这是一篇来自已证抗体库的有关人类 TRIM63的综述,是根据107篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合TRIM63 抗体。
TRIM63 同义词: IRF; MURF1; MURF2; RNF28; SMRZ

圣克鲁斯生物技术
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1j
  • 免疫印迹; 小鼠; 1:1000; 图 1h
圣克鲁斯生物技术 TRIM63抗体(Santa Cruz, sc-398608)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1j) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1h). Antioxidants (Basel) (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 图 6b
圣克鲁斯生物技术 TRIM63抗体(Santa Cruz, sc-398608)被用于被用于免疫印迹在大鼠样本上 (图 6b). Oncotarget (2016) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR6431(2))
  • 免疫印迹; 小鼠; 1:1000; 图 2g
艾博抗(上海)贸易有限公司 TRIM63抗体(Abcam, Ab172479)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2g). EMBO J (2017) ncbi
domestic rabbit 单克隆(EPR6431(2))
  • 免疫印迹; 大鼠; 1:1000; 图 2d
艾博抗(上海)贸易有限公司 TRIM63抗体(Abcam, ab172479)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2d). Appl Physiol Nutr Metab (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4947S)被用于被用于免疫印迹在小鼠样本上 (图 3b). J Immunother Cancer (2022) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4947)被用于被用于免疫印迹在小鼠样本上 (图 5e). iScience (2022) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 2k
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在人类样本上 (图 2k). iScience (2022) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 1:200; 图 4i
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 4i). PLoS Pathog (2021) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; pigs ; 图 1i
赛信通(上海)生物试剂有限公司 TRIM63抗体(CST, 4947)被用于被用于免疫印迹在pigs 样本上 (图 1i). PLoS Pathog (2021) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 1:500; 图 1i
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1i). Cell Rep (2021) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 2g
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4947S)被用于被用于免疫印迹在小鼠样本上 (图 2g). Cell Rep (2021) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 5h
赛信通(上海)生物试剂有限公司 TRIM63抗体(CST, 4947)被用于被用于免疫印迹在小鼠样本上 (图 5h). J Nutr Biochem (2021) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4947)被用于被用于免疫印迹在人类样本上浓度为1:2000. Cell Syst (2021) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4947)被用于被用于免疫印迹在人类样本上浓度为1:1000. Signal Transduct Target Ther (2021) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上 (图 3f). Signal Transduct Target Ther (2021) ncbi
domestic rabbit 单克隆(4D4G)
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technologies, 4947)被用于. Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). elife (2020) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4947)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8b). Nat Commun (2020) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 1:2000; 图 1i, 2c
  • 免疫印迹; 小鼠; 1:2000; 图 3f
赛信通(上海)生物试剂有限公司 TRIM63抗体(CST, 4947)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1i, 2c) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3f). Nat Commun (2020) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 1:1000; 图 2h
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2h). elife (2020) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 TRIM63抗体(CST, 4947)被用于被用于免疫印迹在人类样本上 (图 4a). Biomed Pharmacother (2020) ncbi
domestic rabbit 单克隆(4D4G)
  • proximity ligation assay; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4D4G)被用于被用于proximity ligation assay在人类样本上浓度为1:1000 (图 3a). Nature (2019) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 s4f
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947S)被用于被用于免疫印迹在小鼠样本上 (图 s4f). Science (2019) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4947)被用于被用于免疫印迹在人类样本上. PLoS Pathog (2019) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4947)被用于被用于免疫印迹在人类样本上 (图 2c). Cell (2019) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在人类样本上 (图 2f). J Immunol (2019) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在人类样本上 (图 2c). Cell (2019) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 TRIM63抗体(CST, 4947)被用于被用于免疫印迹在人类样本上 (图 5f). Cell (2019) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4D4G)被用于被用于免疫印迹在人类样本上 (图 7a). PLoS Pathog (2019) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947S)被用于被用于免疫印迹在人类样本上 (图 5b). Front Immunol (2019) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947s)被用于被用于免疫印迹在小鼠样本上 (图 3d). Cell (2019) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 1:1000; 图 3a, 3c, s3d
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a, 3c, s3d). Sci Adv (2019) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 TRIM63抗体(CST, 4947)被用于被用于免疫印迹在人类样本上 (图 3e). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4947)被用于被用于免疫印迹在小鼠样本上 (图 6c). Immunity (2019) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 TRIM63抗体(Biosciences, 4947)被用于被用于免疫印迹在小鼠样本上 (图 1a). Cell Death Differ (2018) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 1:500; 图 2d, 2l
  • 免疫印迹; 小鼠; 1:500; 图 1p, 5g, 6f
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4D4G)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2d, 2l) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 1p, 5g, 6f). Nat Commun (2018) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在人类样本上 (图 4b). J Virol (2018) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 1:1000; 图 s4a
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 TRIM63抗体((Cell Signaling Technology, 4947)被用于被用于免疫印迹在小鼠样本上 (图 4d). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 1:500; 图 4b
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4b). Nat Commun (2018) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在人类样本上 (图 5f). J Immunol (2018) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 9d
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在人类样本上 (图 9d). J Cell Biol (2018) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4947)被用于被用于免疫印迹在人类样本上 (图 5b). Cell (2017) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上 (图 6d). Immunity (2017) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 s17c
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上 (图 s17c). Science (2017) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 1:5000; 图 3a
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4,947)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Front Cell Neurosci (2017) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4D4G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 2b
  • 免疫印迹; 小鼠; 图 2a, 3a
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在人类样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 2a, 3a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947s)被用于被用于免疫印迹在人类样本上 (图 2d). Nat Commun (2017) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 2A
  • 免疫印迹; 人类; 图 5A
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上 (图 2A) 和 被用于免疫印迹在人类样本上 (图 5A). Biochem J (2017) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在人类样本上 (图 5a). Mol Cell (2017) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在人类样本上 (图 4a). Nucleic Acids Res (2017) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在人类样本上 (图 4a). MBio (2017) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 6
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4D4G)被用于被用于免疫印迹在小鼠样本上 (图 4a). Immunology (2017) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫细胞化学; 人类; 1:50; 图 4f
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell signaling, 4947)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4f). Oncotarget (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上 (图 3d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 1:200; 图 3f
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3f). Science (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 中国人树鼩鼱科; 图 5d
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell signaling, 4947)被用于被用于免疫印迹在中国人树鼩鼱科样本上 (图 5d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell signaling, 4947)被用于被用于免疫印迹在人类样本上 (图 7c). J Neuroinflammation (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 1:2000; 图 5
  • 免疫印迹; 人类; 1:2000; 图 5
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 5). BMC Biol (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Tech, 4947)被用于被用于免疫印迹在小鼠样本上 (图 6). Cell (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4D4G)被用于被用于免疫印迹在小鼠样本上 (图 3d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell signaling, 4947S)被用于被用于免疫印迹在小鼠样本上 (图 8). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上 (图 4c). BMC Complement Altern Med (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
  • 免疫印迹; 人类; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4D4G)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1g). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 s9
赛信通(上海)生物试剂有限公司 TRIM63抗体(cell signalling, 4947)被用于被用于免疫印迹在小鼠样本上 (图 s9). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4D4G)被用于被用于免疫印迹在小鼠样本上 (图 6c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4947)被用于被用于免疫印迹在人类样本上 (图 6). J Virol (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 1:1000; 图 3
  • 免疫印迹; African green monkey; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signalling, 4D4G)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 1:1000; 图 s13
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s13). Nat Commun (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上 (图 1a). J Virol (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell signaling, 4947)被用于被用于免疫印迹在小鼠样本上 (图 4a). elife (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 3
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Tech, 4947)被用于被用于免疫印迹在小鼠样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell signaling, 4947S)被用于被用于免疫印迹在人类样本上 (图 4). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947S)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Res (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Tech, 4947S)被用于被用于免疫印迹在人类样本上 (图 s2). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4948)被用于被用于免疫印迹在人类样本上 (图 5). elife (2016) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 11
赛信通(上海)生物试剂有限公司 TRIM63抗体(cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上 (图 11). PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 TRIM63抗体(CST, 4947S)被用于被用于免疫印迹在小鼠样本上 (图 1). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947s)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 4
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 S9
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上 (图 S9). PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4947)被用于被用于免疫印迹在人类样本上. J Virol (2015) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technologies, 4947)被用于被用于免疫印迹在小鼠样本上 (图 1). Biochem J (2015) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 4
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Nat Neurosci (2015) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4947)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4D4G)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Immunol (2015) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 1:500; 图 4
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4947)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4D4G)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(4D4G)
  • 染色质免疫沉淀 ; 人类; 图 4
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). Nucleic Acids Res (2014) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在人类样本上 (图 2). Basic Res Cardiol (2014) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4947)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4947)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫组化-冰冻切片; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4947)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Neurosci Res (2014) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在人类样本上 (图 4f). Nat Immunol (2014) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling, 4947)被用于被用于免疫印迹在小鼠样本上. PLoS Pathog (2014) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4947)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 1:1,000
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4947S)被用于被用于免疫印迹在人类样本上浓度为1:1,000. J Virol (2014) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 TRIM63抗体(Cell Signaling Technology, 4947)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Virol (2014) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 TRIM63抗体(cst, 4947)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Mol Cell Endocrinol (2013) ncbi
domestic rabbit 单克隆(4D4G)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 TRIM63抗体(CST, 4947)被用于被用于免疫印迹在小鼠样本上. Immunity (2012) ncbi
文章列表
  1. Ni H, Zhang H, Li L, Huang H, Guo H, Zhang L, et al. T cell-intrinsic STING signaling promotes regulatory T cell induction and immunosuppression by upregulating FOXP3 transcription in cervical cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  2. Zhao X, Hu S, Zeng L, Liu X, Song Y, Zhang Y, et al. Irradiation combined with PD-L1-/- and autophagy inhibition enhances the antitumor effect of lung cancer via cGAS-STING-mediated T cell activation. iScience. 2022;25:104690 pubmed 出版商
  3. Tan H, Yong Y, Xue Y, Liu H, Furihata T, Shankar E, et al. cGAS and DDX41-STING mediated intrinsic immunity spreads intercellularly to promote neuroinflammation in SOD1 ALS model. iScience. 2022;25:104404 pubmed 出版商
  4. Sun L, Li Y, Misumi I, Gonzalez Lopez O, Hensley L, Cullen J, et al. IRF3-mediated pathogenicity in a murine model of human hepatitis A. PLoS Pathog. 2021;17:e1009960 pubmed 出版商
  5. Wang Z, Chen J, Wu X, Ma D, Zhang X, Li R, et al. PCV2 targets cGAS to inhibit type I interferon induction to promote other DNA virus infection. PLoS Pathog. 2021;17:e1009940 pubmed 出版商
  6. Bruand M, Barras D, Mina M, Ghisoni E, Morotti M, Lanitis E, et al. Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Rep. 2021;36:109412 pubmed 出版商
  7. Shen Y, Tang K, Chen D, Hong M, Sun F, Wang S, et al. Riok3 inhibits the antiviral immune response by facilitating TRIM40-mediated RIG-I and MDA5 degradation. Cell Rep. 2021;35:109272 pubmed 出版商
  8. Choi E, Jeong J, Jang H, Ahn Y, Kim K, An H, et al. Skeletal Lipocalin-2 Is Associated with Iron-Related Oxidative Stress in ob/ob Mice with Sarcopenia. Antioxidants (Basel). 2021;10: pubmed 出版商
  9. Zhang G, Li R, Li W, Yang S, Sun Q, Yin H, et al. Toll-like receptor 3 ablation prevented high-fat diet-induced obesity and metabolic disorder. J Nutr Biochem. 2021;95:108761 pubmed 出版商
  10. Lopacinski A, Sweatt A, Smolko C, Gray Gaillard E, Borgman C, Shah M, et al. Modeling the complete kinetics of coxsackievirus B3 reveals human determinants of host-cell feedback. Cell Syst. 2021;12:304-323.e13 pubmed 出版商
  11. Guo G, Gao M, Gao X, Zhu B, Huang J, Luo K, et al. SARS-CoV-2 non-structural protein 13 (nsp13) hijacks host deubiquitinase USP13 and counteracts host antiviral immune response. Signal Transduct Target Ther. 2021;6:119 pubmed 出版商
  12. Yu Z, Li X, Yang M, Huang J, Fang Q, Jia J, et al. TRIM41 is required to innate antiviral response by polyubiquitinating BCL10 and recruiting NEMO. Signal Transduct Target Ther. 2021;6:90 pubmed 出版商
  13. Lee J, Park I, Kwak M, Rhee W, Kim S, Shin J. HMGB1 orchestrates STING-mediated senescence via TRIM30α modulation in cancer cells. Cell Death Discov. 2021;7:28 pubmed 出版商
  14. Tao L, Lemoff A, Wang G, Zarek C, Lowe A, Yan N, et al. Reactive oxygen species oxidize STING and suppress interferon production. elife. 2020;9: pubmed 出版商
  15. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020;11:2488 pubmed 出版商
  16. Deng M, Tam J, Wang L, Liang K, Li S, Zhang L, et al. TRAF3IP3 negatively regulates cytosolic RNA induced anti-viral signaling by promoting TBK1 K48 ubiquitination. Nat Commun. 2020;11:2193 pubmed 出版商
  17. Weindel C, Bell S, Vail K, West K, Patrick K, Watson R. LRRK2 maintains mitochondrial homeostasis and regulates innate immune responses to Mycobacterium tuberculosis. elife. 2020;9: pubmed 出版商
  18. Cai H, Yan L, Liu N, Xu M, Cai H. IFI16 promotes cervical cancer progression by upregulating PD-L1 in immunomicroenvironment through STING-TBK1-NF-kB pathway. Biomed Pharmacother. 2020;123:109790 pubmed 出版商
  19. Luteijn R, Zaver S, Gowen B, Wyman S, Garelis N, Onia L, et al. SLC19A1 transports immunoreactive cyclic dinucleotides. Nature. 2019;573:434-438 pubmed 出版商
  20. Liu Y, You Y, Lu Z, Yang J, Li P, Liu L, et al. N6-methyladenosine RNA modification-mediated cellular metabolism rewiring inhibits viral replication. Science. 2019;365:1171-1176 pubmed 出版商
  21. Xu G, Xia Z, Deng F, Liu L, Wang Q, Yu Y, et al. Inducible LGALS3BP/90K activates antiviral innate immune responses by targeting TRAF6 and TRAF3 complex. PLoS Pathog. 2019;15:e1008002 pubmed 出版商
  22. Zierhut C, Yamaguchi N, Paredes M, Luo J, Carroll T, Funabiki H. The Cytoplasmic DNA Sensor cGAS Promotes Mitotic Cell Death. Cell. 2019;178:302-315.e23 pubmed 出版商
  23. Xia Z, Xu G, Nie L, Liu L, Peng N, He Q, et al. NAC1 Potentiates Cellular Antiviral Signaling by Bridging MAVS and TBK1. J Immunol. 2019;: pubmed 出版商
  24. Zhang W, Wang G, Xu Z, Tu H, Hu F, Dai J, et al. Lactate Is a Natural Suppressor of RLR Signaling by Targeting MAVS. Cell. 2019;: pubmed 出版商
  25. Liu C, Li X, Nan F, Jiang S, Gao X, Guo S, et al. Structure and Degradation of Circular RNAs Regulate PKR Activation in Innate Immunity. Cell. 2019;177:865-880.e21 pubmed 出版商
  26. Skjesol A, Yurchenko M, Bösl K, Gravastrand C, Nilsen K, Grøvdal L, et al. The TLR4 adaptor TRAM controls the phagocytosis of Gram-negative bacteria by interacting with the Rab11-family interacting protein 2. PLoS Pathog. 2019;15:e1007684 pubmed 出版商
  27. Guan X, Zhang M, Fu M, Luo S, Hu Q. Herpes Simplex Virus Type 2 Immediate Early Protein ICP27 Inhibits IFN-β Production in Mucosal Epithelial Cells by Antagonizing IRF3 Activation. Front Immunol. 2019;10:290 pubmed 出版商
  28. Tan Y, Kagan J. Innate Immune Signaling Organelles Display Natural and Programmable Signaling Flexibility. Cell. 2019;: pubmed 出版商
  29. Liu Z, Wu C, Pan Y, Liu H, Wang X, Yang Y, et al. NDR2 promotes the antiviral immune response via facilitating TRIM25-mediated RIG-I activation in macrophages. Sci Adv. 2019;5:eaav0163 pubmed 出版商
  30. Majumdar T, Sharma S, Kumar M, Hussain M, Chauhan N, Kalia I, et al. Tryptophan-kynurenine pathway attenuates β-catenin-dependent pro-parasitic role of STING-TICAM2-IRF3-IDO1 signalosome in Toxoplasma gondii infection. Cell Death Dis. 2019;10:161 pubmed 出版商
  31. Arora H, Wilcox S, Johnson L, Munro L, Eyford B, Pfeifer C, et al. The ATP-Binding Cassette Gene ABCF1 Functions as an E2 Ubiquitin-Conjugating Enzyme Controlling Macrophage Polarization to Dampen Lethal Septic Shock. Immunity. 2019;50:418-431.e6 pubmed 出版商
  32. Liu D, Wu H, Wang C, Li Y, Tian H, Siraj S, et al. STING directly activates autophagy to tune the innate immune response. Cell Death Differ. 2018;: pubmed 出版商
  33. Benmerzoug S, Rose S, Bounab B, Gosset D, Duneau L, Chenuet P, et al. STING-dependent sensing of self-DNA drives silica-induced lung inflammation. Nat Commun. 2018;9:5226 pubmed 出版商
  34. Qi D, Hu L, Jiao T, Zhang T, Tong X, Ye X. Phosphatase Cdc25A Negatively Regulates the Antiviral Immune Response by Inhibiting TBK1 Activity. J Virol. 2018;92: pubmed 出版商
  35. Liu Z, Qin Q, Wu C, Li H, Shou J, Yang Y, et al. Downregulated NDR1 protein kinase inhibits innate immune response by initiating an miR146a-STAT1 feedback loop. Nat Commun. 2018;9:2789 pubmed 出版商
  36. Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest. 2018;128:4148-4162 pubmed 出版商
  37. Yang L, Wang L, Ketkar H, Ma J, Yang G, Cui S, et al. UBXN3B positively regulates STING-mediated antiviral immune responses. Nat Commun. 2018;9:2329 pubmed 出版商
  38. Ahmad R, Al Roub A, Kochumon S, Akther N, Thomas R, Kumari M, et al. The Synergy between Palmitate and TNF-α for CCL2 Production Is Dependent on the TRIF/IRF3 Pathway: Implications for Metabolic Inflammation. J Immunol. 2018;200:3599-3611 pubmed 出版商
  39. Yurchenko M, Skjesol A, Ryan L, Richard G, Kandasamy R, Wang N, et al. SLAMF1 is required for TLR4-mediated TRAM-TRIF-dependent signaling in human macrophages. J Cell Biol. 2018;217:1411-1429 pubmed 出版商
  40. Gaidt M, Ebert T, Chauhan D, Ramshorn K, Pinci F, Zuber S, et al. The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3. Cell. 2017;171:1110-1124.e18 pubmed 出版商
  41. Nguyen T, Smith B, Tate M, Belz G, Barrios M, Elgass K, et al. SIDT2 Transports Extracellular dsRNA into the Cytoplasm for Innate Immune Recognition. Immunity. 2017;47:498-509.e6 pubmed 出版商
  42. Pereira R, Tadinada S, Zasadny F, Oliveira K, Pires K, Olvera A, et al. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance. EMBO J. 2017;36:2126-2145 pubmed 出版商
  43. Ip W, Hoshi N, Shouval D, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356:513-519 pubmed 出版商
  44. Song Y, Lai L, Chong Z, He J, Zhang Y, Xue Y, et al. E3 ligase FBXW7 is critical for RIG-I stabilization during antiviral responses. Nat Commun. 2017;8:14654 pubmed 出版商
  45. Shan M, Lin S, Li S, Du Y, Zhao H, Hong H, et al. TIR-Domain-Containing Adapter-Inducing Interferon-? (TRIF) Is Essential for MPTP-Induced Dopaminergic Neuroprotection via Microglial Cell M1/M2 Modulation. Front Cell Neurosci. 2017;11:35 pubmed 出版商
  46. Almine J, O Hare C, Dunphy G, Haga I, Naik R, Atrih A, et al. IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes. Nat Commun. 2017;8:14392 pubmed 出版商
  47. Hsia H, Hutti J, Baldwin A. Cytosolic DNA Promotes Signal Transducer and Activator of Transcription 3 (STAT3) Phosphorylation by TANK-binding Kinase 1 (TBK1) to Restrain STAT3 Activity. J Biol Chem. 2017;292:5405-5417 pubmed 出版商
  48. Jønsson K, Laustsen A, Krapp C, Skipper K, Thavachelvam K, Hotter D, et al. IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP. Nat Commun. 2017;8:14391 pubmed 出版商
  49. Bakshi S, Taylor J, Strickson S, McCartney T, Cohen P. Identification of TBK1 complexes required for the phosphorylation of IRF3 and the production of interferon ?. Biochem J. 2017;474:1163-1174 pubmed 出版商
  50. Willemsen J, Wicht O, Wolanski J, Baur N, Bastian S, Haas D, et al. Phosphorylation-Dependent Feedback Inhibition of RIG-I by DAPK1 Identified by Kinome-wide siRNA Screening. Mol Cell. 2017;65:403-415.e8 pubmed 出版商
  51. Suspène R, Mussil B, Laude H, Caval V, Berry N, Bouzidi M, et al. Self-cytoplasmic DNA upregulates the mutator enzyme APOBEC3A leading to chromosomal DNA damage. Nucleic Acids Res. 2017;45:3231-3241 pubmed 出版商
  52. Hu N, Chang H, Du B, Zhang Q, Arfat Y, Dang K, et al. Tetramethylpyrazine ameliorated disuse-induced gastrocnemius muscle atrophy in hindlimb unloading rats through suppression of Ca2+/ROS-mediated apoptosis. Appl Physiol Nutr Metab. 2017;42:117-127 pubmed 出版商
  53. Cai B, Wu J, Yu X, Su X, Wang R. FOSL1 Inhibits Type I Interferon Responses to Malaria and Viral Infections by Blocking TBK1 and TRAF3/TRIF Interactions. MBio. 2017;8: pubmed 出版商
  54. Boro M, Singh V, Balaji K. Mycobacterium tuberculosis-triggered Hippo pathway orchestrates CXCL1/2 expression to modulate host immune responses. Sci Rep. 2016;6:37695 pubmed 出版商
  55. Li J, Chen T, Xiao M, Li N, Wang S, Su H, et al. Mouse Sirt3 promotes autophagy in AngII-induced myocardial hypertrophy through the deacetylation of FoxO1. Oncotarget. 2016;7:86648-86659 pubmed 出版商
  56. Klaska I, Muckersie E, Martin Granados C, Christofi M, Forrester J. Lipopolysaccharide-primed heterotolerant dendritic cells suppress experimental autoimmune uveoretinitis by multiple mechanisms. Immunology. 2017;150:364-377 pubmed 出版商
  57. Gaston J, Cheradame L, Yvonnet V, Déas O, Poupon M, Judde J, et al. Intracellular STING inactivation sensitizes breast cancer cells to genotoxic agents. Oncotarget. 2016;7:77205-77224 pubmed 出版商
  58. Omura H, Oikawa D, Nakane T, Kato M, Ishii R, Ishitani R, et al. Structural and Functional Analysis of DDX41: a bispecific immune receptor for DNA and cyclic dinucleotide. Sci Rep. 2016;6:34756 pubmed 出版商
  59. Huai W, Song H, Yu Z, Wang W, Han L, Sakamoto T, et al. Mint3 potentiates TLR3/4- and RIG-I-induced IFN-? expression and antiviral immune responses. Proc Natl Acad Sci U S A. 2016;113:11925-11930 pubmed
  60. Hirai Yuki A, Hensley L, McGivern D, Gonzalez Lopez O, Das A, Feng H, et al. MAVS-dependent host species range and pathogenicity of human hepatitis A virus. Science. 2016;353:1541-1545 pubmed
  61. Xu L, Yu D, Fan Y, Peng L, Wu Y, Yao Y. Loss of RIG-I leads to a functional replacement with MDA5 in the Chinese tree shrew. Proc Natl Acad Sci U S A. 2016;113:10950-5 pubmed 出版商
  62. Zhang X, Zheng Z, Liu X, Shu B, Mao P, Bai B, et al. Tick-borne encephalitis virus induces chemokine RANTES expression via activation of IRF-3 pathway. J Neuroinflammation. 2016;13:209 pubmed 出版商
  63. Pourcelot M, Zemirli N, Silva da Costa L, Loyant R, Garcin D, Vitour D, et al. The Golgi apparatus acts as a platform for TBK1 activation after viral RNA sensing. BMC Biol. 2016;14:69 pubmed 出版商
  64. Damgaard R, Walker J, Marco Casanova P, Morgan N, Titheradge H, Elliott P, et al. The Deubiquitinase OTULIN Is an Essential Negative Regulator of Inflammation and Autoimmunity. Cell. 2016;166:1215-1230.e20 pubmed 出版商
  65. Wang W, Jiang M, Liu S, Zhang S, Liu W, Ma Y, et al. RNF122 suppresses antiviral type I interferon production by targeting RIG-I CARDs to mediate RIG-I degradation. Proc Natl Acad Sci U S A. 2016;113:9581-6 pubmed 出版商
  66. Meliopoulos V, Van De Velde L, Van De Velde N, Karlsson E, Neale G, Vogel P, et al. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens. PLoS Pathog. 2016;12:e1005804 pubmed 出版商
  67. Kim J, Weeratunga P, Kim M, Nikapitiya C, Lee B, Uddin M, et al. Inhibitory effects of an aqueous extract from Cortex Phellodendri on the growth and replication of broad-spectrum of viruses in vitro and in vivo. BMC Complement Altern Med. 2016;16:265 pubmed 出版商
  68. Luo W, Li S, Li C, Lian H, Yang Q, Zhong B, et al. iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING. Nat Immunol. 2016;17:1057-66 pubmed 出版商
  69. Rackov G, Hernandez Jimenez E, Shokri R, Carmona Rodríguez L, Manes S, Alvarez Mon M, et al. p21 mediates macrophage reprogramming through regulation of p50-p50 NF-?B and IFN-?. J Clin Invest. 2016;126:3089-103 pubmed 出版商
  70. Liu C, Yue R, Yang Y, Cui Y, Yang L, Zhao D, et al. AIM2 inhibits autophagy and IFN-? production during M. bovis infection. Oncotarget. 2016;7:46972-46987 pubmed 出版商
  71. Liu R, Moss B. Opposing Roles of Double-Stranded RNA Effector Pathways and Viral Defense Proteins Revealed with CRISPR-Cas9 Knockout Cell Lines and Vaccinia Virus Mutants. J Virol. 2016;90:7864-79 pubmed 出版商
  72. Mukai K, Konno H, Akiba T, Uemura T, Waguri S, Kobayashi T, et al. Activation of STING requires palmitoylation at the Golgi. Nat Commun. 2016;7:11932 pubmed 出版商
  73. Lin W, Zhang J, Lin H, Li Z, Sun X, Xin D, et al. Syndecan-4 negatively regulates antiviral signalling by mediating RIG-I deubiquitination via CYLD. Nat Commun. 2016;7:11848 pubmed 出版商
  74. Anghelina D, Lam E, Falck Pedersen E. Diminished Innate Antiviral Response to Adenovirus Vectors in cGAS/STING-Deficient Mice Minimally Impacts Adaptive Immunity. J Virol. 2016;90:5915-27 pubmed 出版商
  75. Uto T, Fukaya T, Takagi H, Arimura K, Nakamura T, Kojima N, et al. Clec4A4 is a regulatory receptor for dendritic cells that impairs inflammation and T-cell immunity. Nat Commun. 2016;7:11273 pubmed 出版商
  76. Yu Z, Chen T, Li X, Yang M, Tang S, Zhu X, et al. Lys29-linkage of ASK1 by Skp1-Cullin 1-Fbxo21 ubiquitin ligase complex is required for antiviral innate response. elife. 2016;5: pubmed 出版商
  77. Zhao K, Zhang M, Zhang L, Wang P, Song G, Liu B, et al. Intracellular osteopontin stabilizes TRAF3 to positively regulate innate antiviral response. Sci Rep. 2016;6:23771 pubmed 出版商
  78. Starokadomskyy P, Gemelli T, Rios J, Xing C, Wang R, Li H, et al. DNA polymerase-? regulates the activation of type I interferons through cytosolic RNA:DNA synthesis. Nat Immunol. 2016;17:495-504 pubmed 出版商
  79. Qin Y, Liu Q, Tian S, Xie W, Cui J, Wang R. TRIM9 short isoform preferentially promotes DNA and RNA virus-induced production of type I interferon by recruiting GSK3? to TBK1. Cell Res. 2016;26:613-28 pubmed 出版商
  80. Zhang G, Chan B, Samarina N, Abere B, Weidner Glunde M, Buch A, et al. Cytoplasmic isoforms of Kaposi sarcoma herpesvirus LANA recruit and antagonize the innate immune DNA sensor cGAS. Proc Natl Acad Sci U S A. 2016;113:E1034-43 pubmed 出版商
  81. Conery A, Centore R, Neiss A, Keller P, Joshi S, Spillane K, et al. Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma. elife. 2016;5: pubmed 出版商
  82. Sali T, Pryke K, Abraham J, Liu A, Archer I, Broeckel R, et al. Characterization of a Novel Human-Specific STING Agonist that Elicits Antiviral Activity Against Emerging Alphaviruses. PLoS Pathog. 2015;11:e1005324 pubmed 出版商
  83. Lin D, Zhang M, Zhang M, Ren Y, Jin J, Zhao Q, et al. Induction of USP25 by viral infection promotes innate antiviral responses by mediating the stabilization of TRAF3 and TRAF6. Proc Natl Acad Sci U S A. 2015;112:11324-9 pubmed 出版商
  84. Wang Y, Lian Q, Yang B, Yan S, Zhou H, He L, et al. TRIM30α Is a Negative-Feedback Regulator of the Intracellular DNA and DNA Virus-Triggered Response by Targeting STING. PLoS Pathog. 2015;11:e1005012 pubmed 出版商
  85. Khan K, Dô F, Marineau A, Doyon P, Clément J, Woodgett J, et al. Fine-Tuning of the RIG-I-Like Receptor/Interferon Regulatory Factor 3-Dependent Antiviral Innate Immune Response by the Glycogen Synthase Kinase 3/β-Catenin Pathway. Mol Cell Biol. 2015;35:3029-43 pubmed 出版商
  86. Shoemaker J, Fukuyama S, Eisfeld A, Zhao D, Kawakami E, Sakabe S, et al. An Ultrasensitive Mechanism Regulates Influenza Virus-Induced Inflammation. PLoS Pathog. 2015;11:e1004856 pubmed 出版商
  87. Guo X, Liu T, Shi H, Wang J, Ji P, Wang H, et al. Respiratory Syncytial Virus Infection Upregulates NLRC5 and Major Histocompatibility Complex Class I Expression through RIG-I Induction in Airway Epithelial Cells. J Virol. 2015;89:7636-45 pubmed 出版商
  88. Malik N, Vollmer S, Nanda S, López Pelaéz M, Prescott A, Gray N, et al. Suppression of interferon β gene transcription by inhibitors of bromodomain and extra-terminal (BET) family members. Biochem J. 2015;468:363-72 pubmed 出版商
  89. Dong T, Li C, Wang X, Dian L, Zhang X, Li L, et al. Ainsliadimer A selectively inhibits IKKα/β by covalently binding a conserved cysteine. Nat Commun. 2015;6:6522 pubmed 出版商
  90. Majumdar T, Chattopadhyay S, Ozhegov E, Dhar J, Goswami R, Sen G, et al. Induction of interferon-stimulated genes by IRF3 promotes replication of Toxoplasma gondii. PLoS Pathog. 2015;11:e1004779 pubmed 出版商
  91. Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Müller K, et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci. 2015;18:631-6 pubmed 出版商
  92. Kemp M, Lindsey Boltz L, Sancar A. UV Light Potentiates STING (Stimulator of Interferon Genes)-dependent Innate Immune Signaling through Deregulation of ULK1 (Unc51-like Kinase 1). J Biol Chem. 2015;290:12184-94 pubmed 出版商
  93. Liu Y, Zhang Q, Ding Y, Li X, Zhao D, Zhao K, et al. Histone lysine methyltransferase Ezh1 promotes TLR-triggered inflammatory cytokine production by suppressing Tollip. J Immunol. 2015;194:2838-46 pubmed 出版商
  94. Kodigepalli K, Nanjundan M. Induction of PLSCR1 in a STING/IRF3-dependent manner upon vector transfection in ovarian epithelial cells. PLoS ONE. 2015;10:e0117464 pubmed 出版商
  95. Kitai Y, Takeuchi O, Kawasaki T, Ori D, Sueyoshi T, Murase M, et al. Negative regulation of melanoma differentiation-associated gene 5 (MDA5)-dependent antiviral innate immune responses by Arf-like protein 5B. J Biol Chem. 2015;290:1269-80 pubmed 出版商
  96. Banerjee A, Kim Y, Kim T. A novel virus-inducible enhancer of the interferon-β gene with tightly linked promoter and enhancer activities. Nucleic Acids Res. 2014;42:12537-54 pubmed 出版商
  97. Fork C, Hitzel J, Nichols B, Tikkanen R, Brandes R. Flotillin-1 facilitates toll-like receptor 3 signaling in human endothelial cells. Basic Res Cardiol. 2014;109:439 pubmed 出版商
  98. Yang S, Deng P, Zhu Z, Zhu J, Wang G, Zhang L, et al. Adenosine deaminase acting on RNA 1 limits RIG-I RNA detection and suppresses IFN production responding to viral and endogenous RNAs. J Immunol. 2014;193:3436-45 pubmed 出版商
  99. Yen B, Mulder L, Martinez O, Basler C. Molecular basis for ebolavirus VP35 suppression of human dendritic cell maturation. J Virol. 2014;88:12500-10 pubmed 出版商
  100. Hayakawa K, Okazaki R, Morioka K, Nakamura K, Tanaka S, Ogata T. Lipopolysaccharide preconditioning facilitates M2 activation of resident microglia after spinal cord injury. J Neurosci Res. 2014;92:1647-58 pubmed 出版商
  101. Odendall C, Dixit E, Stavru F, Bierne H, Franz K, Durbin A, et al. Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat Immunol. 2014;15:717-26 pubmed 出版商
  102. Huang Y, Liu H, Li S, Tang Y, Wei B, Yu H, et al. MAVS-MKK7-JNK2 defines a novel apoptotic signaling pathway during viral infection. PLoS Pathog. 2014;10:e1004020 pubmed 出版商
  103. Nandi S, Chanda S, Bagchi P, Nayak M, Bhowmick R, Chawla Sarkar M. MAVS protein is attenuated by rotavirus nonstructural protein 1. PLoS ONE. 2014;9:e92126 pubmed 出版商
  104. Xia M, Gonzalez P, Li C, Meng G, Jiang A, Wang H, et al. Mitophagy enhances oncolytic measles virus replication by mitigating DDX58/RIG-I-like receptor signaling. J Virol. 2014;88:5152-64 pubmed 出版商
  105. Das A, Dinh P, Panda D, Pattnaik A. Interferon-inducible protein IFI35 negatively regulates RIG-I antiviral signaling and supports vesicular stomatitis virus replication. J Virol. 2014;88:3103-13 pubmed 出版商
  106. Yan K, Zhu W, Yu L, Li N, Zhang X, Liu P, et al. Toll-like receptor 3 and RIG-I-like receptor activation induces innate antiviral responses in mouse ovarian granulosa cells. Mol Cell Endocrinol. 2013;372:73-85 pubmed 出版商
  107. Austenaa L, Barozzi I, Chronowska A, Termanini A, Ostuni R, Prosperini E, et al. The histone methyltransferase Wbp7 controls macrophage function through GPI glycolipid anchor synthesis. Immunity. 2012;36:572-85 pubmed 出版商