这是一篇来自已证抗体库的有关人类 TP53BP1的综述,是根据100篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合TP53BP1 抗体。
TP53BP1 同义词: 53BP1; TDRD30; p202; p53BP1

Novus Biologicals
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2c
Novus Biologicals TP53BP1抗体(Novus Biological, NB100-304SS)被用于被用于免疫细胞化学在人类样本上 (图 2c). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s10a
Novus Biologicals TP53BP1抗体(NOVUSBIO, NB100-304)被用于被用于免疫细胞化学在人类样本上 (图 s10a). Nucleic Acids Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 s2d
Novus Biologicals TP53BP1抗体(Novus Biological, NB100-304)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 s2d). Neuron (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:250; 图 s5d
Novus Biologicals TP53BP1抗体(Novus, NC100-304)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 s5d). Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4d
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-305)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4d). J Exp Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1200; 图 6b
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB305-305)被用于被用于免疫细胞化学在人类样本上浓度为1:1200 (图 6b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 6
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在人类样本上 (图 6). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2b
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-305)被用于被用于免疫细胞化学在人类样本上 (图 2b). Genes Dev (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2b
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在人类样本上 (图 2b). Genes Dev (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫印迹在人类样本上 (图 4d). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类
Novus Biologicals TP53BP1抗体(Novus, NB 100-304)被用于被用于免疫细胞化学在人类样本上. Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3d
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在人类样本上 (图 3d). Exp Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 2a
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2c
Novus Biologicals TP53BP1抗体(Novus, NB100-304)被用于被用于免疫组化在小鼠样本上 (图 2c). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; brown rat; 1:500; 图 4c
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在brown rat样本上浓度为1:500 (图 4c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 s7a
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-305)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s7a). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:600; 图 2
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304SS)被用于被用于免疫细胞化学在小鼠样本上浓度为1:600 (图 2). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s2d
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在人类样本上 (图 s2d). Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1e
  • 免疫印迹; 人类; 图 4a
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-305)被用于被用于免疫细胞化学在人类样本上 (图 1e) 和 被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 7
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-305)被用于被用于染色质免疫沉淀 在人类样本上 (图 7). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:2000; 图 1
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 5
Novus Biologicals TP53BP1抗体(Novus, NB100-305)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:3000; 图 5
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在人类样本上浓度为1:3000 (图 5). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 4
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-305)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-1803)被用于被用于免疫印迹在人类样本上 (图 4). DNA Repair (Amst) (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3a
Novus Biologicals TP53BP1抗体(Novus, 100-304)被用于被用于免疫细胞化学在人类样本上 (图 3a). Br J Haematol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1d
Novus Biologicals TP53BP1抗体(Novus biologicals, NB 100-304)被用于被用于免疫细胞化学在人类样本上 (图 1d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 2
  • 免疫印迹; 人类; 图 s3
Novus Biologicals TP53BP1抗体(Novus Biological, NB100-304)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在人类样本上 (图 s3). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 s11
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-305)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s11). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫印迹在人类样本上 (图 5). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s7
Novus Biologicals TP53BP1抗体(Novus, NB100-304)被用于被用于免疫细胞化学在人类样本上 (图 s7). PLoS Genet (2016) ncbi
小鼠 单克隆(6B3E10)
  • 免疫细胞化学; 人类; 1:100; 图 st3
Novus Biologicals TP53BP1抗体(Novus Biologicals, NBP2-25028)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 st3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-305)被用于被用于免疫印迹在小鼠样本上 (图 4a). Mol Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 仓鼠; 1:1000; 图 8
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在仓鼠样本上浓度为1:1000 (图 8). Theranostics (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
Novus Biologicals TP53BP1抗体(Novus, NB100-304)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1
Novus Biologicals TP53BP1抗体(Novus, NB100-C305)被用于被用于免疫细胞化学在人类样本上 (图 1). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:2000; 图 5a
Novus Biologicals TP53BP1抗体(Novus, NB100-304)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 5a). Methods (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 6c
Novus Biologicals TP53BP1抗体(Novus Biologicals, NB100-304)被用于被用于免疫细胞化学在小鼠样本上 (图 6c). Cell Death Differ (2016) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2b
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab36823)被用于被用于免疫细胞化学在人类样本上 (图 2b). Nucleic Acids Res (2019) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab172580)被用于. Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:20,000; 图 5n
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab36823)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 5n). Aging (Albany NY) (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab36823)被用于被用于免疫组化在小鼠样本上 (图 6a). Nucleic Acids Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 6c
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab21083)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6c). Nat Neurosci (2018) ncbi
domestic rabbit 单克隆(EPR2172(2))
  • 免疫细胞化学; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab175933)被用于被用于免疫细胞化学在小鼠样本上 (图 1b). Genes Dev (2017) ncbi
domestic rabbit 单克隆(EPR2172(2))
  • 免疫细胞化学; 人类; 图 3a
  • 免疫细胞化学; 小鼠; 图 2d
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab175933)被用于被用于免疫细胞化学在人类样本上 (图 3a) 和 被用于免疫细胞化学在小鼠样本上 (图 2d). Genes Dev (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab36823)被用于被用于免疫细胞化学在人类样本上 (图 4). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 1C, 2C
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab21083)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1C, 2C). J Cell Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s5a
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab36823)被用于被用于免疫细胞化学在小鼠样本上 (图 s5a). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 6c
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab21083)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 6c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 2c
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab21083)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2c). FASEB J (2017) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 5
  • 免疫细胞化学; 人类; 图 3
艾博抗(上海)贸易有限公司 TP53BP1抗体(abcam, ab36823)被用于被用于其他在人类样本上 (图 5) 和 被用于免疫细胞化学在人类样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; brown rat; 1:50; 图 3a
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab172580)被用于被用于免疫组化在brown rat样本上浓度为1:50 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab36823)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 5
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab36823)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab21083)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5
艾博抗(上海)贸易有限公司 TP53BP1抗体(abcam, ab21083)被用于被用于免疫细胞化学在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab21083)被用于被用于免疫印迹在小鼠样本上. Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5a
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab36823)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5a). Oncogene (2016) ncbi
domestic rabbit 单克隆(EPR2172(2))
  • 免疫印迹; 人类; 1:2000; 图 7a
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab175933)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7a). Int J Clin Exp Pathol (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 TP53BP1抗体(Abcam, ab36823)被用于被用于免疫细胞化学在人类样本上. Oncogene (2016) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; brown rat; 1:200; 图 2c
赛默飞世尔 TP53BP1抗体(Thermo Scientific, PA1-16566)被用于被用于免疫组化-冰冻切片在brown rat样本上浓度为1:200 (图 2c). Alcohol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 TP53BP1抗体(ThermoFisher Scientific, PA1-16565)被用于被用于免疫细胞化学在人类样本上 (图 2). DNA Repair (Amst) (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling Technology, 2674)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Cancer Discov (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2e
  • 免疫细胞化学; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling, 4937)被用于被用于免疫细胞化学在人类样本上 (图 2e) 和 被用于免疫细胞化学在小鼠样本上 (图 6e). Nucleic Acids Res (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling, 4937)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:300; 图 4h
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling, 4937)被用于被用于免疫组化在人类样本上浓度为1:300 (图 4h). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 TP53BP1抗体(CST, 4937)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 5c
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling, 4937)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5c). J Cell Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4a
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell signaling, 4937S)被用于被用于免疫细胞化学在人类样本上 (图 4a). Immunity (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 图 s1e
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling, 4937)被用于被用于免疫细胞化学在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 s1e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling, 4937)被用于被用于免疫细胞化学在人类样本上 (图 2). Genome Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 1a
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling, 4937)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1a). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling, 4937)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 小鼠; 图 s1.b,c
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling Technology, 2675)被用于被用于reverse phase protein lysate microarray在小鼠样本上 (图 s1.b,c). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 小鼠; 图 s1.b,c
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling Technology, 4937)被用于被用于reverse phase protein lysate microarray在小鼠样本上 (图 s1.b,c). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling Technology, 2675)被用于被用于免疫印迹在人类样本上 (图 s1). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 4
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling, 4937)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 TP53BP1抗体(Cell Signaling Technology, 4937)被用于被用于免疫印迹在人类样本上 (图 3). Cell Rep (2016) ncbi
碧迪BD
小鼠 单克隆(19/53BP1)
  • 免疫细胞化学; 小鼠; 图 s6f
碧迪BD TP53BP1抗体(BD Bioscience, 612523)被用于被用于免疫细胞化学在小鼠样本上 (图 s6f). Nature (2019) ncbi
小鼠 单克隆(19/53BP1)
  • 免疫细胞化学; 人类; 1:500; 图 s17b
碧迪BD TP53BP1抗体(BD, 612523)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s17b). Science (2018) ncbi
小鼠 单克隆(19/53BP1)
  • 免疫细胞化学; 人类; 图 3a
  • 免疫组化; 人类; 图 3a
碧迪BD TP53BP1抗体(BD Biosciences, 612522)被用于被用于免疫细胞化学在人类样本上 (图 3a) 和 被用于免疫组化在人类样本上 (图 3a). Nature (2018) ncbi
小鼠 单克隆(19/53BP1)
  • 免疫细胞化学; 人类; 图 5b
碧迪BD TP53BP1抗体(BD Biosciences, 612523)被用于被用于免疫细胞化学在人类样本上 (图 5b). Biochim Biophys Acta Gene Regul Mech (2017) ncbi
小鼠 单克隆(19/53BP1)
  • 免疫细胞化学; 人类; 1:1000; 图 s4b
  • 免疫印迹; 人类; 1:1000; 图 s7c
碧迪BD TP53BP1抗体(BD Bioscience, 612522)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s7c). Nat Commun (2017) ncbi
小鼠 单克隆(19/53BP1)
  • 免疫细胞化学基因敲除验证; 人类; 图 s1
  • 免疫印迹基因敲除验证; 人类; 图 s1
碧迪BD TP53BP1抗体(BD Biosciences, 612523)被用于被用于免疫细胞化学基因敲除验证在人类样本上 (图 s1) 和 被用于免疫印迹基因敲除验证在人类样本上 (图 s1). Nature (2015) ncbi
小鼠 单克隆(19/53BP1)
  • 免疫细胞化学; 人类; 图 1b
碧迪BD TP53BP1抗体(BD Transduction Laboratories, 612523)被用于被用于免疫细胞化学在人类样本上 (图 1b). J Mol Biol (2016) ncbi
小鼠 单克隆(19/53BP1)
  • 免疫细胞化学; 人类
碧迪BD TP53BP1抗体(BD, 612523)被用于被用于免疫细胞化学在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(19/53BP1)
  • 免疫细胞化学; 人类; 1:1000; 图 4a
碧迪BD TP53BP1抗体(BD Transduction Laboratories, 612522)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4a). DNA Repair (Amst) (2015) ncbi
小鼠 单克隆(19/53BP1)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BD TP53BP1抗体(BD Pharmingen, 612523)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. EMBO J (2013) ncbi
小鼠 单克隆(19/53BP1)
  • 流式细胞仪; 小鼠
碧迪BD TP53BP1抗体(BD PharMingen, BP-1)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2006) ncbi
默克密理博中国
小鼠 单克隆(BP13)
  • 免疫细胞化学; 人类; 图 3a
默克密理博中国 TP53BP1抗体(Millipore, MAB3802)被用于被用于免疫细胞化学在人类样本上 (图 3a). Cell (2019) ncbi
小鼠 单克隆(BP13)
  • 免疫细胞化学; 人类; 图 s3g
默克密理博中国 TP53BP1抗体(Millipore, MAB3802)被用于被用于免疫细胞化学在人类样本上 (图 s3g). Cell (2019) ncbi
小鼠 单克隆(BP13)
  • 免疫细胞化学; 人类; 图 4b
默克密理博中国 TP53BP1抗体(Upstate, 05-726 4b)被用于被用于免疫细胞化学在人类样本上 (图 4b). Mol Cell (2017) ncbi
小鼠 单克隆(BP13)
  • 免疫组化; 人类; 图 1a
默克密理博中国 TP53BP1抗体(Millipore, MAB3802)被用于被用于免疫组化在人类样本上 (图 1a). Mol Cell (2017) ncbi
小鼠 单克隆(BP13)
  • 免疫细胞化学; 人类
默克密理博中国 TP53BP1抗体(Millipore, MAB3802)被用于被用于免疫细胞化学在人类样本上. Sci Rep (2016) ncbi
小鼠 单克隆(BP13)
  • 免疫细胞化学; 人类; 1:100; 图 3a
默克密理博中国 TP53BP1抗体(Millipore, MAB3802)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3a). DNA Repair (Amst) (2016) ncbi
小鼠 单克隆(BP13)
  • 免疫细胞化学; 人类; 图 7
默克密理博中国 TP53BP1抗体(Millipore, MAB3802)被用于被用于免疫细胞化学在人类样本上 (图 7). Sci Rep (2016) ncbi
小鼠 单克隆(BP18)
  • 免疫细胞化学; 人类; 1:200; 图 5
默克密理博中国 TP53BP1抗体(Upstate, 05-725)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(BP13)
  • 免疫细胞化学; 人类; 1:500; 图 4
默克密理博中国 TP53BP1抗体(Millipore, MAB3802)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4). Cell Cycle (2016) ncbi
小鼠 单克隆(BP13)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
默克密理博中国 TP53BP1抗体(Millipore, MAB3802)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(BP13)
  • 免疫细胞化学; 人类
默克密理博中国 TP53BP1抗体(Millipore, BP13)被用于被用于免疫细胞化学在人类样本上. Nucleic Acids Res (2014) ncbi
文章列表
  1. Sarek G, Kotsantis P, Ruis P, Van Ly D, Margalef P, Borel V, et al. CDK phosphorylation of TRF2 controls t-loop dynamics during the cell cycle. Nature. 2019;: pubmed 出版商
  2. Wang H, Nakamura M, Abbott T, Zhao D, Luo K, Yu C, et al. CRISPR-mediated live imaging of genome editing and transcription. Science. 2019;: pubmed 出版商
  3. Zhang J, Lee Y, Dang F, Gan W, Menon A, Katon J, et al. PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage. Cancer Discov. 2019;: pubmed 出版商
  4. Tepper S, Mortusewicz O, Członka E, Bello A, Schmidt A, Jeschke J, et al. Restriction of AID activity and somatic hypermutation by PARP-1. Nucleic Acids Res. 2019;47:7418-7429 pubmed 出版商
  5. Tian X, Firsanov D, Zhang Z, Cheng Y, Luo L, Tombline G, et al. SIRT6 Is Responsible for More Efficient DNA Double-Strand Break Repair in Long-Lived Species. Cell. 2019;177:622-638.e22 pubmed 出版商
  6. Zhang M, Wang B, Li T, Liu R, Xiao Y, Geng X, et al. Mammalian CST averts replication failure by preventing G-quadruplex accumulation. Nucleic Acids Res. 2019;47:5243-5259 pubmed 出版商
  7. Jachimowicz R, Beleggia F, Isensee J, Velpula B, Goergens J, Bustos M, et al. UBQLN4 Represses Homologous Recombination and Is Overexpressed in Aggressive Tumors. Cell. 2019;176:505-519.e22 pubmed 出版商
  8. Mohni K, Wessel S, Zhao R, Wojciechowski A, Luzwick J, Layden H, et al. HMCES Maintains Genome Integrity by Shielding Abasic Sites in Single-Strand DNA. Cell. 2019;176:144-153.e13 pubmed 出版商
  9. López Erauskin J, Tadokoro T, Baughn M, Myers B, McAlonis Downes M, Chillon Marinas C, et al. ALS/FTD-Linked Mutation in FUS Suppresses Intra-axonal Protein Synthesis and Drives Disease Without Nuclear Loss-of-Function of FUS. Neuron. 2018;100:816-830.e7 pubmed 出版商
  10. Ma S, Yang D, Liu Y, Wang Y, Lin T, Li Y, et al. LncRNA BANCR promotes tumorigenesis and enhances adriamycin resistance in colorectal cancer. Aging (Albany NY). 2018;10:2062-2078 pubmed 出版商
  11. Saldivar J, Hamperl S, Bocek M, Chung M, Bass T, Cisneros Soberanis F, et al. An intrinsic S/G2 checkpoint enforced by ATR. Science. 2018;361:806-810 pubmed 出版商
  12. Mirman Z, Lottersberger F, Takai H, Kibe T, Gong Y, Takai K, et al. 53BP1-RIF1-shieldin counteracts DSB resection through CST- and Polα-dependent fill-in. Nature. 2018;560:112-116 pubmed 出版商
  13. Kannan A, Bhatia K, Branzei D, Gangwani L. Combined deficiency of Senataxin and DNA-PKcs causes DNA damage accumulation and neurodegeneration in spinal muscular atrophy. Nucleic Acids Res. 2018;46:8326-8346 pubmed 出版商
  14. Schrank B, Aparicio T, Li Y, Chang W, Chait B, Gundersen G, et al. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature. 2018;559:61-66 pubmed 出版商
  15. Parisotto M, Grelet E, El Bizri R, Dai Y, Terzic J, Eckert D, et al. PTEN deletion in luminal cells of mature prostate induces replication stress and senescence in vivo. J Exp Med. 2018;215:1749-1763 pubmed 出版商
  16. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  17. Collin G, Huna A, Warnier M, Flaman J, Bernard D. Transcriptional repression of DNA repair genes is a hallmark and a cause of cellular senescence. Cell Death Dis. 2018;9:259 pubmed 出版商
  18. Zhou Z, Wang L, Ge F, Gong P, Wang H, Wang F, et al. Pold3 is required for genomic stability and telomere integrity in embryonic stem cells and meiosis. Nucleic Acids Res. 2018;46:3468-3486 pubmed 出版商
  19. Victor M, Richner M, Olsen H, Lee S, Monteys A, Ma C, et al. Striatal neurons directly converted from Huntington's disease patient fibroblasts recapitulate age-associated disease phenotypes. Nat Neurosci. 2018;21:341-352 pubmed 出版商
  20. Takaki T, Montagner M, Serres M, Le Berre M, Russell M, Collinson L, et al. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability. Nat Commun. 2017;8:16013 pubmed 出版商
  21. Patne K, Rakesh R, Arya V, Chanana U, Sethy R, Swer P, et al. BRG1 and SMARCAL1 transcriptionally co-regulate DROSHA, DGCR8 and DICER in response to doxorubicin-induced DNA damage. Biochim Biophys Acta Gene Regul Mech. 2017;1860:936-951 pubmed 出版商
  22. Paul A, Wang B. RNF8- and Ube2S-Dependent Ubiquitin Lysine 11-Linkage Modification in Response to DNA Damage. Mol Cell. 2017;66:458-472.e5 pubmed 出版商
  23. Cottineau J, Kottemann M, Lach F, Kang Y, Vély F, Deenick E, et al. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest. 2017;127:1991-2006 pubmed 出版商
  24. Timashev L, Babcock H, Zhuang X, de Lange T. The DDR at telomeres lacking intact shelterin does not require substantial chromatin decompaction. Genes Dev. 2017;31:578-589 pubmed 出版商
  25. Vancevska A, Douglass K, Pfeiffer V, Manley S, Lingner J. The telomeric DNA damage response occurs in the absence of chromatin decompaction. Genes Dev. 2017;31:567-577 pubmed 出版商
  26. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  27. Nagano T, Nakashima A, Onishi K, Kawai K, Awai Y, Kinugasa M, et al. Proline dehydrogenase promotes senescence through the generation of reactive oxygen species. J Cell Sci. 2017;130:1413-1420 pubmed 出版商
  28. Clarke T, Sanchez Bailon M, Chiang K, Reynolds J, Herrero Ruiz J, Bandeiras T, et al. PRMT5-Dependent Methylation of the TIP60 Coactivator RUVBL1 Is a Key Regulator of Homologous Recombination. Mol Cell. 2017;65:900-916.e7 pubmed 出版商
  29. Liu Y, Cussiol J, Dibitetto D, Sims J, Twayana S, Weiss R, et al. TOPBP1Dpb11 plays a conserved role in homologous recombination DNA repair through the coordinated recruitment of 53BP1Rad9. J Cell Biol. 2017;216:623-639 pubmed 出版商
  30. Xu H, Di Antonio M, McKinney S, Mathew V, Ho B, O Neil N, et al. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat Commun. 2017;8:14432 pubmed 出版商
  31. Gong Y, Handa N, Kowalczykowski S, de Lange T. PHF11 promotes DSB resection, ATR signaling, and HR. Genes Dev. 2017;31:46-58 pubmed 出版商
  32. Pal D, Pertot A, Shirole N, Yao Z, Anaparthy N, Garvin T, et al. TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24- cancer cells. elife. 2017;6: pubmed 出版商
  33. Li J, Miralles Fusté J, Simavorian T, Bartocci C, Tsai J, Karlseder J, et al. TZAP: A telomere-associated protein involved in telomere length control. Science. 2017;355:638-641 pubmed 出版商
  34. Zanini I, Soneson C, Lorenzi L, Azzalin C. Human cactin interacts with DHX8 and SRRM2 to assure efficient pre-mRNA splicing and sister chromatid cohesion. J Cell Sci. 2017;130:767-778 pubmed 出版商
  35. Mytych J, Wos I, Solek P, Koziorowski M. Protective role of klotho protein on epithelial cells upon co-culture with activated or senescent monocytes. Exp Cell Res. 2017;350:358-367 pubmed 出版商
  36. Tumini E, Barroso S, Calero C, Aguilera A. Roles of human POLD1 and POLD3 in genome stability. Sci Rep. 2016;6:38873 pubmed 出版商
  37. Kariolis M, Miao Y, Diep A, Nash S, Olcina M, Jiang D, et al. Inhibition of the GAS6/AXL pathway augments the efficacy of chemotherapies. J Clin Invest. 2017;127:183-198 pubmed 出版商
  38. Despras E, Sittewelle M, Pouvelle C, Delrieu N, Cordonnier A, Kannouche P. Rad18-dependent SUMOylation of human specialized DNA polymerase eta is required to prevent under-replicated DNA. Nat Commun. 2016;7:13326 pubmed 出版商
  39. Bezine E, Malaisé Y, Loeuillet A, Chevalier M, Boutet Robinet E, Salles B, et al. Cell resistance to the Cytolethal Distending Toxin involves an association of DNA repair mechanisms. Sci Rep. 2016;6:36022 pubmed 出版商
  40. Piechota M, Sunderland P, Wysocka A, Nalberczak M, Sliwinska M, Radwanska K, et al. Is senescence-associated β-galactosidase a marker of neuronal senescence?. Oncotarget. 2016;7:81099-81109 pubmed 出版商
  41. Li Y, Shen Y, Hohensinner P, Ju J, Wen Z, Goodman S, et al. Deficient Activity of the Nuclease MRE11A Induces T Cell Aging and Promotes Arthritogenic Effector Functions in Patients with Rheumatoid Arthritis. Immunity. 2016;45:903-916 pubmed 出版商
  42. Andriani G, Almeida V, Faggioli F, Mauro M, Tsai W, Santambrogio L, et al. Whole Chromosome Instability induces senescence and promotes SASP. Sci Rep. 2016;6:35218 pubmed 出版商
  43. Kanakkanthara A, Jeganathan K, Limzerwala J, Baker D, Hamada M, Nam H, et al. Cyclin A2 is an RNA binding protein that controls Mre11 mRNA translation. Science. 2016;353:1549-1552 pubmed
  44. Zhou L, Dai H, Wu J, Zhou M, Yuan H, Du J, et al. Role of FEN1 S187 phosphorylation in counteracting oxygen-induced stress and regulating postnatal heart development. FASEB J. 2017;31:132-147 pubmed 出版商
  45. Bridges K, Chen X, Liu H, Rock C, Buchholz T, Shumway S, et al. MK-8776, a novel chk1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Oncotarget. 2016;7:71660-71672 pubmed 出版商
  46. Lescale C, Lenden Hasse H, Blackford A, Balmus G, Bianchi J, Yu W, et al. Specific Roles of XRCC4 Paralogs PAXX and XLF during V(D)J Recombination. Cell Rep. 2016;16:2967-2979 pubmed 出版商
  47. Suman S, Kumar S, N GOUEMO P, Datta K. Increased DNA double-strand break was associated with downregulation of repair and upregulation of apoptotic factors in rat hippocampus after alcohol exposure. Alcohol. 2016;54:45-50 pubmed 出版商
  48. Schmidt J, Zaug A, Cech T. Live Cell Imaging Reveals the Dynamics of Telomerase Recruitment to Telomeres. Cell. 2016;166:1188-1197.e9 pubmed 出版商
  49. Bakr A, Köcher S, Volquardsen J, Petersen C, Borgmann K, Dikomey E, et al. Impaired 53BP1/RIF1 DSB mediated end-protection stimulates CtIP-dependent end resection and switches the repair to PARP1-dependent end joining in G1. Oncotarget. 2016;7:57679-57693 pubmed 出版商
  50. Hopkins S, McGregor G, Murray J, Downs J, Savic V. Novel synthetic lethality screening method identifies TIP60-dependent radiation sensitivity in the absence of BAF180. DNA Repair (Amst). 2016;46:47-54 pubmed 出版商
  51. Nelson D, Jaber Hijazi F, Cole J, Robertson N, Pawlikowski J, Norris K, et al. Mapping H4K20me3 onto the chromatin landscape of senescent cells indicates a function in control of cell senescence and tumor suppression through preservation of genetic and epigenetic stability. Genome Biol. 2016;17:158 pubmed 出版商
  52. Morales J, Richard P, Patidar P, Motea E, Dang T, Manley J, et al. XRN2 Links Transcription Termination to DNA Damage and Replication Stress. PLoS Genet. 2016;12:e1006107 pubmed 出版商
  53. Mao P, Liu J, Zhang Z, Zhang H, Liu H, Gao S, et al. Homologous recombination-dependent repair of telomeric DSBs in proliferating human cells. Nat Commun. 2016;7:12154 pubmed 出版商
  54. Hewitt G, Carroll B, Sarallah R, Correia Melo C, Ogrodnik M, Nelson G, et al. SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. Autophagy. 2016;12:1917-1930 pubmed
  55. Penterling C, Drexler G, Böhland C, Stamp R, Wilke C, Braselmann H, et al. Depletion of Histone Demethylase Jarid1A Resulting in Histone Hyperacetylation and Radiation Sensitivity Does Not Affect DNA Double-Strand Break Repair. PLoS ONE. 2016;11:e0156599 pubmed 出版商
  56. Jullien D, Vignard J, Fedor Y, Bery N, Olichon A, Crozatier M, et al. Chromatibody, a novel non-invasive molecular tool to explore and manipulate chromatin in living cells. J Cell Sci. 2016;129:2673-83 pubmed 出版商
  57. Yalon M, Tuval Kochen L, Castel D, Moshe I, Mazal I, Cohen O, et al. Overcoming Resistance of Cancer Cells to PARP-1 Inhibitors with Three Different Drug Combinations. PLoS ONE. 2016;11:e0155711 pubmed 出版商
  58. Zhang X, Ye C, Sun F, Wei W, Hu B, Wang J. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation. PLoS ONE. 2016;11:e0155725 pubmed 出版商
  59. Manchon J, DABAGHIAN Y, Uzor N, Kesler S, Wefel J, Tsvetkov A. Levetiracetam mitigates doxorubicin-induced DNA and synaptic damage in neurons. Sci Rep. 2016;6:25705 pubmed 出版商
  60. Ho T, Guilbaud G, Blow J, Sale J, Watson C. The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability. Cell Rep. 2016;15:724-734 pubmed 出版商
  61. Onyango D, Howard S, Neherin K, Yanez D, Stark J. Tetratricopeptide repeat factor XAB2 mediates the end resection step of homologous recombination. Nucleic Acids Res. 2016;44:5702-16 pubmed 出版商
  62. Chiang T, le Sage C, Larrieu D, Demir M, Jackson S. CRISPR-Cas9(D10A) nickase-based genotypic and phenotypic screening to enhance genome editing. Sci Rep. 2016;6:24356 pubmed 出版商
  63. Mutschelknaus L, Peters C, Winkler K, Yentrapalli R, Heider T, Atkinson M, et al. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation. PLoS ONE. 2016;11:e0152213 pubmed 出版商
  64. Gruosso T, Mieulet V, Cardon M, Bourachot B, Kieffer Y, Devun F, et al. Chronic oxidative stress promotes H2AX protein degradation and enhances chemosensitivity in breast cancer patients. EMBO Mol Med. 2016;8:527-49 pubmed 出版商
  65. Sears C, Cooney S, Chin Sinex H, Mendonca M, Turchi J. DNA damage response (DDR) pathway engagement in cisplatin radiosensitization of non-small cell lung cancer. DNA Repair (Amst). 2016;40:35-46 pubmed 出版商
  66. Byrd P, Stewart G, Smith A, Eaton C, Taylor A, Guy C, et al. A Hypomorphic PALB2 Allele Gives Rise to an Unusual Form of FA-N Associated with Lymphoid Tumour Development. PLoS Genet. 2016;12:e1005945 pubmed 出版商
  67. Medves S, Auchter M, Chambeau L, Gazzo S, Poncet D, Grangier B, et al. A high rate of telomeric sister chromatid exchange occurs in chronic lymphocytic leukaemia B-cells. Br J Haematol. 2016;174:57-70 pubmed 出版商
  68. Heylmann D, Kaina B. The γH2AX DNA damage assay from a drop of blood. Sci Rep. 2016;6:22682 pubmed 出版商
  69. Ercilla A, Llopis A, Feu S, Aranda S, Ernfors P, Freire R, et al. New origin firing is inhibited by APC/CCdh1 activation in S-phase after severe replication stress. Nucleic Acids Res. 2016;44:4745-62 pubmed 出版商
  70. O Hagan Wong K, Nadeau S, Carrier Leclerc A, Apablaza F, Hamdy R, Shum Tim D, et al. Increased IL-6 secretion by aged human mesenchymal stromal cells disrupts hematopoietic stem and progenitor cells' homeostasis. Oncotarget. 2016;7:13285-96 pubmed 出版商
  71. Francia S, Cabrini M, Matti V, Oldani A, d Adda di Fagagna F. DICER, DROSHA and DNA damage response RNAs are necessary for the secondary recruitment of DNA damage response factors. J Cell Sci. 2016;129:1468-76 pubmed 出版商
  72. Weyemi U, Redon C, Choudhuri R, Aziz T, Maeda D, Boufraqech M, et al. The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition. Nat Commun. 2016;7:10711 pubmed 出版商
  73. Ahuja A, Jodkowska K, Teloni F, Bizard A, Zellweger R, Herrador R, et al. A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nat Commun. 2016;7:10660 pubmed 出版商
  74. Cekan P, Hasegawa K, Pan Y, Tubman E, Odde D, Chen J, et al. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell senescence. Mol Biol Cell. 2016;27:1346-57 pubmed 出版商
  75. Nagy Z, Kalousi A, Furst A, Koch M, Fischer B, Soutoglou E. Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs. PLoS Genet. 2016;12:e1005791 pubmed 出版商
  76. Nassour J, Martien S, Martin N, Deruy E, Tomellini E, Malaquin N, et al. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells. Nat Commun. 2016;7:10399 pubmed 出版商
  77. Zhao M, Song Y, Niu H, Tian Y, Yang X, Xie K, et al. Adenovirus-mediated downregulation of the ubiquitin ligase RNF8 sensitizes bladder cancer to radiotherapy. Oncotarget. 2016;7:8956-67 pubmed 出版商
  78. Soo Lee N, Jin Chung H, Kim H, Yun Lee S, Ji J, Seo Y, et al. TRAIP/RNF206 is required for recruitment of RAP80 to sites of DNA damage. Nat Commun. 2016;7:10463 pubmed 出版商
  79. Cipressa F, Morciano P, Bosso G, Mannini L, Galati A, Raffa G, et al. A role for Separase in telomere protection. Nat Commun. 2016;7:10405 pubmed 出版商
  80. Kibe T, Zimmermann M, de Lange T. TPP1 Blocks an ATR-Mediated Resection Mechanism at Telomeres. Mol Cell. 2016;61:236-46 pubmed 出版商
  81. Choi Y, Meghani K, Brault M, Leclerc L, He Y, Day T, et al. Platinum and PARP Inhibitor Resistance Due to Overexpression of MicroRNA-622 in BRCA1-Mutant Ovarian Cancer. Cell Rep. 2016;14:429-439 pubmed 出版商
  82. Kuo C, Li X, Stark J, Shih H, Ann D. RNF4 regulates DNA double-strand break repair in a cell cycle-dependent manner. Cell Cycle. 2016;15:787-98 pubmed 出版商
  83. García Prat L, Martínez Vicente M, Perdiguero E, Ortet L, Rodríguez Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529:37-42 pubmed 出版商
  84. Zhang H, Liu H, Chen Y, Yang X, Wang P, Liu T, et al. A cell cycle-dependent BRCA1-UHRF1 cascade regulates DNA double-strand break repair pathway choice. Nat Commun. 2016;7:10201 pubmed 出版商
  85. Chatalic K, Konijnenberg M, Nonnekens J, De Blois E, Hoeben S, de Ridder C, et al. In Vivo Stabilization of a Gastrin-Releasing Peptide Receptor Antagonist Enhances PET Imaging and Radionuclide Therapy of Prostate Cancer in Preclinical Studies. Theranostics. 2016;6:104-17 pubmed 出版商
  86. Orthwein A, Noordermeer S, Wilson M, Landry S, Enchev R, Sherker A, et al. A mechanism for the suppression of homologous recombination in G1 cells. Nature. 2015;528:422-6 pubmed 出版商
  87. Obermeier K, Sachsenweger J, Friedl T, Pospiech H, Winqvist R, Wiesmüller L. Heterozygous PALB2 c.1592delT mutation channels DNA double-strand break repair into error-prone pathways in breast cancer patients. Oncogene. 2016;35:3796-806 pubmed 出版商
  88. Iyama T, Wilson D. Elements That Regulate the DNA Damage Response of Proteins Defective in Cockayne Syndrome. J Mol Biol. 2016;428:62-78 pubmed 出版商
  89. Cristini A, Park J, Capranico G, Legube G, Favre G, Sordet O. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions. Nucleic Acids Res. 2016;44:1161-78 pubmed 出版商
  90. Kim S, Bozeman R, Kaisani A, Kim W, Zhang L, Richardson J, et al. Radiation promotes colorectal cancer initiation and progression by inducing senescence-associated inflammatory responses. Oncogene. 2016;35:3365-75 pubmed 出版商
  91. Renaud E, Barascu A, Rosselli F. Impaired TIP60-mediated H4K16 acetylation accounts for the aberrant chromatin accumulation of 53BP1 and RAP80 in Fanconi anemia pathway-deficient cells. Nucleic Acids Res. 2016;44:648-56 pubmed 出版商
  92. Kubben N, Brimacombe K, Donegan M, Li Z, Misteli T. A high-content imaging-based screening pipeline for the systematic identification of anti-progeroid compounds. Methods. 2016;96:46-58 pubmed 出版商
  93. Bi J, Huang A, Liu T, Zhang T, Ma H. Expression of DNA damage checkpoint 53BP1 is correlated with prognosis, cell proliferation and apoptosis in colorectal cancer. Int J Clin Exp Pathol. 2015;8:6070-82 pubmed
  94. Marchesini M, Matocci R, Tasselli L, Cambiaghi V, Orleth A, Furia L, et al. PML is required for telomere stability in non-neoplastic human cells. Oncogene. 2016;35:1811-21 pubmed 出版商
  95. Petroni M, Sardina F, Heil C, Sahún Roncero M, Colicchia V, Veschi V, et al. The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress. Cell Death Differ. 2016;23:197-206 pubmed 出版商
  96. Kharat S, Tripathi V, Damodaran A, Priyadarshini R, Chandra S, Tikoo S, et al. Mitotic phosphorylation of Bloom helicase at Thr182 is required for its proteasomal degradation and maintenance of chromosomal stability. Oncogene. 2016;35:1025-38 pubmed 出版商
  97. Kumari A, Owen N, Juarez E, McCullough A. BLM protein mitigates formaldehyde-induced genomic instability. DNA Repair (Amst). 2015;28:73-82 pubmed 出版商
  98. Lee M, Wang L, Chang Z. The contribution of mitochondrial thymidylate synthesis in preventing the nuclear genome stress. Nucleic Acids Res. 2014;42:4972-84 pubmed 出版商
  99. Tikoo S, Madhavan V, Hussain M, Miller E, Arora P, Zlatanou A, et al. Ubiquitin-dependent recruitment of the Bloom syndrome helicase upon replication stress is required to suppress homologous recombination. EMBO J. 2013;32:1778-92 pubmed 出版商
  100. Hu H, Wang B, Borde M, Nardone J, Maika S, Allred L, et al. Foxp1 is an essential transcriptional regulator of B cell development. Nat Immunol. 2006;7:819-26 pubmed