这是一篇来自已证抗体库的有关人类 TP53BP1的综述,是根据117篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合TP53BP1 抗体。
TP53BP1 同义词: 53BP1; TDRD30; p202; p53BP1

Novus Biologicals
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化; 小鼠; 图 1h
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫组化在小鼠样本上 (图 1h). J Am Heart Assoc (2021) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 人类; 图 2c
Novus Biologicals TP53BP1抗体(Novus Biological, NB100-304SS)被用于被用于免疫细胞化学在人类样本上 (图 2c). Science (2019) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 小鼠; 图 s2b
  • 免疫印迹; 小鼠; 图 1e
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在小鼠样本上 (图 s2b) 和 被用于免疫印迹在小鼠样本上 (图 1e). Cell Rep (2019) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化-石蜡切片; 小鼠; 图 7c
Novus Biologicals TP53BP1抗体(Novus, NB100304SS)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7c). Cell Mol Gastroenterol Hepatol (2019) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 人类; 图 s10a
Novus Biologicals TP53BP1抗体(NOVUSBIO, NB100-304)被用于被用于免疫细胞化学在人类样本上 (图 s10a). Nucleic Acids Res (2019) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 s2d
Novus Biologicals TP53BP1抗体(Novus Biological, NB100-304)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 s2d). Neuron (2018) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 人类; 1:250; 图 s5d
Novus Biologicals TP53BP1抗体(Novus, NC100-304)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 s5d). Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4d
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-305)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4d). J Exp Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1200; 图 6b
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB305-305)被用于被用于免疫细胞化学在人类样本上浓度为1:1200 (图 6b). Nat Commun (2017) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 人类; 图 6
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在人类样本上 (图 6). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2b
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-305)被用于被用于免疫细胞化学在人类样本上 (图 2b). Genes Dev (2017) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 人类; 图 2b
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在人类样本上 (图 2b). Genes Dev (2017) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 4d
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫印迹在人类样本上 (图 4d). J Cell Biol (2017) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 人类
Novus Biologicals TP53BP1抗体(Novus, NB 100-304)被用于被用于免疫细胞化学在人类样本上. Science (2017) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 人类; 图 3d
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在人类样本上 (图 3d). Exp Cell Res (2017) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 人类; 1:500; 图 2a
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2a). Sci Rep (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化; 小鼠; 图 2c
Novus Biologicals TP53BP1抗体(Novus, NB100-304)被用于被用于免疫组化在小鼠样本上 (图 2c). Sci Rep (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 大鼠; 1:500; 图 4c
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 4c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 s7a
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-305)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s7a). Science (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 小鼠; 1:600; 图 2
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304SS)被用于被用于免疫细胞化学在小鼠样本上浓度为1:600 (图 2). Cell Rep (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 人类; 图 s2d
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在人类样本上 (图 s2d). Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1e
  • 免疫印迹; 人类; 图 4a
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-305)被用于被用于免疫细胞化学在人类样本上 (图 1e) 和 被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 7
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-305)被用于被用于染色质免疫沉淀 在人类样本上 (图 7). PLoS Genet (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 人类; 1:2000; 图 1
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 5
Novus Biologicals TP53BP1抗体(Novus, NB100-305)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 人类; 1:3000; 图 5
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在人类样本上浓度为1:3000 (图 5). J Cell Sci (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化-石蜡切片; 小鼠; 图 2
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Cell Rep (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 4
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-305)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-1803)被用于被用于免疫印迹在人类样本上 (图 4). DNA Repair (Amst) (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 人类; 图 3a
Novus Biologicals TP53BP1抗体(Novus, 100-304)被用于被用于免疫细胞化学在人类样本上 (图 3a). Br J Haematol (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 人类; 图 1d
Novus Biologicals TP53BP1抗体(Novus biologicals, NB 100-304)被用于被用于免疫细胞化学在人类样本上 (图 1d). Oncotarget (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 人类; 1:1000; 图 2
  • 免疫印迹; 人类; 图 s3
Novus Biologicals TP53BP1抗体(Novus Biological, NB100-304)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在人类样本上 (图 s3). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 s11
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-305)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s11). Nat Commun (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 5
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫印迹在人类样本上 (图 5). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 人类; 图 s7
Novus Biologicals TP53BP1抗体(Novus, NB100-304)被用于被用于免疫细胞化学在人类样本上 (图 s7). PLoS Genet (2016) ncbi
小鼠 单克隆(6B3E10)
  • 免疫细胞化学; 人类; 1:100; 图 st3
Novus Biologicals TP53BP1抗体(Novus Biologicals, NBP2-25028)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 st3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-305)被用于被用于免疫印迹在小鼠样本上 (图 4a). Mol Cell (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 1:1000; 图 4
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 仓鼠; 1:1000; 图 8
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在仓鼠样本上浓度为1:1000 (图 8). Theranostics (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 5
Novus Biologicals TP53BP1抗体(Novus, NB100-304)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于. Sci Adv (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals TP53BP1抗体(Novus, NB100-304)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1
Novus Biologicals TP53BP1抗体(Novus, NB100-C305)被用于被用于免疫细胞化学在人类样本上 (图 1). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 人类; 1:2000; 图 5a
Novus Biologicals TP53BP1抗体(Novus, NB100-304)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 5a). Methods (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals TP53BP1抗体(Novus, NB100-304)被用于. Mol Cell Biol (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 小鼠; 图 6c
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在小鼠样本上 (图 6c). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于. EMBO Mol Med (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals TP53BP1抗体(Novus, NB100-304)被用于. Nature (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals TP53BP1抗体(Novus, NB100-305)被用于. Nature (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB 100-304)被用于. EMBO Mol Med (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals TP53BP1抗体(Novus, NB100-304)被用于. Aging Cell (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于. Toxicol Lett (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB 100-305)被用于. Am J Physiol Cell Physiol (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于. EMBO Mol Med (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals TP53BP1抗体(Novus, NB 100-304)被用于. DNA Repair (Amst) (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals TP53BP1抗体(Novus, NB 100-304)被用于. Oncogene (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab36823)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 5b). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s7
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab70323)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7). Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab36823)被用于被用于免疫印迹在人类样本上. elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1e
  • 免疫印迹; 人类; 图 3d
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab21083)被用于被用于免疫细胞化学在人类样本上 (图 1e) 和 被用于免疫印迹在人类样本上 (图 3d). Mol Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2b
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab36823)被用于被用于免疫细胞化学在人类样本上 (图 2b). Nucleic Acids Res (2019) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab172580)被用于. Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:20,000; 图 5n
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab36823)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 5n). Aging (Albany NY) (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab36823)被用于被用于免疫组化在小鼠样本上 (图 6a). Nucleic Acids Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 6c
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab21083)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6c). Nat Neurosci (2018) ncbi
domestic rabbit 单克隆(EPR2172(2))
  • 免疫细胞化学; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab175933)被用于被用于免疫细胞化学在小鼠样本上 (图 1b). Genes Dev (2017) ncbi
domestic rabbit 单克隆(EPR2172(2))
  • 免疫细胞化学; 人类; 图 3a
  • 免疫细胞化学; 小鼠; 图 2d
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab175933)被用于被用于免疫细胞化学在人类样本上 (图 3a) 和 被用于免疫细胞化学在小鼠样本上 (图 2d). Genes Dev (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab36823)被用于被用于免疫细胞化学在人类样本上 (图 4). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 1C, 2C
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab21083)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1C, 2C). J Cell Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s5a
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab36823)被用于被用于免疫细胞化学在小鼠样本上 (图 s5a). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 6c
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab21083)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 6c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 2c
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab21083)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2c). FASEB J (2017) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 5
  • 免疫细胞化学; 人类; 图 3
艾博抗(上海)贸易有限公司 TP53BP1抗体(abcam, ab36823)被用于被用于其他在人类样本上 (图 5) 和 被用于免疫细胞化学在人类样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:50; 图 3a
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab172580)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab36823)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 5
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab36823)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab21083)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5
艾博抗(上海)贸易有限公司 TP53BP1抗体(abcam, ab21083)被用于被用于免疫细胞化学在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab21083)被用于被用于免疫印迹在小鼠样本上. Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5a
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab36823)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5a). Oncogene (2016) ncbi
domestic rabbit 单克隆(EPR2172(2))
  • 免疫印迹; 人类; 1:2000; 图 7a
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab175933)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7a). Int J Clin Exp Pathol (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab36823)被用于被用于免疫细胞化学在人类样本上. Oncogene (2016) ncbi
  • 免疫沉淀; 人类
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab87097)被用于被用于免疫沉淀在人类样本上. elife (2014) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s7
赛默飞世尔 TP53BP1抗体(Invitrogen, PA1-16566)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7). Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 2c
赛默飞世尔 TP53BP1抗体(Thermo Scientific, PA1-16566)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 2c). Alcohol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 TP53BP1抗体(ThermoFisher Scientific, PA1-16565)被用于被用于免疫细胞化学在人类样本上 (图 2). DNA Repair (Amst) (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(38.Ser 25)
  • 免疫细胞化学; 人类; 图 5
圣克鲁斯生物技术 TP53BP1抗体(Santa Cruz, sc135748)被用于被用于免疫细胞化学在人类样本上 (图 5). Sci Rep (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signalling Technologies, 3428S)被用于被用于免疫印迹在人类样本上. elife (2020) ncbi
domestic rabbit 单克隆(E7N5D)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling, 88,439)被用于被用于免疫印迹在人类样本上 (图 6b). J Cancer Res Clin Oncol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 2d
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling Technology, 4937)被用于被用于免疫组化在人类样本上 (图 2d) 和 被用于免疫印迹在人类样本上 (图 2f). Cell Death Differ (2019) ncbi
domestic rabbit 单克隆(D4H11)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling, 6209)被用于被用于免疫印迹在人类样本上 (图 3d). Mol Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling Technology, 2674)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Cancer Discov (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 6e
  • 免疫细胞化学; 人类; 图 2e
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling, 4937)被用于被用于免疫细胞化学在小鼠样本上 (图 6e) 和 被用于免疫细胞化学在人类样本上 (图 2e). Nucleic Acids Res (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling, 4937)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:300; 图 4h
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling, 4937)被用于被用于免疫组化在人类样本上浓度为1:300 (图 4h). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 TP53BP1抗体(CST, 4937)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 5c
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling, 4937)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5c). J Cell Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4a
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell signaling, 4937S)被用于被用于免疫细胞化学在人类样本上 (图 4a). Immunity (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 图 s1e
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling, 4937)被用于被用于免疫细胞化学在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 s1e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling, 4937)被用于被用于免疫细胞化学在人类样本上 (图 2). Genome Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 1a
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling, 4937)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1a). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling, 4937)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 小鼠; 图 s1.b,c
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling Technology, 4937)被用于被用于reverse phase protein lysate microarray在小鼠样本上 (图 s1.b,c). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 小鼠; 图 s1.b,c
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling Technology, 2675)被用于被用于reverse phase protein lysate microarray在小鼠样本上 (图 s1.b,c). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling Technology, 2675)被用于被用于免疫印迹在人类样本上 (图 s1). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 4
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling, 4937)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling Technology, 4937)被用于被用于免疫印迹在人类样本上 (图 3). Cell Rep (2016) ncbi
碧迪BD
小鼠 单克隆(19/53BP1)
  • 免疫细胞化学; 人类; 1:500; 图 4d
碧迪BD TP53BP1抗体(BD Biosciences, 612522)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4d). Nucleic Acids Res (2020) ncbi
小鼠 单克隆(19/53BP1)
  • 其他; 人类; 1:200; 图 5b
碧迪BD TP53BP1抗体(BD Biosciences, 612523)被用于被用于其他在人类样本上浓度为1:200 (图 5b). elife (2020) ncbi
小鼠 单克隆(19/53BP1)
  • 免疫细胞化学; 小鼠; 图 s6f
碧迪BD TP53BP1抗体(BD Bioscience, 612523)被用于被用于免疫细胞化学在小鼠样本上 (图 s6f). Nature (2019) ncbi
小鼠 单克隆(19/53BP1)
  • 免疫细胞化学; 人类; 1:500; 图 s17b
碧迪BD TP53BP1抗体(BD, 612523)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s17b). Science (2018) ncbi
小鼠 单克隆(19/53BP1)
  • 免疫细胞化学; 人类; 图 3a
  • 免疫组化; 人类; 图 3a
碧迪BD TP53BP1抗体(BD Biosciences, 612522)被用于被用于免疫细胞化学在人类样本上 (图 3a) 和 被用于免疫组化在人类样本上 (图 3a). Nature (2018) ncbi
小鼠 单克隆(19/53BP1)
  • 免疫细胞化学; 人类; 图 5b
碧迪BD TP53BP1抗体(BD Biosciences, 612523)被用于被用于免疫细胞化学在人类样本上 (图 5b). Biochim Biophys Acta Gene Regul Mech (2017) ncbi
小鼠 单克隆(19/53BP1)
  • 免疫细胞化学; 人类; 1:1000; 图 s4b
  • 免疫印迹; 人类; 1:1000; 图 s7c
碧迪BD TP53BP1抗体(BD Bioscience, 612522)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s7c). Nat Commun (2017) ncbi
小鼠 单克隆(19/53BP1)
  • 免疫细胞化学基因敲除验证; 人类; 图 s1
  • 免疫印迹基因敲除验证; 人类; 图 s1
碧迪BD TP53BP1抗体(BD Biosciences, 612523)被用于被用于免疫细胞化学基因敲除验证在人类样本上 (图 s1) 和 被用于免疫印迹基因敲除验证在人类样本上 (图 s1). Nature (2015) ncbi
小鼠 单克隆(19/53BP1)
  • 免疫细胞化学; 人类; 图 1b
碧迪BD TP53BP1抗体(BD Transduction Laboratories, 612523)被用于被用于免疫细胞化学在人类样本上 (图 1b). J Mol Biol (2016) ncbi
小鼠 单克隆(19/53BP1)
  • 免疫细胞化学; 人类
碧迪BD TP53BP1抗体(BD, 612523)被用于被用于免疫细胞化学在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(19/53BP1)
  • 免疫细胞化学; 人类; 1:1000; 图 4a
碧迪BD TP53BP1抗体(BD Transduction Laboratories, 612522)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4a). DNA Repair (Amst) (2015) ncbi
小鼠 单克隆(19/53BP1)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BD TP53BP1抗体(BD Pharmingen, 612523)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. EMBO J (2013) ncbi
小鼠 单克隆(19/53BP1)
  • 流式细胞仪; 小鼠
碧迪BD TP53BP1抗体(BD PharMingen, BP-1)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2006) ncbi
文章列表
  1. Pal S, Nixon B, Glennon M, Shridhar P, Satterfield S, Su Y, et al. Replication Stress Response Modifies Sarcomeric Cardiomyopathy Remodeling. J Am Heart Assoc. 2021;10:e021768 pubmed 出版商
  2. Baquero J, Benitez Buelga C, Rajagopal V, Zhenjun Z, Torres Ruiz R, Muller S, et al. Small molecule inhibitor of OGG1 blocks oxidative DNA damage repair at telomeres and potentiates methotrexate anticancer effects. Sci Rep. 2021;11:3490 pubmed 出版商
  3. Guo H, Chou W, Lai Y, Liang K, Tam J, Brickey W, et al. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science. 2020;370: pubmed 出版商
  4. Geisinger J, Stearns T. CRISPR/Cas9 treatment causes extended TP53-dependent cell cycle arrest in human cells. Nucleic Acids Res. 2020;48:9067-9081 pubmed 出版商
  5. Lochab S, Singh Y, Sengupta S, Nandicoori V. Mycobacterium tuberculosis exploits host ATM kinase for survival advantage through SecA2 secretome. elife. 2020;9: pubmed 出版商
  6. Lo M, Damon L, Wei Tay J, Jia S, Palmer A. Single cell analysis reveals multiple requirements for zinc in the mammalian cell cycle. elife. 2020;9: pubmed 出版商
  7. Zhang C, Lin X, Zhao Q, Wang Y, Jiang F, Ji C, et al. YARS as an oncogenic protein that promotes gastric cancer progression through activating PI3K-Akt signaling. J Cancer Res Clin Oncol. 2020;146:329-342 pubmed 出版商
  8. Sarek G, Kotsantis P, Ruis P, Van Ly D, Margalef P, Borel V, et al. CDK phosphorylation of TRF2 controls t-loop dynamics during the cell cycle. Nature. 2019;: pubmed 出版商
  9. Wang H, Nakamura M, Abbott T, Zhao D, Luo K, Yu C, et al. CRISPR-mediated live imaging of genome editing and transcription. Science. 2019;: pubmed 出版商
  10. Sundaravinayagam D, Rahjouei A, Andreani M, Tupiņa D, Balasubramanian S, Saha T, et al. 53BP1 Supports Immunoglobulin Class Switch Recombination Independently of Its DNA Double-Strand Break End Protection Function. Cell Rep. 2019;28:1389-1399.e6 pubmed 出版商
  11. Huo D, Chen H, Cheng Y, Song X, Zhang K, Li M, et al. JMJD6 modulates DNA damage response through downregulating H4K16ac independently of its enzymatic activity. Cell Death Differ. 2019;: pubmed 出版商
  12. Colomer C, Margalef P, Villanueva A, Vert A, Pecharroman I, Sole L, et al. IKKα Kinase Regulates the DNA Damage Response and Drives Chemo-resistance in Cancer. Mol Cell. 2019;75:669-682.e5 pubmed 出版商
  13. Zhang J, Lee Y, Dang F, Gan W, Menon A, Katon J, et al. PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage. Cancer Discov. 2019;: pubmed 出版商
  14. Tepper S, Mortusewicz O, Członka E, Bello A, Schmidt A, Jeschke J, et al. Restriction of AID activity and somatic hypermutation by PARP-1. Nucleic Acids Res. 2019;47:7418-7429 pubmed 出版商
  15. Wen H, Gao S, Wang Y, Ray M, Magnuson M, Wright C, et al. Myeloid cell-derived HB-EGF Drives Tissue Recovery After Pancreatitis. Cell Mol Gastroenterol Hepatol. 2019;: pubmed 出版商
  16. Tian X, Firsanov D, Zhang Z, Cheng Y, Luo L, Tombline G, et al. SIRT6 Is Responsible for More Efficient DNA Double-Strand Break Repair in Long-Lived Species. Cell. 2019;177:622-638.e22 pubmed 出版商
  17. Zhang M, Wang B, Li T, Liu R, Xiao Y, Geng X, et al. Mammalian CST averts replication failure by preventing G-quadruplex accumulation. Nucleic Acids Res. 2019;47:5243-5259 pubmed 出版商
  18. López Erauskin J, Tadokoro T, Baughn M, Myers B, McAlonis Downes M, Chillon Marinas C, et al. ALS/FTD-Linked Mutation in FUS Suppresses Intra-axonal Protein Synthesis and Drives Disease Without Nuclear Loss-of-Function of FUS. Neuron. 2018;100:816-830.e7 pubmed 出版商
  19. Ma S, Yang D, Liu Y, Wang Y, Lin T, Li Y, et al. LncRNA BANCR promotes tumorigenesis and enhances adriamycin resistance in colorectal cancer. Aging (Albany NY). 2018;10:2062-2078 pubmed 出版商
  20. Saldivar J, Hamperl S, Bocek M, Chung M, Bass T, Cisneros Soberanis F, et al. An intrinsic S/G2 checkpoint enforced by ATR. Science. 2018;361:806-810 pubmed 出版商
  21. Mirman Z, Lottersberger F, Takai H, Kibe T, Gong Y, Takai K, et al. 53BP1-RIF1-shieldin counteracts DSB resection through CST- and Polα-dependent fill-in. Nature. 2018;560:112-116 pubmed 出版商
  22. Kannan A, Bhatia K, Branzei D, Gangwani L. Combined deficiency of Senataxin and DNA-PKcs causes DNA damage accumulation and neurodegeneration in spinal muscular atrophy. Nucleic Acids Res. 2018;46:8326-8346 pubmed 出版商
  23. Schrank B, Aparicio T, Li Y, Chang W, Chait B, Gundersen G, et al. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature. 2018;559:61-66 pubmed 出版商
  24. Parisotto M, Grelet E, El Bizri R, Dai Y, Terzic J, Eckert D, et al. PTEN deletion in luminal cells of mature prostate induces replication stress and senescence in vivo. J Exp Med. 2018;215:1749-1763 pubmed 出版商
  25. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  26. Collin G, Huna A, Warnier M, Flaman J, Bernard D. Transcriptional repression of DNA repair genes is a hallmark and a cause of cellular senescence. Cell Death Dis. 2018;9:259 pubmed 出版商
  27. Zhou Z, Wang L, Ge F, Gong P, Wang H, Wang F, et al. Pold3 is required for genomic stability and telomere integrity in embryonic stem cells and meiosis. Nucleic Acids Res. 2018;46:3468-3486 pubmed 出版商
  28. Victor M, Richner M, Olsen H, Lee S, Monteys A, Ma C, et al. Striatal neurons directly converted from Huntington's disease patient fibroblasts recapitulate age-associated disease phenotypes. Nat Neurosci. 2018;21:341-352 pubmed 出版商
  29. Takaki T, Montagner M, Serres M, Le Berre M, Russell M, Collinson L, et al. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability. Nat Commun. 2017;8:16013 pubmed 出版商
  30. Patne K, Rakesh R, Arya V, Chanana U, Sethy R, Swer P, et al. BRG1 and SMARCAL1 transcriptionally co-regulate DROSHA, DGCR8 and DICER in response to doxorubicin-induced DNA damage. Biochim Biophys Acta Gene Regul Mech. 2017;1860:936-951 pubmed 出版商
  31. Cottineau J, Kottemann M, Lach F, Kang Y, Vély F, Deenick E, et al. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest. 2017;127:1991-2006 pubmed 出版商
  32. Timashev L, Babcock H, Zhuang X, de Lange T. The DDR at telomeres lacking intact shelterin does not require substantial chromatin decompaction. Genes Dev. 2017;31:578-589 pubmed 出版商
  33. Vancevska A, Douglass K, Pfeiffer V, Manley S, Lingner J. The telomeric DNA damage response occurs in the absence of chromatin decompaction. Genes Dev. 2017;31:567-577 pubmed 出版商
  34. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  35. Nagano T, Nakashima A, Onishi K, Kawai K, Awai Y, Kinugasa M, et al. Proline dehydrogenase promotes senescence through the generation of reactive oxygen species. J Cell Sci. 2017;130:1413-1420 pubmed 出版商
  36. Liu Y, Cussiol J, Dibitetto D, Sims J, Twayana S, Weiss R, et al. TOPBP1Dpb11 plays a conserved role in homologous recombination DNA repair through the coordinated recruitment of 53BP1Rad9. J Cell Biol. 2017;216:623-639 pubmed 出版商
  37. Xu H, Di Antonio M, McKinney S, Mathew V, Ho B, O Neil N, et al. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat Commun. 2017;8:14432 pubmed 出版商
  38. Gong Y, Handa N, Kowalczykowski S, de Lange T. PHF11 promotes DSB resection, ATR signaling, and HR. Genes Dev. 2017;31:46-58 pubmed 出版商
  39. Pal D, Pertot A, Shirole N, Yao Z, Anaparthy N, Garvin T, et al. TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24- cancer cells. elife. 2017;6: pubmed 出版商
  40. Li J, Miralles Fusté J, Simavorian T, Bartocci C, Tsai J, Karlseder J, et al. TZAP: A telomere-associated protein involved in telomere length control. Science. 2017;355:638-641 pubmed 出版商
  41. Zanini I, Soneson C, Lorenzi L, Azzalin C. Human cactin interacts with DHX8 and SRRM2 to assure efficient pre-mRNA splicing and sister chromatid cohesion. J Cell Sci. 2017;130:767-778 pubmed 出版商
  42. Mytych J, Wos I, Solek P, Koziorowski M. Protective role of klotho protein on epithelial cells upon co-culture with activated or senescent monocytes. Exp Cell Res. 2017;350:358-367 pubmed 出版商
  43. Tumini E, Barroso S, Calero C, Aguilera A. Roles of human POLD1 and POLD3 in genome stability. Sci Rep. 2016;6:38873 pubmed 出版商
  44. Kariolis M, Miao Y, Diep A, Nash S, Olcina M, Jiang D, et al. Inhibition of the GAS6/AXL pathway augments the efficacy of chemotherapies. J Clin Invest. 2017;127:183-198 pubmed 出版商
  45. Despras E, Sittewelle M, Pouvelle C, Delrieu N, Cordonnier A, Kannouche P. Rad18-dependent SUMOylation of human specialized DNA polymerase eta is required to prevent under-replicated DNA. Nat Commun. 2016;7:13326 pubmed 出版商
  46. Bezine E, Malaisé Y, Loeuillet A, Chevalier M, Boutet Robinet E, Salles B, et al. Cell resistance to the Cytolethal Distending Toxin involves an association of DNA repair mechanisms. Sci Rep. 2016;6:36022 pubmed 出版商
  47. Piechota M, Sunderland P, Wysocka A, Nalberczak M, Sliwinska M, Radwanska K, et al. Is senescence-associated β-galactosidase a marker of neuronal senescence?. Oncotarget. 2016;7:81099-81109 pubmed 出版商
  48. Li Y, Shen Y, Hohensinner P, Ju J, Wen Z, Goodman S, et al. Deficient Activity of the Nuclease MRE11A Induces T Cell Aging and Promotes Arthritogenic Effector Functions in Patients with Rheumatoid Arthritis. Immunity. 2016;45:903-916 pubmed 出版商
  49. Kanakkanthara A, Jeganathan K, Limzerwala J, Baker D, Hamada M, Nam H, et al. Cyclin A2 is an RNA binding protein that controls Mre11 mRNA translation. Science. 2016;353:1549-1552 pubmed
  50. Zhou L, Dai H, Wu J, Zhou M, Yuan H, Du J, et al. Role of FEN1 S187 phosphorylation in counteracting oxygen-induced stress and regulating postnatal heart development. FASEB J. 2017;31:132-147 pubmed 出版商
  51. Bridges K, Chen X, Liu H, Rock C, Buchholz T, Shumway S, et al. MK-8776, a novel chk1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Oncotarget. 2016;7:71660-71672 pubmed 出版商
  52. Lescale C, Lenden Hasse H, Blackford A, Balmus G, Bianchi J, Yu W, et al. Specific Roles of XRCC4 Paralogs PAXX and XLF during V(D)J Recombination. Cell Rep. 2016;16:2967-2979 pubmed 出版商
  53. Suman S, Kumar S, N GOUEMO P, Datta K. Increased DNA double-strand break was associated with downregulation of repair and upregulation of apoptotic factors in rat hippocampus after alcohol exposure. Alcohol. 2016;54:45-50 pubmed 出版商
  54. Schmidt J, Zaug A, Cech T. Live Cell Imaging Reveals the Dynamics of Telomerase Recruitment to Telomeres. Cell. 2016;166:1188-1197.e9 pubmed 出版商
  55. Bakr A, Köcher S, Volquardsen J, Petersen C, Borgmann K, Dikomey E, et al. Impaired 53BP1/RIF1 DSB mediated end-protection stimulates CtIP-dependent end resection and switches the repair to PARP1-dependent end joining in G1. Oncotarget. 2016;7:57679-57693 pubmed 出版商
  56. Nelson D, Jaber Hijazi F, Cole J, Robertson N, Pawlikowski J, Norris K, et al. Mapping H4K20me3 onto the chromatin landscape of senescent cells indicates a function in control of cell senescence and tumor suppression through preservation of genetic and epigenetic stability. Genome Biol. 2016;17:158 pubmed 出版商
  57. Morales J, Richard P, Patidar P, Motea E, Dang T, Manley J, et al. XRN2 Links Transcription Termination to DNA Damage and Replication Stress. PLoS Genet. 2016;12:e1006107 pubmed 出版商
  58. Mao P, Liu J, Zhang Z, Zhang H, Liu H, Gao S, et al. Homologous recombination-dependent repair of telomeric DSBs in proliferating human cells. Nat Commun. 2016;7:12154 pubmed 出版商
  59. Hewitt G, Carroll B, Sarallah R, Correia Melo C, Ogrodnik M, Nelson G, et al. SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. Autophagy. 2016;12:1917-1930 pubmed
  60. Penterling C, Drexler G, Böhland C, Stamp R, Wilke C, Braselmann H, et al. Depletion of Histone Demethylase Jarid1A Resulting in Histone Hyperacetylation and Radiation Sensitivity Does Not Affect DNA Double-Strand Break Repair. PLoS ONE. 2016;11:e0156599 pubmed 出版商
  61. Jullien D, Vignard J, Fedor Y, Bery N, Olichon A, Crozatier M, et al. Chromatibody, a novel non-invasive molecular tool to explore and manipulate chromatin in living cells. J Cell Sci. 2016;129:2673-83 pubmed 出版商
  62. Yalon M, Tuval Kochen L, Castel D, Moshe I, Mazal I, Cohen O, et al. Overcoming Resistance of Cancer Cells to PARP-1 Inhibitors with Three Different Drug Combinations. PLoS ONE. 2016;11:e0155711 pubmed 出版商
  63. Zhang X, Ye C, Sun F, Wei W, Hu B, Wang J. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation. PLoS ONE. 2016;11:e0155725 pubmed 出版商
  64. Manchon J, DABAGHIAN Y, Uzor N, Kesler S, Wefel J, Tsvetkov A. Levetiracetam mitigates doxorubicin-induced DNA and synaptic damage in neurons. Sci Rep. 2016;6:25705 pubmed 出版商
  65. Ho T, Guilbaud G, Blow J, Sale J, Watson C. The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability. Cell Rep. 2016;15:724-734 pubmed 出版商
  66. Onyango D, Howard S, Neherin K, Yanez D, Stark J. Tetratricopeptide repeat factor XAB2 mediates the end resection step of homologous recombination. Nucleic Acids Res. 2016;44:5702-16 pubmed 出版商
  67. Chiang T, le Sage C, Larrieu D, Demir M, Jackson S. CRISPR-Cas9(D10A) nickase-based genotypic and phenotypic screening to enhance genome editing. Sci Rep. 2016;6:24356 pubmed 出版商
  68. Mutschelknaus L, Peters C, Winkler K, Yentrapalli R, Heider T, Atkinson M, et al. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation. PLoS ONE. 2016;11:e0152213 pubmed 出版商
  69. Gruosso T, Mieulet V, Cardon M, Bourachot B, Kieffer Y, Devun F, et al. Chronic oxidative stress promotes H2AX protein degradation and enhances chemosensitivity in breast cancer patients. EMBO Mol Med. 2016;8:527-49 pubmed 出版商
  70. Sears C, Cooney S, Chin Sinex H, Mendonca M, Turchi J. DNA damage response (DDR) pathway engagement in cisplatin radiosensitization of non-small cell lung cancer. DNA Repair (Amst). 2016;40:35-46 pubmed 出版商
  71. Byrd P, Stewart G, Smith A, Eaton C, Taylor A, Guy C, et al. A Hypomorphic PALB2 Allele Gives Rise to an Unusual Form of FA-N Associated with Lymphoid Tumour Development. PLoS Genet. 2016;12:e1005945 pubmed 出版商
  72. Medves S, Auchter M, Chambeau L, Gazzo S, Poncet D, Grangier B, et al. A high rate of telomeric sister chromatid exchange occurs in chronic lymphocytic leukaemia B-cells. Br J Haematol. 2016;174:57-70 pubmed 出版商
  73. Ercilla A, Llopis A, Feu S, Aranda S, Ernfors P, Freire R, et al. New origin firing is inhibited by APC/CCdh1 activation in S-phase after severe replication stress. Nucleic Acids Res. 2016;44:4745-62 pubmed 出版商
  74. O Hagan Wong K, Nadeau S, Carrier Leclerc A, Apablaza F, Hamdy R, Shum Tim D, et al. Increased IL-6 secretion by aged human mesenchymal stromal cells disrupts hematopoietic stem and progenitor cells' homeostasis. Oncotarget. 2016;7:13285-96 pubmed 出版商
  75. Francia S, Cabrini M, Matti V, Oldani A, d Adda di Fagagna F. DICER, DROSHA and DNA damage response RNAs are necessary for the secondary recruitment of DNA damage response factors. J Cell Sci. 2016;129:1468-76 pubmed 出版商
  76. Weyemi U, Redon C, Choudhuri R, Aziz T, Maeda D, Boufraqech M, et al. The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition. Nat Commun. 2016;7:10711 pubmed 出版商
  77. Ahuja A, Jodkowska K, Teloni F, Bizard A, Zellweger R, Herrador R, et al. A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nat Commun. 2016;7:10660 pubmed 出版商
  78. Cekan P, Hasegawa K, Pan Y, Tubman E, Odde D, Chen J, et al. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell senescence. Mol Biol Cell. 2016;27:1346-57 pubmed 出版商
  79. Nagy Z, Kalousi A, Furst A, Koch M, Fischer B, Soutoglou E. Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs. PLoS Genet. 2016;12:e1005791 pubmed 出版商
  80. Nassour J, Martien S, Martin N, Deruy E, Tomellini E, Malaquin N, et al. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells. Nat Commun. 2016;7:10399 pubmed 出版商
  81. Zhao M, Song Y, Niu H, Tian Y, Yang X, Xie K, et al. Adenovirus-mediated downregulation of the ubiquitin ligase RNF8 sensitizes bladder cancer to radiotherapy. Oncotarget. 2016;7:8956-67 pubmed 出版商
  82. Soo Lee N, Jin Chung H, Kim H, Yun Lee S, Ji J, Seo Y, et al. TRAIP/RNF206 is required for recruitment of RAP80 to sites of DNA damage. Nat Commun. 2016;7:10463 pubmed 出版商
  83. Kibe T, Zimmermann M, de Lange T. TPP1 Blocks an ATR-Mediated Resection Mechanism at Telomeres. Mol Cell. 2016;61:236-46 pubmed 出版商
  84. Choi Y, Meghani K, Brault M, Leclerc L, He Y, Day T, et al. Platinum and PARP Inhibitor Resistance Due to Overexpression of MicroRNA-622 in BRCA1-Mutant Ovarian Cancer. Cell Rep. 2016;14:429-439 pubmed 出版商
  85. García Prat L, Martínez Vicente M, Perdiguero E, Ortet L, Rodríguez Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529:37-42 pubmed 出版商
  86. Zhang H, Liu H, Chen Y, Yang X, Wang P, Liu T, et al. A cell cycle-dependent BRCA1-UHRF1 cascade regulates DNA double-strand break repair pathway choice. Nat Commun. 2016;7:10201 pubmed 出版商
  87. Chatalic K, Konijnenberg M, Nonnekens J, De Blois E, Hoeben S, de Ridder C, et al. In Vivo Stabilization of a Gastrin-Releasing Peptide Receptor Antagonist Enhances PET Imaging and Radionuclide Therapy of Prostate Cancer in Preclinical Studies. Theranostics. 2016;6:104-17 pubmed 出版商
  88. Orthwein A, Noordermeer S, Wilson M, Landry S, Enchev R, Sherker A, et al. A mechanism for the suppression of homologous recombination in G1 cells. Nature. 2015;528:422-6 pubmed 出版商
  89. Obermeier K, Sachsenweger J, Friedl T, Pospiech H, Winqvist R, Wiesmüller L. Heterozygous PALB2 c.1592delT mutation channels DNA double-strand break repair into error-prone pathways in breast cancer patients. Oncogene. 2016;35:3796-806 pubmed 出版商
  90. Iyama T, Wilson D. Elements That Regulate the DNA Damage Response of Proteins Defective in Cockayne Syndrome. J Mol Biol. 2016;428:62-78 pubmed 出版商
  91. Han X, Liu Z, Jo M, Zhang K, Li Y, Zeng Z, et al. CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation. Sci Adv. 2015;1:e1500454 pubmed 出版商
  92. Li M, Huang R, Jiang X, Chen Y, Zhang Z, Zhang X, et al. CRISPR/Cas9 Promotes Functional Study of Testis Specific X-Linked Gene In Vivo. PLoS ONE. 2015;10:e0143148 pubmed 出版商
  93. Cristini A, Park J, Capranico G, Legube G, Favre G, Sordet O. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions. Nucleic Acids Res. 2016;44:1161-78 pubmed 出版商
  94. Merle P, Gueugneau M, Teulade Fichou M, Müller Barthélémy M, Amiard S, Chautard E, et al. Highly efficient radiosensitization of human glioblastoma and lung cancer cells by a G-quadruplex DNA binding compound. Sci Rep. 2015;5:16255 pubmed 出版商
  95. Kim S, Bozeman R, Kaisani A, Kim W, Zhang L, Richardson J, et al. Radiation promotes colorectal cancer initiation and progression by inducing senescence-associated inflammatory responses. Oncogene. 2016;35:3365-75 pubmed 出版商
  96. Kubben N, Brimacombe K, Donegan M, Li Z, Misteli T. A high-content imaging-based screening pipeline for the systematic identification of anti-progeroid compounds. Methods. 2016;96:46-58 pubmed 出版商
  97. Weaver A, Cooper T, Rodriguez M, Trummell H, Bonner J, Rosenthal E, et al. DNA double strand break repair defect and sensitivity to poly ADP-ribose polymerase (PARP) inhibition in human papillomavirus 16-positive head and neck squamous cell carcinoma. Oncotarget. 2015;6:26995-7007 pubmed 出版商
  98. Lin H, Ha K, Lu G, Fang X, Cheng R, Zuo Q, et al. Cdc14A and Cdc14B Redundantly Regulate DNA Double-Strand Break Repair. Mol Cell Biol. 2015;35:3657-68 pubmed 出版商
  99. Bi J, Huang A, Liu T, Zhang T, Ma H. Expression of DNA damage checkpoint 53BP1 is correlated with prognosis, cell proliferation and apoptosis in colorectal cancer. Int J Clin Exp Pathol. 2015;8:6070-82 pubmed
  100. Marchesini M, Matocci R, Tasselli L, Cambiaghi V, Orleth A, Furia L, et al. PML is required for telomere stability in non-neoplastic human cells. Oncogene. 2016;35:1811-21 pubmed 出版商
  101. Petroni M, Sardina F, Heil C, Sahún Roncero M, Colicchia V, Veschi V, et al. The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress. Cell Death Differ. 2016;23:197-206 pubmed 出版商
  102. Kharat S, Tripathi V, Damodaran A, Priyadarshini R, Chandra S, Tikoo S, et al. Mitotic phosphorylation of Bloom helicase at Thr182 is required for its proteasomal degradation and maintenance of chromosomal stability. Oncogene. 2016;35:1025-38 pubmed 出版商
  103. Bol G, Vesuna F, Xie M, Zeng J, Aziz K, Gandhi N, et al. Targeting DDX3 with a small molecule inhibitor for lung cancer therapy. EMBO Mol Med. 2015;7:648-69 pubmed 出版商
  104. Xu G, Chapman J, Brandsma I, Yuan J, Mistrik M, Bouwman P, et al. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature. 2015;521:541-544 pubmed 出版商
  105. Boersma V, Moatti N, Segura Bayona S, Peuscher M, van der Torre J, Wevers B, et al. MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5' end resection. Nature. 2015;521:537-540 pubmed 出版商
  106. Augello M, Berman Booty L, Carr R, Yoshida A, Dean J, Schiewer M, et al. Consequence of the tumor-associated conversion to cyclin D1b. EMBO Mol Med. 2015;7:628-47 pubmed 出版商
  107. Kumari A, Owen N, Juarez E, McCullough A. BLM protein mitigates formaldehyde-induced genomic instability. DNA Repair (Amst). 2015;28:73-82 pubmed 出版商
  108. Nakagawa Y, Sedukhina A, Okamoto N, Nagasawa S, Suzuki N, Ohta T, et al. NF-κB signaling mediates acquired resistance after PARP inhibition. Oncotarget. 2015;6:3825-39 pubmed
  109. Gibbs Seymour I, Markiewicz E, Bekker Jensen S, Mailand N, Hutchison C. Lamin A/C-dependent interaction with 53BP1 promotes cellular responses to DNA damage. Aging Cell. 2015;14:162-9 pubmed 出版商
  110. Lewinska A, Wnuk M, Grabowska W, Zabek T, Semik E, Sikora E, et al. Curcumin induces oxidation-dependent cell cycle arrest mediated by SIRT7 inhibition of rDNA transcription in human aortic smooth muscle cells. Toxicol Lett. 2015;233:227-38 pubmed 出版商
  111. Chen L, Zhu X, Zou Y, Xing J, Gilson E, Lu Y, et al. The topoisomerase II catalytic inhibitor ICRF-193 preferentially targets telomeres that are capped by TRF2. Am J Physiol Cell Physiol. 2015;308:C372-7 pubmed 出版商
  112. Ito H, Fujita K, Tagawa K, Chen X, Homma H, Sasabe T, et al. HMGB1 facilitates repair of mitochondrial DNA damage and extends the lifespan of mutant ataxin-1 knock-in mice. EMBO Mol Med. 2015;7:78-101 pubmed 出版商
  113. Uringa E, Baldeyron C, Odijk H, Wassenaar E, van Cappellen W, Maas A, et al. A mRad51-GFP antimorphic allele affects homologous recombination and DNA damage sensitivity. DNA Repair (Amst). 2015;25:27-40 pubmed 出版商
  114. Gole B, Baumann C, Mian E, Ireno C, Wiesmuller L. Endonuclease G initiates DNA rearrangements at the MLL breakpoint cluster upon replication stress. Oncogene. 2015;34:3391-401 pubmed 出版商
  115. Carvalho S, Vítor A, Sridhara S, Martins F, Raposo A, Desterro J, et al. SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint. elife. 2014;3:e02482 pubmed 出版商
  116. Tikoo S, Madhavan V, Hussain M, Miller E, Arora P, Zlatanou A, et al. Ubiquitin-dependent recruitment of the Bloom syndrome helicase upon replication stress is required to suppress homologous recombination. EMBO J. 2013;32:1778-92 pubmed 出版商
  117. Hu H, Wang B, Borde M, Nardone J, Maika S, Allred L, et al. Foxp1 is an essential transcriptional regulator of B cell development. Nat Immunol. 2006;7:819-26 pubmed