这是一篇来自已证抗体库的有关人类 TSG101的综述,是根据79篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合TSG101 抗体。
TSG101 同义词: TSG10; VPS23

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR7130(B))
  • 免疫印迹; 人类; 图 s1g
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab125011)被用于被用于免疫印迹在人类样本上 (图 s1g). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EPR7130(B))
  • 免疫印迹; 小鼠; 1:1000; 图 1g
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab125011)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab30871)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3c). J Neuroinflammation (2020) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 人类; 1:1000; 图 s4c
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, 4A10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4c). Cancers (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 1d, s1c
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab30871)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1d, s1c). Sci Adv (2019) ncbi
domestic rabbit 单克隆(EPR7130(B))
  • 免疫印迹; 小鼠; 图 1c
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab125011)被用于被用于免疫印迹在小鼠样本上 (图 1c). Cell Rep (2019) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 人类; 图 s5e
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab83)被用于被用于免疫印迹在人类样本上 (图 s5e). BMC Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab30871)被用于被用于免疫印迹在人类样本上 (图 1c). Nanomedicine (2019) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 人类; 1:150; 图 2c
艾博抗(上海)贸易有限公司 TSG101抗体(Cedarlane, ab83)被用于被用于免疫印迹在人类样本上浓度为1:150 (图 2c). Transl Oncol (2019) ncbi
domestic rabbit 单克隆(EPR7130(B))
  • 免疫印迹; 小鼠; 1:1000; 图 6c
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab125011)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(EPR7130(B))
  • 免疫印迹; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab125011)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Biol Chem (2018) ncbi
domestic rabbit 单克隆(EPR7130(B))
  • 免疫印迹; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab125011)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Theranostics (2018) ncbi
domestic rabbit 单克隆(EPR7130(B))
  • 免疫印迹; 小鼠; 1:2000; 图 1c
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab125011)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). Front Aging Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2b
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab30871)被用于被用于免疫细胞化学在小鼠样本上 (图 2b). Sci Rep (2017) ncbi
小鼠 单克隆(4A10)
  • 免疫细胞化学; 小鼠; 1:100; 图 4a
  • 免疫印迹; 小鼠; 1:1000; 图 s7b
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab83)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7b). Nat Commun (2017) ncbi
小鼠 单克隆(4A10)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab83)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2017) ncbi
domestic rabbit 单克隆(EPR7130(B))
  • 免疫印迹; 小鼠; 1:250; 图 5b
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, AB125011)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 5b). Nat Commun (2016) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 大鼠; 图 1
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, 4A10)被用于被用于免疫印迹在大鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab30871)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EPR7130(B))
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab-125011)被用于被用于免疫印迹在人类样本上 (图 2). Am J Transl Res (2016) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 人类; 1:500; 图 1
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, Ab83)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). J Transl Med (2016) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab83)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2016) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 人类; 1:500; 图 1
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab83)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 小鼠; 1:2000
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab83)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab30871)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). J Control Release (2016) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 大鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab83)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab83)被用于被用于免疫印迹在人类样本上 (图 6). Cell Death Dis (2015) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 人类; 图 s1b
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab83)被用于被用于免疫印迹在人类样本上 (图 s1b). Nat Biotechnol (2015) ncbi
domestic rabbit 单克隆(EPR7130(B))
  • 免疫印迹; 人类; 1:2500
艾博抗(上海)贸易有限公司 TSG101抗体(Epitomics, 5347-1)被用于被用于免疫印迹在人类样本上浓度为1:2500. J Biol Chem (2015) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab83)被用于被用于免疫印迹在人类样本上浓度为1:500. Biomed Res Int (2014) ncbi
小鼠 单克隆(4A10)
  • 免疫沉淀; fruit fly ; 图 5
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, 4A10)被用于被用于免疫沉淀在fruit fly 样本上 (图 5). Nat Commun (2014) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, 4A10)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 人类; 1:400
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab83)被用于被用于免疫印迹在人类样本上浓度为1:400. FASEB J (2014) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 TSG101抗体(Abcam, ab83)被用于被用于免疫印迹在人类样本上 (图 2). EMBO J (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 TSG101抗体(Santa Cruz, sc-7964)被用于被用于免疫印迹在人类样本上 (图 1a). J Extracell Vesicles (2020) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术 TSG101抗体(Santa, sc-7964)被用于被用于免疫印迹在人类样本上 (图 1b). Theranostics (2020) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:100; 图 2e
圣克鲁斯生物技术 TSG101抗体(Santa Cruz Biotechnology, SC-7964)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 2e). Nat Commun (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:200; 图 2f, 5c
圣克鲁斯生物技术 TSG101抗体(Santa Cruz, sc-7964)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2f, 5c). elife (2019) ncbi
小鼠 单克隆(51)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
  • 免疫印迹; 人类; 1:1000; 图 1b
圣克鲁斯生物技术 TSG101抗体(Santa Cruz, sc-136111)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Oncogene (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 s8
圣克鲁斯生物技术 TSG101抗体(Santa Cruz, sc-7964)被用于被用于免疫印迹在人类样本上 (图 s8). Science (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 2i
圣克鲁斯生物技术 TSG101抗体(Santa Cruz Biotechnology Inc, sc-7964)被用于被用于免疫印迹在小鼠样本上 (图 2i). Cancer Res (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:200; 图 1g
圣克鲁斯生物技术 TSG101抗体(Santa Cruz, sc-7964)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1g). Biochim Biophys Acta Gen Subj (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 s2a
圣克鲁斯生物技术 TSG101抗体(Santa Cruz, sc-7964)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Nat Commun (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 7e
圣克鲁斯生物技术 TSG101抗体(Santa Cruz, Sc-7964)被用于被用于免疫印迹在人类样本上 (图 7e). J Clin Invest (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:200; 图 2i
圣克鲁斯生物技术 TSG101抗体(Santa Cruz, sc-7964)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2i). PLoS ONE (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1e
圣克鲁斯生物技术 TSG101抗体(Santa cruz, SC-7964)被用于被用于免疫印迹在人类样本上 (图 1e). Eur J Pharm Sci (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫沉淀; 人类; 图 5a
  • 免疫细胞化学; 人类; 图 3a
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 TSG101抗体(Santa Cruz Biotechnology, Sc-7964)被用于被用于免疫沉淀在人类样本上 (图 5a), 被用于免疫细胞化学在人类样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 1a). PLoS Pathog (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 1b
圣克鲁斯生物技术 TSG101抗体(Santa Cruz, C-2)被用于被用于免疫印迹在小鼠样本上 (图 1b). J Neurosci (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫沉淀; 小鼠; 图 6d
  • 免疫印迹; 小鼠; 图 5a
  • 免疫印迹; 人类; 图 2c
圣克鲁斯生物技术 TSG101抗体(Santa Cruz, sc-7964)被用于被用于免疫沉淀在小鼠样本上 (图 6d), 被用于免疫印迹在小鼠样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 2c). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TSG101抗体(Santa Cruz, SC-7964)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(Y16J)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TSG101抗体(santa Cruz, sc-101254)被用于被用于免疫印迹在人类样本上 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TSG101抗体(Santa Cruz, sc-7964)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cancer (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 TSG101抗体(Santa Cruz, sc7964)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Cell Physiol Biochem (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 s3
圣克鲁斯生物技术 TSG101抗体(Santa Cruz, sc-7964)被用于被用于免疫印迹在人类样本上 (图 s3). J Mol Cell Biol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 TSG101抗体(Santa Cruz, sc-7964)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Extracell Vesicles (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TSG101抗体(Santa Cruz Biotechnology, sc-7964)被用于被用于免疫印迹在人类样本上 (图 1). J Proteome Res (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; African green monkey; 图 s1a
圣克鲁斯生物技术 TSG101抗体(Santa Cruz, SC-7964)被用于被用于免疫细胞化学在African green monkey样本上 (图 s1a). Science (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 7
圣克鲁斯生物技术 TSG101抗体(Santa Cruz, C-2)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 7). PLoS ONE (2012) ncbi
GeneTex
小鼠 单克隆(4A10)
  • 免疫印迹; 人类; 1:500; 图 5b, 12a
GeneTex TSG101抗体(GeneTex, GTX70255)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5b, 12a). elife (2019) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 人类; 1 ug/ml; 图 1b
GeneTex TSG101抗体(GeneTex, GTX70255)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 1b). Proc Natl Acad Sci U S A (2019) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 小鼠; 图 1b
  • 免疫细胞化学; 人类; 图 4e
GeneTex TSG101抗体(Genetex, 4A10)被用于被用于免疫印迹在小鼠样本上 (图 1b) 和 被用于免疫细胞化学在人类样本上 (图 4e). Dev Cell (2017) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 小鼠; 图 2a
GeneTex TSG101抗体(Genetex, GTX70255)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Extracell Vesicles (2017) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 人类; 图 4d
GeneTex TSG101抗体(Genetex, 70255)被用于被用于免疫印迹在人类样本上 (图 4d). Int J Radiat Biol (2017) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
GeneTex TSG101抗体(Genetex, gtx70255)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). PLoS ONE (2017) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 人类; 图 6
GeneTex TSG101抗体(GeneTex, GTX70255)被用于被用于免疫印迹在人类样本上 (图 6). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 人类; 图 1g
GeneTex TSG101抗体(GeneTex, 4a10)被用于被用于免疫印迹在人类样本上 (图 1g). J Cell Biol (2016) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 小鼠; 图 3
GeneTex TSG101抗体(GeneTex, GTX70255)被用于被用于免疫印迹在小鼠样本上 (图 3). J Cell Biol (2015) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 人类
GeneTex TSG101抗体(Gene Tex, 4A10)被用于被用于免疫印迹在人类样本上. Biochem J (2015) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 人类; 1:1000; 图 1
GeneTex TSG101抗体(GeneTex, 4A10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). J Extracell Vesicles (2015) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 人类; 1:200; 图 2
GeneTex TSG101抗体(GeneTex, GTX70255)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(4A10)
  • 免疫印迹; 人类; 图 2
GeneTex TSG101抗体(Genetex, 4A10)被用于被用于免疫印迹在人类样本上 (图 2). Proc Natl Acad Sci U S A (2012) ncbi
赛默飞世尔
小鼠 单克隆(4A10)
  • 免疫印迹; 人类; 1:500; 图 1a
赛默飞世尔 TSG101抗体(Thermo Fisher, MA1-23296)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1a). elife (2019) ncbi
武汉三鹰
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
武汉三鹰 TSG101抗体(Proteintech, 14497-1-AP)被用于被用于免疫印迹在人类样本上 (图 2e). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1c
武汉三鹰 TSG101抗体(ProteinTech, 14497-1-AP)被用于被用于免疫印迹在小鼠样本上 (图 1c). Biol Cell (2016) ncbi
domestic rabbit 多克隆
武汉三鹰 TSG101抗体(Proteintech, 14497-1-AP)被用于. Nature (2015) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(5B7)
  • 流式细胞仪; 人类; 图 2
亚诺法生技股份有限公司 TSG101抗体(Abnova, 5B7)被用于被用于流式细胞仪在人类样本上 (图 2). Immunol Cell Biol (2015) ncbi
碧迪BD
小鼠 单克隆(51/TSG101)
  • 免疫印迹; 人类; 图 4
碧迪BD TSG101抗体(BD Biosciences, 51/TSG101)被用于被用于免疫印迹在人类样本上 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(51/TSG101)
  • 免疫印迹; 人类; 1:1000; 图 3
碧迪BD TSG101抗体(BD Biosciences, 51/TSG101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Proteomics (2016) ncbi
小鼠 单克隆(51/TSG101)
  • 免疫印迹; 人类; 图 s1d
碧迪BD TSG101抗体(BD Biosciences, 51/TSG101)被用于被用于免疫印迹在人类样本上 (图 s1d). Nat Commun (2015) ncbi
文章列表
  1. Chen Y, Li J, Ma B, Li N, Wang S, Sun Z, et al. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat. Aging (Albany NY). 2020;12:18274-18296 pubmed 出版商
  2. Cai L, Chao G, Li W, Zhu J, Li F, Qi B, et al. Activated CD4+ T cells-derived exosomal miR-142-3p boosts post-ischemic ventricular remodeling by activating myofibroblast. Aging (Albany NY). 2020;12:7380-7396 pubmed 出版商
  3. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  4. Cordonnier M, Nardin C, Chanteloup G, Derangère V, Algros M, Arnould L, et al. Tracking the evolution of circulating exosomal-PD-L1 to monitor melanoma patients. J Extracell Vesicles. 2020;9:1710899 pubmed 出版商
  5. Medeiros B, Goodale D, Postenka C, Lowes L, Kiser P, Hearn S, et al. Triple-Negative Primary Breast Tumors Induce Supportive Premetastatic Changes in the Extracellular Matrix and Soluble Components of the Lung Microenvironment. Cancers (Basel). 2020;12: pubmed 出版商
  6. Wan Z, Zhao L, Lu F, Gao X, Dong Y, Zhao Y, et al. Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Theranostics. 2020;10:218-230 pubmed 出版商
  7. Yokoi A, Villar Prados A, Oliphint P, Zhang J, Song X, De Hoff P, et al. Mechanisms of nuclear content loading to exosomes. Sci Adv. 2019;5:eaax8849 pubmed 出版商
  8. Abels E, Maas S, Nieland L, Wei Z, Cheah P, Tai E, et al. Glioblastoma-Associated Microglia Reprogramming Is Mediated by Functional Transfer of Extracellular miR-21. Cell Rep. 2019;28:3105-3119.e7 pubmed 出版商
  9. Geeurickx E, Tulkens J, Dhondt B, Van Deun J, Lippens L, Vergauwen G, et al. The generation and use of recombinant extracellular vesicles as biological reference material. Nat Commun. 2019;10:3288 pubmed 出版商
  10. Martín Pardillos A, Valls Chiva Á, Bande Vargas G, Hurtado Blanco P, Piñeiro Cid R, Guijarro P, et al. The role of clonal communication and heterogeneity in breast cancer. BMC Cancer. 2019;19:666 pubmed 出版商
  11. Ajasin D, Rao V, Wu X, Ramasamy S, Pujato M, Ruiz A, et al. CCL2 mobilizes ALIX to facilitate Gag-p6 mediated HIV-1 virion release. elife. 2019;8: pubmed 出版商
  12. Ortega F, Roefs M, De Miguel Pérez D, Kooijmans S, de Jong O, Sluijter J, et al. Interfering with endolysosomal trafficking enhances release of bioactive exosomes. Nanomedicine. 2019;:102014 pubmed 出版商
  13. Stefanius K, Servage K, de Souza Santos M, Gray H, Toombs J, Chimalapati S, et al. Human pancreatic cancer cell exosomes, but not human normal cell exosomes, act as an initiator in cell transformation. elife. 2019;8: pubmed 出版商
  14. Quinney K, Frankel E, Shankar R, Kasberg W, Luong P, Audhya A. Growth factor stimulation promotes multivesicular endosome biogenesis by prolonging recruitment of the late-acting ESCRT machinery. Proc Natl Acad Sci U S A. 2019;116:6858-6867 pubmed 出版商
  15. Javidi Sharifi N, Martinez J, English I, Joshi S, Scopim Ribeiro R, Viola S, et al. FGF2-FGFR1 signaling regulates release of Leukemia-Protective exosomes from bone marrow stromal cells. elife. 2019;8: pubmed 出版商
  16. Tiedemann K, Sadvakassova G, Mikolajewicz N, Juhas M, Sabirova Z, Tabariès S, et al. Exosomal Release of L-Plastin by Breast Cancer Cells Facilitates Metastatic Bone Osteolysis. Transl Oncol. 2019;12:462-474 pubmed 出版商
  17. Zhang H, Deng T, Ge S, Liu Y, Bai M, Zhu K, et al. Exosome circRNA secreted from adipocytes promotes the growth of hepatocellular carcinoma by targeting deubiquitination-related USP7. Oncogene. 2019;38:2844-2859 pubmed 出版商
  18. Shi G, OZOG S, Torbett B, Compton A. mTOR inhibitors lower an intrinsic barrier to virus infection mediated by IFITM3. Proc Natl Acad Sci U S A. 2018;115:E10069-E10078 pubmed 出版商
  19. Kim H, Mun Y, Lee K, Park Y, Park J, Park J, et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun. 2018;9:3630 pubmed 出版商
  20. Fukushima M, Dasgupta D, Mauer A, Kakazu E, Nakao K, Malhi H. StAR-related lipid transfer domain 11 (STARD11)-mediated ceramide transport mediates extracellular vesicle biogenesis. J Biol Chem. 2018;293:15277-15289 pubmed 出版商
  21. Li H, Liao Y, Gao L, Zhuang T, Huang Z, Zhu H, et al. Coronary Serum Exosomes Derived from Patients with Myocardial Ischemia Regulate Angiogenesis through the miR-939-mediated Nitric Oxide Signaling Pathway. Theranostics. 2018;8:2079-2093 pubmed 出版商
  22. Skowyra M, Schlesinger P, Naismith T, Hanson P. Triggered recruitment of ESCRT machinery promotes endolysosomal repair. Science. 2018;360: pubmed 出版商
  23. Guo H, Chitiprolu M, Roncevic L, Javalet C, Hemming F, Trung M, et al. Atg5 Disassociates the V1V0-ATPase to Promote Exosome Production and Tumor Metastasis Independent of Canonical Macroautophagy. Dev Cell. 2017;43:716-730.e7 pubmed 出版商
  24. Wan Y, Wang L, Zhu C, Zheng Q, Wang G, Tong J, et al. Aptamer-Conjugated Extracellular Nanovesicles for Targeted Drug Delivery. Cancer Res. 2018;78:798-808 pubmed 出版商
  25. Mrowczynski O, Madhankumar A, Slagle Webb B, Lee S, Zacharia B, Connor J. HFE genotype affects exosome phenotype in cancer. Biochim Biophys Acta Gen Subj. 2017;1861:1921-1928 pubmed 出版商
  26. Bednash J, Weathington N, Londino J, Rojas M, Gulick D, Fort R, et al. Targeting the deubiquitinase STAMBP inhibits NALP7 inflammasome activity. Nat Commun. 2017;8:15203 pubmed 出版商
  27. Durcin M, Fleury A, Taillebois E, Hilairet G, Krupova Z, Henry C, et al. Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. J Extracell Vesicles. 2017;6:1305677 pubmed 出版商
  28. VALLABHAJOSYULA P, Korutla L, Habertheuer A, Yu M, Rostami S, Yuan C, et al. Tissue-specific exosome biomarkers for noninvasively monitoring immunologic rejection of transplanted tissue. J Clin Invest. 2017;127:1375-1391 pubmed 出版商
  29. Yentrapalli R, Merl Pham J, Azimzadeh O, Mutschelknaus L, Peters C, Hauck S, et al. Quantitative changes in the protein and miRNA cargo of plasma exosome-like vesicles after exposure to ionizing radiation. Int J Radiat Biol. 2017;93:569-580 pubmed 出版商
  30. Zheng T, Pu J, Chen Y, Mao Y, Guo Z, Pan H, et al. Plasma Exosomes Spread and Cluster Around ?-Amyloid Plaques in an Animal Model of Alzheimer's Disease. Front Aging Neurosci. 2017;9:12 pubmed 出版商
  31. Shin H, Bang S, Kim J, Jun J, Song H, Lim H. The formation of multivesicular bodies in activated blastocysts is influenced by autophagy and FGF signaling in mice. Sci Rep. 2017;7:41986 pubmed 出版商
  32. Jovicic A, Gitler A. Distinct repertoires of microRNAs present in mouse astrocytes compared to astrocyte-secreted exosomes. PLoS ONE. 2017;12:e0171418 pubmed 出版商
  33. Hammerling B, Najor R, Cortez M, Shires S, Leon L, Gonzalez E, et al. A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance. Nat Commun. 2017;8:14050 pubmed 出版商
  34. Dean I, Dzinic S, Bernardo M, Zou Y, Kimler V, Li X, et al. The secretion and biological function of tumor suppressor maspin as an exosome cargo protein. Oncotarget. 2017;8:8043-8056 pubmed 出版商
  35. Chiang C, Flint M, Lin J, Spiropoulou C. Endocytic Pathways Used by Andes Virus to Enter Primary Human Lung Endothelial Cells. PLoS ONE. 2016;11:e0164768 pubmed 出版商
  36. Puhka M, Nordberg M, Valkonen S, Rannikko A, Kallioniemi O, Siljander P, et al. KeepEX, a simple dilution protocol for improving extracellular vesicle yields from urine. Eur J Pharm Sci. 2017;98:30-39 pubmed 出版商
  37. Kumar B, Dutta D, Iqbal J, Ansari M, Roy A, Chikoti L, et al. ESCRT-I Protein Tsg101 Plays a Role in the Post-macropinocytic Trafficking and Infection of Endothelial Cells by Kaposi's Sarcoma-Associated Herpesvirus. PLoS Pathog. 2016;12:e1005960 pubmed 出版商
  38. Saha S, Aranda E, Hayakawa Y, Bhanja P, Atay S, Brodin N, et al. Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nat Commun. 2016;7:13096 pubmed 出版商
  39. Halin Bergström S, Hägglöf C, Thysell E, Bergh A, Wikstrom P, Lundholm M. Extracellular Vesicles from Metastatic Rat Prostate Tumors Prime the Normal Prostate Tissue to Facilitate Tumor Growth. Sci Rep. 2016;6:31805 pubmed 出版商
  40. Dinkins M, Enasko J, Hernandez C, Wang G, Kong J, Helwa I, et al. Neutral Sphingomyelinase-2 Deficiency Ameliorates Alzheimer's Disease Pathology and Improves Cognition in the 5XFAD Mouse. J Neurosci. 2016;36:8653-67 pubmed 出版商
  41. Kamelgarn M, Chen J, Kuang L, Arenas A, Zhai J, Zhu H, et al. Proteomic analysis of FUS interacting proteins provides insights into FUS function and its role in ALS. Biochim Biophys Acta. 2016;1862:2004-14 pubmed 出版商
  42. Walker W, Oehler A, Edinger A, Wagner K, Gunn T. Oligodendroglial deletion of ESCRT-I component TSG101 causes spongiform encephalopathy. Biol Cell. 2016;108:324-337 pubmed 出版商
  43. Sinha S, Hoshino D, Hong N, Kirkbride K, Grega Larson N, Seiki M, et al. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol. 2016;214:197-213 pubmed 出版商
  44. Pinet S, Bessette B, Vedrenne N, Lacroix A, Richard L, Jauberteau M, et al. TrkB-containing exosomes promote the transfer of glioblastoma aggressiveness to YKL-40-inactivated glioblastoma cells. Oncotarget. 2016;7:50349-50364 pubmed 出版商
  45. Languino L, Singh A, Prisco M, Inman G, Luginbuhl A, Curry J, et al. Exosome-mediated transfer from the tumor microenvironment increases TGF? signaling in squamous cell carcinoma. Am J Transl Res. 2016;8:2432-7 pubmed
  46. Campoy I, Lanau L, Altadill T, Sequeiros T, Cabrera S, Cubo Abert M, et al. Exosome-like vesicles in uterine aspirates: a comparison of ultracentrifugation-based isolation protocols. J Transl Med. 2016;14:180 pubmed 出版商
  47. Ruiz Martinez M, Navarro A, Marrades R, Viñolas N, Santasusagna S, Muñoz C, et al. YKT6 expression, exosome release, and survival in non-small cell lung cancer. Oncotarget. 2016;7:51515-51524 pubmed 出版商
  48. Diaz Hidalgo L, Altuntas S, Rossin F, D Eletto M, Marsella C, Farrace M, et al. Transglutaminase type 2-dependent selective recruitment of proteins into exosomes under stressful cellular conditions. Biochim Biophys Acta. 2016;1863:2084-92 pubmed 出版商
  49. Rider M, Hurwitz S, Meckes D. ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles. Sci Rep. 2016;6:23978 pubmed 出版商
  50. Altadill T, Campoy I, Lanau L, Gill K, Rigau M, Gil Moreno A, et al. Enabling Metabolomics Based Biomarker Discovery Studies Using Molecular Phenotyping of Exosome-Like Vesicles. PLoS ONE. 2016;11:e0151339 pubmed 出版商
  51. Son S, Cha M, Choi H, Kang S, Choi H, Lee M, et al. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. Autophagy. 2016;12:784-800 pubmed 出版商
  52. Iavello A, Frech V, Gai C, Deregibus M, Quesenberry P, Camussi G. Role of Alix in miRNA packaging during extracellular vesicle biogenesis. Int J Mol Med. 2016;37:958-66 pubmed 出版商
  53. Kowal J, Arras G, Colombo M, Jouve M, Morath J, Primdal Bengtson B, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 2016;113:E968-77 pubmed 出版商
  54. Kooijmans S, Fliervoet L, van der Meel R, Fens M, Heijnen H, van Bergen En Henegouwen P, et al. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J Control Release. 2016;224:77-85 pubmed 出版商
  55. Clark D, Fondrie W, Yang A, Mao L. Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes. J Proteomics. 2016;133:161-169 pubmed 出版商
  56. Baranyai T, Herczeg K, Onódi Z, Voszka I, Módos K, Marton N, et al. Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods. PLoS ONE. 2015;10:e0145686 pubmed 出版商
  57. Majumder P, Chakrabarti O. Mahogunin regulates fusion between amphisomes/MVBs and lysosomes via ubiquitination of TSG101. Cell Death Dis. 2015;6:e1970 pubmed 出版商
  58. Zhang L, Zhang S, Yao J, Lowery F, Zhang Q, Huang W, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527:100-104 pubmed 出版商
  59. Hyenne V, Apaydin A, Rodriguez D, Spiegelhalter C, Hoff Yoessle S, Diem M, et al. RAL-1 controls multivesicular body biogenesis and exosome secretion. J Cell Biol. 2015;211:27-37 pubmed 出版商
  60. Phinney D, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix C, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015;6:8472 pubmed 出版商
  61. Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer. 2015;14:155 pubmed 出版商
  62. Parkinson M, Piper S, Bright N, Evans J, Boname J, Bowers K, et al. A non-canonical ESCRT pathway, including histidine domain phosphotyrosine phosphatase (HD-PTP), is used for down-regulation of virally ubiquitinated MHC class I. Biochem J. 2015;471:79-88 pubmed 出版商
  63. Frühbeis C, Helmig S, Tug S, Simon P, Krämer Albers E. Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles. 2015;4:28239 pubmed 出版商
  64. Li H, Han L, Yang Z, Huang W, Zhang X, Gu Y, et al. Differential Proteomic Analysis of Syncytiotrophoblast Extracellular Vesicles from Early-Onset Severe Preeclampsia, using 8-Plex iTRAQ Labeling Coupled with 2D Nano LC-MS/MS. Cell Physiol Biochem. 2015;36:1116-30 pubmed 出版商
  65. Lo Cicero A, Delevoye C, Gilles Marsens F, Loew D, Dingli F, Guéré C, et al. Exosomes released by keratinocytes modulate melanocyte pigmentation. Nat Commun. 2015;6:7506 pubmed 出版商
  66. Maruyama T, Dougan S, Truttmann M, Bilate A, Ingram J, Ploegh H. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. 2015;33:538-42 pubmed 出版商
  67. Skogberg G, Lundberg V, Berglund M, Gudmundsdottir J, Telemo E, Lindgren S, et al. Human thymic epithelial primary cells produce exosomes carrying tissue-restricted antigens. Immunol Cell Biol. 2015;93:727-34 pubmed 出版商
  68. Bailey J, Fields A, Cheng K, Lee A, Wagenaar E, Lagrois R, et al. WD repeat-containing protein 5 (WDR5) localizes to the midbody and regulates abscission. J Biol Chem. 2015;290:8987-9001 pubmed 出版商
  69. Menck K, Scharf C, Bleckmann A, Dyck L, Rost U, Wenzel D, et al. Tumor-derived microvesicles mediate human breast cancer invasion through differentially glycosylated EMMPRIN. J Mol Cell Biol. 2015;7:143-53 pubmed 出版商
  70. Ho D, Yi S, Seo H, Son I, Seol W. Increased DJ-1 in urine exosome of Korean males with Parkinson's disease. Biomed Res Int. 2014;2014:704678 pubmed 出版商
  71. Gradilla A, Gonzalez E, Seijo I, Andres G, Bischoff M, González Méndez L, et al. Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat Commun. 2014;5:5649 pubmed 出版商
  72. Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 2014;3: pubmed 出版商
  73. Lundholm M, Schröder M, Nagaeva O, Baranov V, Widmark A, Mincheva Nilsson L, et al. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS ONE. 2014;9:e108925 pubmed 出版商
  74. Vargas A, Zhou S, Ethier Chiasson M, Flipo D, Lafond J, Gilbert C, et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J. 2014;28:3703-19 pubmed 出版商
  75. Cypryk W, Ohman T, Eskelinen E, Matikainen S, Nyman T. Quantitative proteomics of extracellular vesicles released from human monocyte-derived macrophages upon ?-glucan stimulation. J Proteome Res. 2014;13:2468-77 pubmed 出版商
  76. Van Engelenburg S, Shtengel G, Sengupta P, Waki K, Jarnik M, Ablan S, et al. Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits. Science. 2014;343:653-6 pubmed 出版商
  77. Stalder L, Heusermann W, Sokol L, Trojer D, Wirz J, Hean J, et al. The rough endoplasmatic reticulum is a central nucleation site of siRNA-mediated RNA silencing. EMBO J. 2013;32:1115-27 pubmed 出版商
  78. Choy R, Cheng Z, Schekman R. Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid ? (A?) production in the trans-Golgi network. Proc Natl Acad Sci U S A. 2012;109:E2077-82 pubmed 出版商
  79. Morris C, Stanton M, Manthey K, Oh K, Wagner K. A knockout of the Tsg101 gene leads to decreased expression of ErbB receptor tyrosine kinases and induction of autophagy prior to cell death. PLoS ONE. 2012;7:e34308 pubmed 出版商