Guo Z, Chang Y, Yu X, Li C, Li H. Gata4, Tbx5 and Baf60c induce differentiation of adipose tissue-derived mesenchymal stem cells into beating cardiomyocytes. Int J Biochem Cell Biol. 2015;66:30-6 pubmed 出版商
  90. Belian E, Noseda M, Abreu Paiva M, Leja T, Sampson R, Schneider M. Forward Programming of Cardiac Stem Cells by Homogeneous Transduction with MYOCD plus TBX5. PLoS ONE. 2015;10:e0125384 pubmed 出版商
  91. Zhu S, Wang H, Ding S. Reprogramming fibroblasts toward cardiomyocytes, neural stem cells and hepatocytes by cell activation and signaling-directed lineage conversion. Nat Protoc. 2015;10:959-73 pubmed 出版商
  92. Tsai S, Maass K, Lu J, Fishman G, Chen S, Evans T. Efficient Generation of Cardiac Purkinje Cells from ESCs by Activating cAMP Signaling. Stem Cell Reports. 2015;4:1089-102 pubmed 出版商
  93. Zatti S, Martewicz S, Serena E, Uno N, Giobbe G, Kazuki Y, et al. Complete restoration of multiple dystrophin isoforms in genetically corrected Duchenne muscular dystrophy patient-derived cardiomyocytes. Mol Ther Methods Clin Dev. 2014;1:1 pubmed 出版商
  94. Palpant N, Hofsteen P, Pabon L, Reinecke H, Murry C. Cardiac development in zebrafish and human embryonic stem cells is inhibited by exposure to tobacco cigarettes and e-cigarettes. PLoS ONE. 2015;10:e0126259 pubmed 出版商
  95. Li P, Zhang L. Exogenous Nkx2.5- or GATA-4-transfected rabbit bone marrow mesenchymal stem cells and myocardial cell co-culture on the treatment of myocardial infarction in rabbits. Mol Med Rep. 2015;12:2607-21 pubmed 出版商
  96. Quan C, Xie B, Wang H, Chen S. PKB-Mediated Thr649 Phosphorylation of AS160/TBC1D4 Regulates the R-Wave Amplitude in the Heart. PLoS ONE. 2015;10:e0124491 pubmed 出版商
  97. Suhaeri M, Subbiah R, Van S, Du P, Kim I, Lee K, et al. Cardiomyoblast (h9c2) differentiation on tunable extracellular matrix microenvironment. Tissue Eng Part A. 2015;21:1940-51 pubmed 出版商
  98. Hoynowski S, Ludlow J. Isolation, culturing, and characterization of cardiac muscle cells from nonhuman primate heart tissue. Methods Mol Biol. 2015;1299:133-43 pubmed 出版商
  99. Alexander J, Hota S, He D, Thomas S, Ho L, Pennacchio L, et al. Brg1 modulates enhancer activation in mesoderm lineage commitment. Development. 2015;142:1418-30 pubmed 出版商
  100. Kim M, Horst A, Blinka S, Stamm K, Mahnke D, Schuman J, et al. Activin-A and Bmp4 levels modulate cell type specification during CHIR-induced cardiomyogenesis. PLoS ONE. 2015;10:e0118670 pubmed 出版商
  101. Choi S, Lee H, Choi J, Kim J, Park C, Joo H, et al. Cyclosporin A induces cardiac differentiation but inhibits hemato-endothelial differentiation of P19 cells. PLoS ONE. 2015;10:e0117410 pubmed 出版商
  102. van den Berg C, Elliott D, Braam S, Mummery C, Davis R. Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes Under Defined Conditions. Methods Mol Biol. 2016;1353:163-80 pubmed 出版商
  103. Clarke J, Lyra e Silva N, Figueiredo C, Frozza R, Ledo J, Beckman D, et al. Alzheimer-associated Aβ oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Mol Med. 2015;7:190-210 pubmed 出版商
  104. Geula S, Moshitch Moshkovitz S, Dominissini D, Mansour A, Kol N, Salmon Divon M, et al. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science. 2015;347:1002-6 pubmed 出版商
  105. Chen Y, Wang J, Shen B, Chan C, Wang C, Zhao Y, et al. Engineering a freestanding biomimetic cardiac patch using biodegradable poly(lactic-co-glycolic acid) (PLGA) and human embryonic stem cell-derived ventricular cardiomyocytes (hESC-VCMs). Macromol Biosci. 2015;15:426-36 pubmed 出版商
  106. Lewis K, Silvester N, Barberini Jammaers S, Mason S, Marsh S, Lipka M, et al. A new system for profiling drug-induced calcium signal perturbation in human embryonic stem cell-derived cardiomyocytes. J Biomol Screen. 2015;20:330-40 pubmed 出版商
  107. Soh B, Buac K, Xu H, Li E, Ng S, Wu H, et al. N-cadherin prevents the premature differentiation of anterior heart field progenitors in the pharyngeal mesodermal microenvironment. Cell Res. 2014;24:1420-32 pubmed 出版商
  108. Nam Y, Lubczyk C, Bhakta M, Zang T, Fernandez Perez A, McAnally J, et al. Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors. Development. 2014;141:4267-78 pubmed 出版商
  109. Tchao J, Han L, Lin B, Yang L, Tobita K. Combined biophysical and soluble factor modulation induces cardiomyocyte differentiation from human muscle derived stem cells. Sci Rep. 2014;4:6614 pubmed 出版商
  110. Kim E, Shekhar A, Lu J, Lin X, Liu F, Zhang J, et al. PCP4 regulates Purkinje cell excitability and cardiac rhythmicity. J Clin Invest. 2014;124:5027-36 pubmed 出版商
  111. Pacak C, Hammer P, Mackay A, Dowd R, Wang K, Masuzawa A, et al. Superparamagnetic iron oxide nanoparticles function as a long-term, multi-modal imaging label for non-invasive tracking of implanted progenitor cells. PLoS ONE. 2014;9:e108695 pubmed 出版商
  112. Wile B, Ban K, Yoon Y, Bao G. Molecular beacon-enabled purification of living cells by targeting cell type-specific mRNAs. Nat Protoc. 2014;9:2411-24 pubmed 出版商
  113. Josowitz R, Lu J, Falce C, D Souza S, Wu M, Cohen N, et al. Identification and purification of human induced pluripotent stem cell-derived atrial-like cardiomyocytes based on sarcolipin expression. PLoS ONE. 2014;9:e101316 pubmed 出版商
  114. Burridge P, Matsa E, Shukla P, Lin Z, Churko J, Ebert A, et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11:855-60 pubmed 出版商
  115. Yuan B, Wan P, Chu D, Nie J, Cao Y, Luo W, et al. A cardiomyocyte-specific Wdr1 knockout demonstrates essential functional roles for actin disassembly during myocardial growth and maintenance in mice. Am J Pathol. 2014;184:1967-80 pubmed 出版商
  116. Kowno M, Watanabe Susaki K, Ishimine H, Komazaki S, Enomoto K, Seki Y, et al. Prohibitin 2 regulates the proliferation and lineage-specific differentiation of mouse embryonic stem cells in mitochondria. PLoS ONE. 2014;9:e81552 pubmed 出版商
  117. Shenje L, Andersen P, Halushka M, Lui C, Fernandez L, Collin G, et al. Mutations in Alström protein impair terminal differentiation of cardiomyocytes. Nat Commun. 2014;5:3416 pubmed 出版商
  118. Ifkovits J, Addis R, Epstein J, Gearhart J. Inhibition of TGF? signaling increases direct conversion of fibroblasts to induced cardiomyocytes. PLoS ONE. 2014;9:e89678 pubmed 出版商
  119. Mallon B, Hamilton R, Kozhich O, Johnson K, Fann Y, Rao M, et al. Comparison of the molecular profiles of human embryonic and induced pluripotent stem cells of isogenic origin. Stem Cell Res. 2014;12:376-86 pubmed 出版商
  120. Singh A, Archer T. Analysis of the SWI/SNF chromatin-remodeling complex during early heart development and BAF250a repression cardiac gene transcription during P19 cell differentiation. Nucleic Acids Res. 2014;42:2958-75 pubmed 出版商
  121. Heallen T, Morikawa Y, Leach J, Tao G, Willerson J, Johnson R, et al. Hippo signaling impedes adult heart regeneration. Development. 2013;140:4683-90 pubmed 出版商
  122. Turnbull I, Karakikes I, Serrao G, Backeris P, Lee J, Xie C, et al. Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium. FASEB J. 2014;28:644-54 pubmed 出版商
  123. Wolchinsky Z, Shivtiel S, Kouwenhoven E, Putin D, Sprecher E, Zhou H, et al. Angiomodulin is required for cardiogenesis of embryonic stem cells and is maintained by a feedback loop network of p63 and Activin-A. Stem Cell Res. 2014;12:49-59 pubmed 出版商
  124. Maejima Y, Kyoi S, Zhai P, Liu T, Li H, Ivessa A, et al. Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat Med. 2013;19:1478-88 pubmed 出版商
  125. Liu Y, Jin Y, Li J, Seto E, Kuo E, Yu W, et al. Inactivation of Cdc42 in neural crest cells causes craniofacial and cardiovascular morphogenesis defects. Dev Biol. 2013;383:239-52 pubmed 出版商
  126. Christoforou N, Chellappan M, Adler A, Kirkton R, Wu T, Addis R, et al. Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming. PLoS ONE. 2013;8:e63577 pubmed 出版商
  127. Addis R, Ifkovits J, Pinto F, Kellam L, Esteso P, Rentschler S, et al. Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success. J Mol Cell Cardiol. 2013;60:97-106 pubmed 出版商
  128. Horrillo A, Pezzolla D, Fraga M, Aguilera Y, Salguero Aranda C, Tejedo J, et al. Zebularine regulates early stages of mESC differentiation: effect on cardiac commitment. Cell Death Dis. 2013;4:e570 pubmed 出版商
  129. Moyes K, Sip C, Obenza W, Yang E, Horst C, Welikson R, et al. Human embryonic stem cell-derived cardiomyocytes migrate in response to gradients of fibronectin and Wnt5a. Stem Cells Dev. 2013;22:2315-25 pubmed 出版商
  130. Vukusic K, Jonsson M, Brantsing C, Dellgren G, Jeppsson A, Lindahl A, et al. High density sphere culture of adult cardiac cells increases the levels of cardiac and progenitor markers and shows signs of vasculogenesis. Biomed Res Int. 2013;2013:696837 pubmed 出版商
  131. Behrens A, Iacovino M, Lohr J, Ren Y, Zierold C, Harvey R, et al. Nkx2-5 mediates differential cardiac differentiation through interaction with Hoxa10. Stem Cells Dev. 2013;22:2211-20 pubmed 出版商
  132. Hadad I, Veithen A, Springael J, Sotiropoulou P, Mendes Da Costa A, Miot F, et al. Stroma cell-derived factor-1? signaling enhances calcium transients and beating frequency in rat neonatal cardiomyocytes. PLoS ONE. 2013;8:e56007 pubmed 出版商
  133. Raynaud C, Halabi N, Elliott D, Pasquier J, Elefanty A, Stanley E, et al. Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes. PLoS ONE. 2013;8:e54524 pubmed 出版商
  134. Wei W, Sun H, Ting K, Zhang L, Lee H, Li G, et al. Inhibition of cardiomyocytes differentiation of mouse embryonic stem cells by CD38/cADPR/Ca2+ signaling pathway. J Biol Chem. 2012;287:35599-611 pubmed 出版商
  135. Gaur M, Ritner C, Sievers R, Pedersen A, Prasad M, Bernstein H, et al. Timed inhibition of p38MAPK directs accelerated differentiation of human embryonic stem cells into cardiomyocytes. Cytotherapy. 2010;12:807-17 pubmed 出版商
  136. Gerhart J, Neely C, Stewart B, Perlman J, Beckmann D, Wallon M, et al. Epiblast cells that express MyoD recruit pluripotent cells to the skeletal muscle lineage. J Cell Biol. 2004;164:739-46 pubmed