这是一篇来自已证抗体库的有关人类 TUBA3D的综述,是根据461篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合TUBA3D 抗体。
TUBA3D 同义词: H2-ALPHA; KTCN9; TUBA2

赛默飞世尔
小鼠 单克隆(236-10501)
  • 免疫组化-石蜡切片; 人类; 图 5i
赛默飞世尔 TUBA3D抗体(Invitrogen, A11126)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5i). Sci Adv (2022) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:100; 图 s5f
赛默飞世尔 TUBA3D抗体(Thermo Fisher, 32-2500)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s5f). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛默飞世尔 TUBA3D抗体(Invitrogen, 62204)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Aging Cell (2021) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 1:500; 图 s4b
赛默飞世尔 TUBA3D抗体(ThermoFisher, MA1-19162)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s4b). Commun Biol (2021) ncbi
大鼠 单克隆(YL1/2)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2b
赛默飞世尔 TUBA3D抗体(Thermo Fisher Scientific, MA1-C80017)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2b). Pflugers Arch (2021) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1:20; 图 4a
赛默飞世尔 TUBA3D抗体(Thermo, A21371)被用于被用于免疫细胞化学在人类样本上浓度为1:20 (图 4a). elife (2020) ncbi
小鼠 单克隆(DM1A)
赛默飞世尔 TUBA3D抗体(Thermo Fisher, 62204)被用于. elife (2020) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 人类; 1:5000; 图 2b
赛默飞世尔 TUBA3D抗体(Thermo Fisher, YL1/2)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2b). elife (2020) ncbi
小鼠 单克隆(DM1A)
  • 其他; 淡水涡虫;真涡虫; 1:1000
赛默飞世尔 TUBA3D抗体(Thermo/Fisher, MS581P1)被用于被用于其他在淡水涡虫;真涡虫样本上浓度为1:1000. elife (2020) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图 2s1a
赛默飞世尔 TUBA3D抗体(Thermo Fisher, 62204)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2s1a). elife (2019) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛默飞世尔 TUBA3D抗体(Invitrogen, TUB-1A2)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Mol Biol Cell (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3f
赛默飞世尔 TUBA3D抗体(Neomarkers, DM1A)被用于被用于免疫印迹在人类样本上 (图 3f). Sci Rep (2019) ncbi
大鼠 单克隆(YOL1/34)
  • 免疫印迹; fruit fly ; 图 1f
赛默飞世尔 TUBA3D抗体(Thermo Fisher, MA1-80189)被用于被用于免疫印迹在fruit fly 样本上 (图 1f). Cell (2019) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; pigs ; 1:500; 图 1b
赛默飞世尔 TUBA3D抗体(Thermo Fisher, MA1-19162)被用于被用于免疫印迹在pigs 样本上浓度为1:500 (图 1b). BMC Vet Res (2019) ncbi
大鼠 单克隆(YL1/2)
  • 免疫组化-冰冻切片; 小鼠; 图 6e
赛默飞世尔 TUBA3D抗体(Thermo Fisher, MA1-80017)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6e). J Clin Invest (2019) ncbi
小鼠 单克隆(236-10501)
赛默飞世尔 TUBA3D抗体(Pierce, A11126)被用于. Int J Mol Med (2017) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图 3A
赛默飞世尔 TUBA3D抗体(eBioscience, 14?C4502)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3A). elife (2017) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; African green monkey; 图 1d
赛默飞世尔 TUBA3D抗体(Pierce, MA1-80017)被用于被用于免疫细胞化学在African green monkey样本上 (图 1d). elife (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:1000; 图 1a
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2700)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1a). Sci Rep (2017) ncbi
小鼠 单克隆(6-11B-1)
  • proximity ligation assay; 人类; 0.7 ug/ml; 图 4a
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2700)被用于被用于proximity ligation assay在人类样本上浓度为0.7 ug/ml (图 4a). Sci Rep (2017) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2017) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 8d
赛默飞世尔 TUBA3D抗体(生活技术, A11126)被用于被用于免疫细胞化学在人类样本上 (图 8d). Mol Cell Biol (2017) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 人类; 1:500
赛默飞世尔 TUBA3D抗体(Thermo Scientific, MA1-80017)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 TUBA3D抗体(Thermo Scientific, 62204)被用于被用于免疫组化-石蜡切片在小鼠样本上. Acta Histochem (2017) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; 小鼠; 图 5f
赛默飞世尔 TUBA3D抗体(Thermo Fisher, MS-581-P1)被用于被用于免疫组化在小鼠样本上 (图 5f). Autophagy (2017) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 拟南芥; 图 1h
赛默飞世尔 TUBA3D抗体(生活技术, 32-2500)被用于被用于免疫印迹在拟南芥样本上 (图 1h). Plant Physiol (2017) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:400; 图 3a
赛默飞世尔 TUBA3D抗体(生活技术, A11126)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 3a). Sci Rep (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; Dictyostelium discoideum; 图 s6g
赛默飞世尔 TUBA3D抗体(ThermoFisher Scientific, MA1-80017)被用于被用于免疫细胞化学在Dictyostelium discoideum样本上 (图 s6g). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2C
赛默飞世尔 TUBA3D抗体(Lab Vision, MS-581-PO)被用于被用于免疫印迹在人类样本上 (图 2C). Sci Rep (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; fruit fly ; 1:100; 图 s4
赛默飞世尔 TUBA3D抗体(Fisher Scientific, A11126)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 s4). Biophys J (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:2000; 图 3c
赛默飞世尔 TUBA3D抗体(Thermo Scientific, 62204)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3c). Mol Neurobiol (2017) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 5a
赛默飞世尔 TUBA3D抗体(Invitrogen, A11126)被用于被用于免疫印迹在人类样本上 (图 5a). J Biol Chem (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:20,000; 图 3b
赛默飞世尔 TUBA3D抗体(Invitrogen, 322500)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 3b). Oncotarget (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 1:100; 图 6a
赛默飞世尔 TUBA3D抗体(生活技术, 322588)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6a). J Cell Sci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA3D抗体(LabVision, DM1A)被用于被用于免疫印迹在人类样本上 (图 1). J Inflamm (Lond) (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 人类; 图 7a
赛默飞世尔 TUBA3D抗体(Pierce, MA1-80017)被用于被用于免疫细胞化学在人类样本上 (图 7a). J Biol Chem (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 图 3b
赛默飞世尔 TUBA3D抗体(生活技术, 32-2700)被用于被用于免疫细胞化学在人类样本上 (图 3b). BMC Cancer (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:50; 图 7
赛默飞世尔 TUBA3D抗体(Invitrogen, A11126)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 7). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛默飞世尔 TUBA3D抗体(生活技术, 32-2500)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Biol Chem (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 犬; 1:500; 图 4a
赛默飞世尔 TUBA3D抗体(Thermo Fisher, MA1-80017)被用于被用于免疫细胞化学在犬样本上浓度为1:500 (图 4a). J Cell Biol (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; 小鼠; 1:200; 图 2b
赛默飞世尔 TUBA3D抗体(生活技术, A11126)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2b). Reprod Biomed Online (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 TUBA3D抗体(Thermo Scientific, A-11126)被用于被用于免疫印迹在人类样本上 (图 2). PLoS Pathog (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA3D抗体(Thermo Scientific, MS-581-P)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛默飞世尔 TUBA3D抗体(Invitrogen, 322500)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Mol Cancer Res (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 0.5 ug/ml; 图 2
赛默飞世尔 TUBA3D抗体(Invitrogen, 322588)被用于被用于免疫细胞化学在人类样本上浓度为0.5 ug/ml (图 2). Prostate (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 TUBA3D抗体(ThermoFisher Scientific, MS-581-P1)被用于被用于免疫印迹在小鼠样本上 (图 3). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛默飞世尔 TUBA3D抗体(Pierce, PA1-38814)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 TUBA3D抗体(Thermo Fisher Scientific, MA1 19401)被用于被用于免疫印迹在人类样本上 (图 2). J Virol (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 s5
赛默飞世尔 TUBA3D抗体(Invitrogen, A11126)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 s5). Development (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:1000; 图 4
赛默飞世尔 TUBA3D抗体(生活技术, 322588)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4). Mol Cell Proteomics (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; African green monkey; 图 2
赛默飞世尔 TUBA3D抗体(ThermoFisher Scientific, MA1-80017)被用于被用于免疫细胞化学在African green monkey样本上 (图 2). Nat Methods (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 图 1
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在大鼠样本上 (图 1). Anal Biochem (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔 TUBA3D抗体(Zymed Laboratories, 32-2500)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 鸡; 1:500; 图 1
赛默飞世尔 TUBA3D抗体(生活技术, 32-2700)被用于被用于免疫组化在鸡样本上浓度为1:500 (图 1). J Cell Sci (2017) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 图 2
  • 免疫细胞化学; 人类; 图 7
赛默飞世尔 TUBA3D抗体(Invitrogen, 322588)被用于被用于免疫细胞化学在小鼠样本上 (图 2) 和 被用于免疫细胞化学在人类样本上 (图 7). Nat Commun (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; 小鼠; 图 s1
赛默飞世尔 TUBA3D抗体(Thermo Fisher Scientific, YL1/2)被用于被用于免疫印迹在小鼠样本上 (图 s1). J Cell Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 TUBA3D抗体(生活技术, 32-2500)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 图 s3
赛默飞世尔 TUBA3D抗体(Thermo Fisher, 322588)被用于被用于免疫细胞化学在人类样本上 (图 s3). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 TUBA3D抗体(Lab Vision, MS-581)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 杜氏利什曼原虫; 1:5000; 图 2
赛默飞世尔 TUBA3D抗体(ThermoFisher, MA1-19162)被用于被用于免疫印迹在杜氏利什曼原虫样本上浓度为1:5000 (图 2). Arch Biochem Biophys (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 4b
赛默飞世尔 TUBA3D抗体(NeoMarkers, MS-581)被用于被用于免疫印迹在人类样本上 (图 4b). J Biol Chem (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2500; 图 5
赛默飞世尔 TUBA3D抗体(Pierce, 62204)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 TUBA3D抗体(NeoMarkers, MS-581-P0)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 婴儿利什曼原虫; 1:1000; 图 4
赛默飞世尔 TUBA3D抗体(Neomarkers, DM1A)被用于被用于免疫印迹在婴儿利什曼原虫样本上浓度为1:1000 (图 4). PLoS Negl Trop Dis (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:400; 图 6
赛默飞世尔 TUBA3D抗体(生活技术, A11126)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 6). Biol Reprod (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; malaria parasite P. falciparum; 1:2000; 图 3
赛默飞世尔 TUBA3D抗体(分子探针, A11126)被用于被用于免疫细胞化学在malaria parasite P. falciparum样本上浓度为1:2000 (图 3). J Cell Sci (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 s4
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在小鼠样本上 (图 s4). PLoS Pathog (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 TUBA3D抗体(Ebioscience, DM1A)被用于被用于免疫印迹在小鼠样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(YL1/2)
  • 免疫印迹; domestic rabbit; 图 2
赛默飞世尔 TUBA3D抗体(Thermo Scientific, MA1-80017)被用于被用于免疫印迹在domestic rabbit样本上 (图 2). Endocrinology (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:2000; 图 1c
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). J Cell Sci (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 8
赛默飞世尔 TUBA3D抗体(生活技术, 236?C10501)被用于被用于免疫细胞化学在人类样本上 (图 8). J Exp Med (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 7
赛默飞世尔 TUBA3D抗体(Thermo Scientific, MS-581-P0)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 TUBA3D抗体(Thermo Scientific, DM1A)被用于被用于免疫印迹在人类样本上 (图 3). Br J Cancer (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:1000; 图 3
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2700)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 3). Histochem Cell Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 4c
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4c). Oncogene (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Stem Cell Reports (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 1
赛默飞世尔 TUBA3D抗体(生活技术, 32-2500)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1:1000
赛默飞世尔 TUBA3D抗体(Invitrogen, A11126)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Mol Biol Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 图 3
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 TUBA3D抗体(Neomarkers, MS581P1)被用于被用于免疫细胞化学在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; 小鼠; 1:1000
赛默飞世尔 TUBA3D抗体(Thermo Scientific, MS-581-P0)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Reproduction (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 TUBA3D抗体(Lab Vision, DM1A)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; brewer's yeast; 1:200
赛默飞世尔 TUBA3D抗体(Invitrogen, 322500)被用于被用于免疫细胞化学在brewer's yeast样本上浓度为1:200. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 TUBA3D抗体(Thermo, PA5-19489)被用于. elife (2015) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1:1000; 图 1
赛默飞世尔 TUBA3D抗体(Invitrogen, A11126)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000
赛默飞世尔 TUBA3D抗体(Fisher Scientific, DM1A)被用于被用于免疫印迹在人类样本上浓度为1:2000. Integr Biol (Camb) (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
赛默飞世尔 TUBA3D抗体(Thermo Scientific, MS-581-P1)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; 犬
赛默飞世尔 TUBA3D抗体(Thermo Scientific, MA1-80017)被用于被用于免疫细胞化学在犬样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠
赛默飞世尔 TUBA3D抗体(Invitrogen LifeTechnologies, A11126)被用于被用于免疫细胞化学在小鼠样本上. Cell Death Dis (2015) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类
赛默飞世尔 TUBA3D抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上. Acta Neuropathol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA3D抗体(Neomarker, MS-581-P1)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 图 3
赛默飞世尔 TUBA3D抗体(Invitrogen, 322700)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Dev Cell (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 1:100; 图 3
赛默飞世尔 TUBA3D抗体(生活技术, 322588)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3). Biol Reprod (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图 2
赛默飞世尔 TUBA3D抗体(NeoMarkers, DM1A)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:200
赛默飞世尔 TUBA3D抗体(生活技术, A11126)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Development (2015) ncbi
小鼠 单克隆(DM1A)
赛默飞世尔 TUBA3D抗体(Thermo, MS-581-P)被用于. Cell Prolif (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 TUBA3D抗体(Neomarkers, DM1A)被用于被用于免疫印迹在小鼠样本上 (图 1). Nature (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:300
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2700)被用于被用于免疫组化在小鼠样本上浓度为1:300. Hum Mol Genet (2015) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 小鼠; 1:400
  • 免疫印迹; 人类; 1:400
赛默飞世尔 TUBA3D抗体(Zymed, TU-01)被用于被用于免疫印迹在小鼠样本上浓度为1:400 和 被用于免疫印迹在人类样本上浓度为1:400. J Gastroenterol (2015) ncbi
小鼠 单克隆(DM1A)
赛默飞世尔 TUBA3D抗体(Thermo Fisher Scientific, MS-581-P1)被用于. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 TUBA3D抗体(Thermo Fisher Scientific, MS-581-P0)被用于被用于免疫印迹在小鼠样本上 (图 2). Int J Mol Med (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 9
赛默飞世尔 TUBA3D抗体(Thermo Scientific, 62204)被用于被用于免疫印迹在人类样本上 (图 9). Oncotarget (2015) ncbi
小鼠 单克隆(DM1A)
赛默飞世尔 TUBA3D抗体(NeoMarkers, MS-581-P0)被用于. Hum Mutat (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在大鼠样本上. Mol Neurobiol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3a
赛默飞世尔 TUBA3D抗体(Thermo, DM-1A)被用于被用于免疫印迹在人类样本上 (图 3a). Nucleic Acids Res (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在人类样本上. Infect Immun (2014) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; African green monkey
赛默飞世尔 TUBA3D抗体(Invitrogen, A11126)被用于被用于免疫细胞化学在African green monkey样本上. Soft Matter (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 TUBA3D抗体(Thermo Fisher Scientific, MS581P)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 非洲爪蛙; 图 2
赛默飞世尔 TUBA3D抗体(Neomarkers, MS-581-P0)被用于被用于免疫印迹在非洲爪蛙样本上 (图 2). PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:500
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在人类样本上浓度为1:500. J Cell Biochem (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 TUBA3D抗体(Neomarkers, DM1A)被用于被用于免疫印迹在人类样本上 (图 5). PLoS Genet (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 TUBA3D抗体(Lab Vision, DM1A)被用于被用于免疫印迹在人类样本上 (图 3). J Proteome Res (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化; 小鼠
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2588)被用于被用于免疫组化在小鼠样本上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 小鼠
赛默飞世尔 TUBA3D抗体(生活技术, A11126)被用于被用于免疫印迹在小鼠样本上. J Peripher Nerv Syst (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 犬; 1:150; 图 1c
  • 免疫印迹; 犬; 1:1000; 图 1b
赛默飞世尔 TUBA3D抗体(Zymed, 32?C2500)被用于被用于免疫细胞化学在犬样本上浓度为1:150 (图 1c) 和 被用于免疫印迹在犬样本上浓度为1:1000 (图 1b). Tissue Barriers (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 鸡; 1:300
赛默飞世尔 TUBA3D抗体(生活技术, 32-2700)被用于被用于免疫细胞化学在鸡样本上浓度为1:300. J Neurosci (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
赛默飞世尔 TUBA3D抗体(Thermo, MS-581-P0)被用于被用于免疫印迹在小鼠样本上. J Radiat Res (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
赛默飞世尔 TUBA3D抗体(NeoMarkers, MS-581-P)被用于被用于免疫印迹在小鼠样本上. Nat Commun (2014) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类
赛默飞世尔 TUBA3D抗体(Zymed Laboratories, TU-01)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 1:100; 图 7a
赛默飞世尔 TUBA3D抗体(生活技术, 322588)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 7a). PLoS Genet (2014) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化-石蜡切片; 人类; 0.5 ug/ml
赛默飞世尔 TUBA3D抗体(Invitrogen, A11126)被用于被用于免疫组化-石蜡切片在人类样本上浓度为0.5 ug/ml. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 人类; 图 1
赛默飞世尔 TUBA3D抗体(Zymed, 32-2700)被用于被用于免疫组化在人类样本上 (图 1). Cell Med (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛默飞世尔 TUBA3D抗体(Invitrogen, B-5-1-2)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. elife (2014) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 牛; 图 5, 6
赛默飞世尔 TUBA3D抗体(Invitrogen, A11126)被用于被用于免疫印迹在牛样本上 (图 5, 6). Endocrinology (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 TUBA3D抗体(ThermoFisher, MS-581-P1)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 2 ug/ml; 图 3
赛默飞世尔 TUBA3D抗体(Zymed Laboratories, 32-2500)被用于被用于免疫印迹在人类样本上浓度为2 ug/ml (图 3). Cell Immunol (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
赛默飞世尔 TUBA3D抗体(Neomarkers, MS-581-PO)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000
赛默飞世尔 TUBA3D抗体(NeoMarkers, DM1A)被用于被用于免疫印迹在人类样本上浓度为1:5000. PLoS ONE (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 4
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2500)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 4). Spinal Cord (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 TUBA3D抗体(Thermo Scientific, MS-581-P0)被用于被用于免疫印迹在小鼠样本上 (图 3). Int J Mol Sci (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类
赛默飞世尔 TUBA3D抗体(生活技术, noca)被用于被用于免疫细胞化学在人类样本上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(TU-01)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔 TUBA3D抗体(Pierce, MA1-19162)被用于被用于免疫组化在小鼠样本上浓度为1:100. Cell Death Differ (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; Arthrotardigrada; 1:300
赛默飞世尔 TUBA3D抗体(Invitrogen Corporation, 32-2700)被用于被用于免疫组化在Arthrotardigrada样本上浓度为1:300. J Morphol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA3D抗体(Invitrogen, B-5-1-2)被用于被用于免疫印迹在人类样本上 (图 1). Autophagy (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 TUBA3D抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠
  • 免疫细胞化学; 仓鼠
赛默飞世尔 TUBA3D抗体(Invitrogen, DM1A)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫细胞化学在仓鼠样本上. Neurobiol Aging (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 TUBA3D抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 2). Int J Biochem Cell Biol (2013) ncbi
小鼠 单克隆(6-11B-1)
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2700)被用于. Dev Genes Evol (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; Cyrtanthus mackenii; 1 ug/ml; 图 3
赛默飞世尔 TUBA3D抗体(分子探针, A11126)被用于被用于免疫细胞化学在Cyrtanthus mackenii样本上浓度为1 ug/ml (图 3). AoB Plants (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 TUBA3D抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA3D抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 1). Cell Signal (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:200
赛默飞世尔 TUBA3D抗体(Invitrogen, A11126)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. J Neurosci (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA3D抗体(Invitrogen, A11126)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 犬; 图 2
  • 免疫组化-石蜡切片; 小鼠; 1:250
赛默飞世尔 TUBA3D抗体(Zymed, 32-2700)被用于被用于免疫细胞化学在犬样本上 (图 2) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250. Cilia (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1 ug/ml; 图 5
  • 免疫印迹; 人类; 1:1000; 图 s5
赛默飞世尔 TUBA3D抗体(分子探针, A-11126)被用于被用于免疫细胞化学在人类样本上浓度为1 ug/ml (图 5) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). BMC Cancer (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA3D抗体(分子探针, 236-10501)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Biochem Res Int (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 牛; 1:200
赛默飞世尔 TUBA3D抗体(Invitrogen, 236-10501)被用于被用于免疫细胞化学在牛样本上浓度为1:200. Reprod Biol Endocrinol (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
赛默飞世尔 TUBA3D抗体(NeoMarkers, MS-581-P1)被用于被用于免疫印迹在人类样本上. Int J Cancer (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1:200; 图 4
赛默飞世尔 TUBA3D抗体(Invitrogen, 236-10501)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Gynecol Oncol (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠
赛默飞世尔 TUBA3D抗体(Invitrogen/Life Technologies, A11126)被用于被用于免疫细胞化学在小鼠样本上. Mol Biol Cell (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 s7
赛默飞世尔 TUBA3D抗体(分子探针, 236-10501)被用于被用于免疫细胞化学在人类样本上 (图 s7). PLoS ONE (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 非洲爪蛙; 1:5000; 图 1e
赛默飞世尔 TUBA3D抗体(Neomarker, DM1A)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:5000 (图 1e). PLoS ONE (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2500)被用于被用于免疫印迹在人类样本上 (图 1). Cell Rep (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; 大鼠; 1:50; 图 6
赛默飞世尔 TUBA3D抗体(Invitrogen, A11126)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 6). J Histochem Cytochem (2012) ncbi
大鼠 单克隆(YOL1/34)
  • 免疫细胞化学; 白色念珠菌; 1:100
赛默飞世尔 TUBA3D抗体(Invitrogen, YOL1/34)被用于被用于免疫细胞化学在白色念珠菌样本上浓度为1:100. PLoS Genet (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类
赛默飞世尔 TUBA3D抗体(Invitrogen, A11126)被用于被用于免疫印迹在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔 TUBA3D抗体(Invitrogen, 6-11B-1)被用于被用于免疫细胞化学在人类样本上 (图 5). Hum Mol Genet (2012) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 TUBA3D抗体(Zymed, TU-01)被用于被用于免疫印迹在人类样本上 (图 5). Liver Int (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 TUBA3D抗体(分子探针, A11126)被用于被用于免疫细胞化学在人类样本上 (图 2). Cancer Genet (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA3D抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 1). Mol Biol Cell (2011) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:500; 图 s4
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2700)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 s4). Dev Biol (2011) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 大鼠; 1:20; 图 5
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2700)被用于被用于免疫细胞化学在大鼠样本上浓度为1:20 (图 5). Bone (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 7
赛默飞世尔 TUBA3D抗体(Neomarkers, DM1A)被用于被用于免疫印迹在人类样本上 (图 7). Cell Death Dis (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 5b
赛默飞世尔 TUBA3D抗体(Invitrogen, 23610501)被用于被用于免疫印迹在人类样本上 (图 5b). PLoS ONE (2011) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:500; 图 s2
赛默飞世尔 TUBA3D抗体(Zymed, 32-2700)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2). Nat Cell Biol (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 TUBA3D抗体(分子探针, A11126)被用于被用于免疫印迹在人类样本上 (图 4). FASEB J (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA3D抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 1). J Mol Biol (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 s1
赛默飞世尔 TUBA3D抗体(Invitrogen, 236-10501)被用于被用于免疫细胞化学在人类样本上 (图 s1). PLoS ONE (2011) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s1
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s1
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2500)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s1) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s1). J Cell Biol (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔 TUBA3D抗体(分子探针, A11126)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Biol Chem (2011) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:2000; 图 1
赛默飞世尔 TUBA3D抗体(NeoMarkers, DM1A)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1). Mol Biol Cell (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA3D抗体(分子探针, 236?C10501)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2011) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 犬; 1:100; 图 4
赛默飞世尔 TUBA3D抗体(Zymed, 32-2500)被用于被用于免疫细胞化学在犬样本上浓度为1:100 (图 4). Mol Membr Biol (2011) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 1:7500; 图 2, 3
赛默飞世尔 TUBA3D抗体(Zymed, 13-8000)被用于被用于免疫印迹在人类样本上浓度为1:7500 (图 2, 3). Neurobiol Dis (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 仓鼠; 图 4
赛默飞世尔 TUBA3D抗体(Invitrogen, A11126)被用于被用于免疫印迹在仓鼠样本上 (图 4). Biochim Biophys Acta (2011) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 2,500 ug/ml; 图 1
赛默飞世尔 TUBA3D抗体(分子探针, 322500)被用于被用于免疫细胞化学在人类样本上浓度为2,500 ug/ml (图 1). Biomaterials (2011) ncbi
小鼠 单克隆(TU-01)
  • 免疫沉淀; 人类; 图 5
  • 免疫细胞化学; 人类; 图 6
  • 免疫印迹; 人类; 图 4
赛默飞世尔 TUBA3D抗体(Zymed, TU-01)被用于被用于免疫沉淀在人类样本上 (图 5), 被用于免疫细胞化学在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 4). Exp Cell Res (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 仓鼠; 图 4
  • 免疫印迹; 仓鼠; 图 8
赛默飞世尔 TUBA3D抗体(分子探针, A-11126)被用于被用于免疫细胞化学在仓鼠样本上 (图 4) 和 被用于免疫印迹在仓鼠样本上 (图 8). PLoS Pathog (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔 TUBA3D抗体(Invitrogen, A11126)被用于被用于免疫细胞化学在人类样本上 (图 5). Eur J Cancer (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA3D抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 1). Biochem Biophys Res Commun (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 TUBA3D抗体(Invitrogen, 236-10501)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2010) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:200; 图 3
  • 免疫细胞化学; 犬; 1:200; 图 3
赛默飞世尔 TUBA3D抗体(Invitrogen, 32-2700)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3) 和 被用于免疫细胞化学在犬样本上浓度为1:200 (图 3). Biotechnol Bioeng (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; Cyrtanthus mackenii; 1 ug/ml; 图 2
赛默飞世尔 TUBA3D抗体(分子探针, A11126)被用于被用于免疫组化在Cyrtanthus mackenii样本上浓度为1 ug/ml (图 2). Sex Plant Reprod (2010) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 TUBA3D抗体(Zymed, 32-2500)被用于被用于免疫印迹在人类样本上 (图 3). J Dermatol Sci (2010) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 TUBA3D抗体(Zymed, 32-2500)被用于被用于免疫印迹在人类样本上 (图 2). J Mol Endocrinol (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1c
赛默飞世尔 TUBA3D抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Cycle (2010) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
赛默飞世尔 TUBA3D抗体(Zymed, 6-11B-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Nat Genet (2010) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 TUBA3D抗体(Zymed, TU-01)被用于被用于免疫印迹在人类样本上 (图 2). Toxicol Mech Methods (2008) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:200
赛默飞世尔 TUBA3D抗体(分子探针, A11126)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Development (2009) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:500; 图 1
赛默飞世尔 TUBA3D抗体(Zymed, 32-2700)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1). Nat Med (2009) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 TUBA3D抗体(Zymed, TU-01)被用于被用于免疫印迹在人类样本上 (图 2). Hum Pathol (2009) ncbi
小鼠 单克隆(TU-01)
  • 免疫细胞化学; 人类
赛默飞世尔 TUBA3D抗体(Zymed Laboratories, TU-01)被用于被用于免疫细胞化学在人类样本上. Biochem Biophys Res Commun (2009) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类
赛默飞世尔 TUBA3D抗体(Zymed, TU-01)被用于被用于免疫印迹在人类样本上. Mol Cell Biochem (2009) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔 TUBA3D抗体(Invitrogen, 236-10501)被用于被用于免疫细胞化学在人类样本上 (图 1). Bull Exp Biol Med (2008) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类
赛默飞世尔 TUBA3D抗体(Zymed, 32-2500)被用于被用于免疫细胞化学在人类样本上. Cell Cycle (2008) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 TUBA3D抗体(Invitrogen, 236-10501)被用于被用于免疫印迹在人类样本上 (图 3). Aging Cell (2008) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1:200; 图 7
赛默飞世尔 TUBA3D抗体(分子探针, A11126)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7). Analyst (2008) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3
赛默飞世尔 TUBA3D抗体(Zymed, 32-2700)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3). Am J Hum Genet (2008) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 1 ug/ml; 图 3
赛默飞世尔 TUBA3D抗体(ZYMED, TU-01)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 3). Cancer Res (2008) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 TUBA3D抗体(Zymed, TU-01)被用于被用于免疫印迹在人类样本上 (图 4). Lab Invest (2008) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 7
  • 免疫印迹; 小鼠; 图 7
赛默飞世尔 TUBA3D抗体(Lab Vision, DM1A)被用于被用于免疫印迹在人类样本上 (图 7) 和 被用于免疫印迹在小鼠样本上 (图 7). Cancer Cell (2008) ncbi
小鼠 单克隆(TU-01)
  • 免疫细胞化学; 人类; 1:100; 图 4
赛默飞世尔 TUBA3D抗体(Invitrogen, TU-01)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Am J Pathol (2008) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 TUBA3D抗体(Zymed, 236-10501)被用于被用于免疫印迹在小鼠样本上 (图 1). J Biol Chem (2008) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 s4
赛默飞世尔 TUBA3D抗体(Zymed, 32-2500)被用于被用于免疫印迹在人类样本上 (图 s4). Nature (2008) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 TUBA3D抗体(Zymed Laboratories, TU-01)被用于被用于免疫印迹在人类样本上 (图 2). J Pharmacol Sci (2008) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化-冰冻切片; 大鼠
赛默飞世尔 TUBA3D抗体(分子探针, A11126)被用于被用于免疫组化-冰冻切片在大鼠样本上. Dev Neurobiol (2008) ncbi
小鼠 单克隆(TU-01)
  • 免疫组化; 小鼠; 图 1
赛默飞世尔 TUBA3D抗体(Zymed, TU-01)被用于被用于免疫组化在小鼠样本上 (图 1). Exp Cell Res (2008) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA3D抗体(Zymed, tu-01)被用于被用于免疫印迹在人类样本上 (图 1). FEBS Lett (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:40; 图 3
赛默飞世尔 TUBA3D抗体(分子探针, 236-10501)被用于被用于免疫细胞化学在小鼠样本上浓度为1:40 (图 3). In Vitro Cell Dev Biol Anim (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1:400
赛默飞世尔 TUBA3D抗体(分子探针, A11126)被用于被用于免疫细胞化学在人类样本上浓度为1:400. FASEB J (2008) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 TUBA3D抗体(NeoMarkers, MS-581-P1)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Neurochem Int (2008) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; kangaroo; 2 ug/ml
赛默飞世尔 TUBA3D抗体(Invitrogen, noca)被用于被用于免疫细胞化学在kangaroo样本上浓度为2 ug/ml. Biophys J (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1:200; 图 3
赛默飞世尔 TUBA3D抗体(Invitrogen, A11126)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). FEBS Lett (2007) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 1:7500; 图 3
赛默飞世尔 TUBA3D抗体(Zymed Laboratories, 13-8000)被用于被用于免疫印迹在人类样本上浓度为1:7500 (图 3). J Neurochem (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 表 1
赛默飞世尔 TUBA3D抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (表 1). Ann N Y Acad Sci (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; field poppy; 1:200; 图 8
赛默飞世尔 TUBA3D抗体(分子探针, 236-10501)被用于被用于免疫组化在field poppy样本上浓度为1:200 (图 8). Planta (2007) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 TUBA3D抗体(Zymed, 13-8000)被用于被用于免疫印迹在小鼠样本上 (图 3). Am J Pathol (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA3D抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 1). Cell Signal (2007) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
赛默飞世尔 TUBA3D抗体(Lab Vision, DM1A)被用于被用于免疫印迹在人类样本上. Blood (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 小鼠
赛默飞世尔 TUBA3D抗体(分子探针, 236-10501)被用于被用于免疫印迹在小鼠样本上. Stem Cells (2007) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; domestic rabbit; 图 1
赛默飞世尔 TUBA3D抗体(Zymed, 32-2500)被用于被用于免疫印迹在domestic rabbit样本上 (图 1). Cell Signal (2007) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 TUBA3D抗体(Neomarkers, DM1A)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cell Biol (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1 ug/ml; 图 1
赛默飞世尔 TUBA3D抗体(分子探针, 236-10,501)被用于被用于免疫细胞化学在人类样本上浓度为1 ug/ml (图 1). Cancer Chemother Pharmacol (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; Leishmania ; 1:1000; 图 3
赛默飞世尔 TUBA3D抗体(分子探针, noca)被用于被用于免疫细胞化学在Leishmania 样本上浓度为1:1000 (图 3). J Biol Chem (2006) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:200; 图 3
赛默飞世尔 TUBA3D抗体(Zymed, 32-2700)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). ASAIO J (2006) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 小鼠
赛默飞世尔 TUBA3D抗体(Zymed, TU-01)被用于被用于免疫印迹在小鼠样本上. Genes Cells (2006) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:200; 图 1
赛默飞世尔 TUBA3D抗体(分子探针, A-11126)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1). J Biol Chem (2006) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 TUBA3D抗体(Invitrogen Corporation, 32-2500)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Stem Cells (2006) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 图 6
赛默飞世尔 TUBA3D抗体(分子探针, A11126)被用于被用于免疫细胞化学在小鼠样本上 (图 6). J Cell Sci (2005) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:800; 图 3
赛默飞世尔 TUBA3D抗体(Neomarkers, MS-581-P1)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 3). Pediatr Blood Cancer (2006) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔 TUBA3D抗体(分子探针, 236-10501)被用于被用于免疫细胞化学在人类样本上 (图 1). J Cell Sci (2005) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 TUBA3D抗体(Zymed Laboratories, 13-8000)被用于被用于免疫印迹在小鼠样本上 (图 2). J Biol Chem (2005) ncbi
小鼠 单克隆(236-10501)
赛默飞世尔 TUBA3D抗体(分子探针, A11126)被用于. Biophys J (2004) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 TUBA3D抗体(Zymed, Tu-01)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Cell Biol (2004) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠
赛默飞世尔 TUBA3D抗体(分子探针, noca)被用于被用于免疫细胞化学在小鼠样本上. Nat Immunol (2004) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 小鼠
赛默飞世尔 TUBA3D抗体(Zymed, TU-01)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2004) ncbi
小鼠 单克隆(TU-01)
  • 免疫细胞化学; African green monkey; 图 4
赛默飞世尔 TUBA3D抗体(Zymed, TU-01)被用于被用于免疫细胞化学在African green monkey样本上 (图 4). J Biol Chem (2004) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛默飞世尔 TUBA3D抗体(Zymed, 13-8000)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Endocrinology (2004) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 非洲爪蛙; 图 2
赛默飞世尔 TUBA3D抗体(noco, noca)被用于被用于免疫细胞化学在非洲爪蛙样本上 (图 2). Annu Rev Cell Dev Biol (2003) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 小鼠; 图 7
赛默飞世尔 TUBA3D抗体(Zymed, TU-01)被用于被用于免疫印迹在小鼠样本上 (图 7). J Biol Chem (2003) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 0.4 ug/ml; 图 2
赛默飞世尔 TUBA3D抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上浓度为0.4 ug/ml (图 2). Proteomics (2003) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 人类; 图 2b
赛默飞世尔 TUBA3D抗体(Zymed, TU-01)被用于被用于免疫印迹在人类样本上 (图 2b). Oral Oncol (2003) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 6
赛默飞世尔 TUBA3D抗体(noco, A11126)被用于被用于免疫印迹在人类样本上 (图 6). J Biol Chem (2003) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔 TUBA3D抗体(Affinity BioReagents, A11126)被用于被用于免疫印迹在大鼠样本上 (图 3). J Cell Biol (2002) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; African green monkey; 1:250; 图 3
赛默飞世尔 TUBA3D抗体(分子探针, noca)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:250 (图 3). Hum Mol Genet (2002) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:20,000; 图 6g
赛默飞世尔 TUBA3D抗体(Zymed, noca)被用于被用于免疫细胞化学在小鼠样本上浓度为1:20,000 (图 6g). Exp Cell Res (2001) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠
赛默飞世尔 TUBA3D抗体(分子探针, noca)被用于被用于免疫细胞化学在小鼠样本上. J Cell Biol (2001) ncbi
小鼠 单克隆(TU-01)
  • 免疫沉淀; 非洲爪蛙; 图 2
赛默飞世尔 TUBA3D抗体(Zymed, clone TU-01)被用于被用于免疫沉淀在非洲爪蛙样本上 (图 2). Mol Reprod Dev (2001) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:200; 图 1
赛默飞世尔 TUBA3D抗体(Zymed, B-5-1-2)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). J Biol Chem (2001) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 仓鼠; 图 6
赛默飞世尔 TUBA3D抗体(noco, noca)被用于被用于免疫细胞化学在仓鼠样本上 (图 6). Mol Biol Cell (2000) ncbi
小鼠 单克隆(TU-01)
  • 免疫细胞化学; 大鼠; 图 2
赛默飞世尔 TUBA3D抗体(Zymed, TU-01)被用于被用于免疫细胞化学在大鼠样本上 (图 2). J Neurochem (2000) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 1:20,000
赛默飞世尔 TUBA3D抗体(noco, noca)被用于被用于免疫印迹在人类样本上浓度为1:20,000. J Biol Chem (2000) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 TUBA3D抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2000) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 小鼠; 1:500; 图 5
赛默飞世尔 TUBA3D抗体(分子探针, A11126)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Anal Biochem (1999) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔 TUBA3D抗体(noco, B-5-1-2)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Biol Chem (1999) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; African green monkey; 图 5
赛默飞世尔 TUBA3D抗体(noco, YL1/2)被用于被用于免疫细胞化学在African green monkey样本上 (图 5). J Cell Biol (1999) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 大鼠; 1:200; 图 2
  • 免疫印迹; 大鼠; 1:12,000; 图 4
赛默飞世尔 TUBA3D抗体(noco, noca)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:12,000 (图 4). Mol Biol Cell (1999) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; 牛; 图 7
赛默飞世尔 TUBA3D抗体(分子探针, noco)被用于被用于免疫组化在牛样本上 (图 7). J Histochem Cytochem (1999) ncbi
小鼠 单克隆(TU-01)
  • 免疫细胞化学; 大鼠; 图 2
赛默飞世尔 TUBA3D抗体(Zymed, TU-01)被用于被用于免疫细胞化学在大鼠样本上 (图 2). J Neurosci (1999) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔 TUBA3D抗体(noco, DM1a)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Mol Biol Cell (1999) ncbi
小鼠 单克隆(236-10501)
  • 流式细胞仪; 人类; 1:10
赛默飞世尔 TUBA3D抗体(Zymed, noca)被用于被用于流式细胞仪在人类样本上浓度为1:10. Cytometry (1998) ncbi
大鼠 单克隆(YL1/2)
  • 免疫细胞化学; Dictyostelium discoideum; 图 1a
赛默飞世尔 TUBA3D抗体(noco, YL l/2)被用于被用于免疫细胞化学在Dictyostelium discoideum样本上 (图 1a). Exp Cell Res (1984) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; fruit fly ; 图 4
赛默飞世尔 TUBA3D抗体(noco, noca)被用于被用于免疫组化在fruit fly 样本上 (图 4). Development (1992) ncbi
圣克鲁斯生物技术
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 大鼠; 1:10,000; 图 2b
  • 免疫印迹; 大鼠; 1:10,000; 图 2a
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc23950)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:10,000 (图 2b) 和 被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 2a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000; 图 3e
圣克鲁斯生物技术 TUBA3D抗体(SCBT, Sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Cell Commun Signal (2021) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 图 6g
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在小鼠样本上 (图 6g). PLoS Genet (2021) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:5000; 图 4c
圣克鲁斯生物技术 TUBA3D抗体(Santa, sc-5286)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4c). Nat Commun (2021) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 4c
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上 (图 4c). Oncogene (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:100; 图 7c
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-23950)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7c). elife (2021) ncbi
小鼠 单克隆(B-7)
  • 免疫组化; 小鼠; 1:200; 图 7a
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc5286)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7a). Nat Commun (2021) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 1:1000; 图 s3-1a
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc8035)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3-1a). elife (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 人类; 1:100; 图 1s1a
圣克鲁斯生物技术 TUBA3D抗体(Santa, sc-23950)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1s1a). elife (2021) ncbi
大鼠 单克隆(YOL1/34)
  • 免疫印迹; 人类; 1:2000; 图 1a
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-53030)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). elife (2020) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000; 图 1c
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-32293)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1c). elife (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:160; 图 3a
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-23950)被用于被用于免疫细胞化学在人类样本上浓度为1:160 (图 3a). elife (2020) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 5a). Signal Transduct Target Ther (2020) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:200; 图 1c
圣克鲁斯生物技术 TUBA3D抗体(Santa, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1c). Cancers (Basel) (2020) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:500; 图 5c
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-32293)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5c). elife (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 3d
  • 免疫印迹; 大鼠; 图 3e, s4b
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3a
  • 免疫细胞化学; 人类; 1:200; 图 2a
  • 免疫印迹; 人类; 图 4e, 5a
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-23950)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 3d), 被用于免疫印迹在大鼠样本上 (图 3e, s4b), 被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3a), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 2a) 和 被用于免疫印迹在人类样本上 (图 4e, 5a). Theranostics (2020) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10,000; 图 1a
圣克鲁斯生物技术 TUBA3D抗体(Santa, sc-32293)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1a). elife (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000; 图 1a
圣克鲁斯生物技术 TUBA3D抗体(Santa, sc-32293)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Nat Commun (2019) ncbi
小鼠 单克隆(B-7)
  • 免疫细胞化学; 人类; 1:100; 图 1s3a
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1s3a). elife (2019) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:500; 图 3h
圣克鲁斯生物技术 TUBA3D抗体(Santa, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3h). elife (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 图 2g
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-23950)被用于被用于免疫细胞化学在人类样本上 (图 2g). Cell Rep (2019) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 2i
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 2i). Cell Rep (2019) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 图 4j
圣克鲁斯生物技术 TUBA3D抗体(Santa, sc-8035)被用于被用于免疫印迹在小鼠样本上 (图 4j). Cell Rep (2019) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 TUBA3D抗体(Santa, sc-8035)被用于被用于免疫印迹在人类样本上 (图 3a). Leukemia (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 人类; 图 1c
圣克鲁斯生物技术 TUBA3D抗体(Santa, sc-23950)被用于被用于免疫组化在人类样本上 (图 1c). EMBO J (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图 6a
  • 免疫细胞化学; 人类; 图 6g
  • 免疫印迹; 人类; 图 6e
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-23950)被用于被用于免疫印迹在小鼠样本上 (图 6a), 被用于免疫细胞化学在人类样本上 (图 6g) 和 被用于免疫印迹在人类样本上 (图 6e). Cell Death Differ (2018) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术 TUBA3D抗体(Santa, sc-8035)被用于被用于免疫印迹在人类样本上 (图 5b). Nucleic Acids Res (2018) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
圣克鲁斯生物技术 TUBA3D抗体(Santacruz, sc-8035)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). Sci Rep (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图 6g
圣克鲁斯生物技术 TUBA3D抗体(SantaCruz, 6-11B-1)被用于被用于免疫印迹在小鼠样本上 (图 6g). Haematologica (2017) ncbi
小鼠 单克隆(TU-02)
  • 免疫细胞化学; 人类; 图 5a
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, TU-02)被用于被用于免疫细胞化学在人类样本上 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 大鼠; 1:1000; 图 6s1
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6s1). elife (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 大鼠; 图 3
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在大鼠样本上 (图 3). Physiol Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图 7
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-32293)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). elife (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 1). Cancer Cell Int (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 大鼠; 图 2a
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-23950)被用于被用于免疫细胞化学在大鼠样本上 (图 2a). Sci Rep (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫细胞化学; 人类; 图 8b
  • 免疫印迹; 人类; 图 5e
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫细胞化学在人类样本上 (图 8b) 和 被用于免疫印迹在人类样本上 (图 5e). Nat Cell Biol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图 7
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-23950)被用于被用于免疫印迹在小鼠样本上 (图 7). Front Neurosci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, Sc-32293)被用于被用于免疫印迹在人类样本上 (图 1). F1000Res (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 图 s1
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, TU-02)被用于被用于免疫印迹在小鼠样本上 (图 s1). Mol Cell Oncol (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 5H
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 5H). PLoS ONE (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-32293)被用于被用于免疫印迹在人类样本上 (图 5). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫细胞化学; 小鼠; 1:500; 图 2b
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2b). Peerj (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 6). PLoS Pathog (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 大鼠; 1:1000; 图 5
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Int J Med Sci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:200; 图 1
圣克鲁斯生物技术 TUBA3D抗体(Santa-Cruz Biotechnology, sc-32293)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 1). BMC Mol Biol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 非洲爪蛙; 1:500; 图 s1
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, 6-11B-1)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:500 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 1D
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 1D). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图 5b
圣克鲁斯生物技术 TUBA3D抗体(santa cruz, sc-32293)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5b). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1 ug/ml; 图 5
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-23950)被用于被用于免疫印迹在小鼠样本上浓度为1 ug/ml (图 5). Nat Commun (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 1:200; 图 2
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-398103)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 2). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-32293)被用于被用于免疫印迹在人类样本上 (图 3). Cell Signal (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, TU-02)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Cell Sci (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TUBA3D抗体(santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, SC-5286)被用于被用于免疫印迹在小鼠样本上 (图 4). Cell Death Dis (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 TUBA3D抗体(santa Cruz, sc5286)被用于被用于免疫印迹在小鼠样本上 (图 1). elife (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术 TUBA3D抗体(santa cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 1b). J Cell Sci (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:500; 图 3g
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3g). Am J Hum Genet (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Biol (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, SC-32293)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Mol Oncol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, SC-23950)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Mol Oncol (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:200; 图 6
  • 免疫印迹; 小鼠; 1:200; 图 6
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 犬; 1:1000; 图 2
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, SC-8035)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 2). elife (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000; 图 s3
圣克鲁斯生物技术 TUBA3D抗体(santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). Oncotarget (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 大鼠; 1:10,000; 图 1
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnologies, sc-8035)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 1). In Vitro Cell Dev Biol Anim (2016) ncbi
大鼠 单克隆(YOL1/34)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-53030)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:2000; 图 4
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). Nat Cell Biol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-23950)被用于被用于免疫印迹在人类样本上 (图 3). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 7
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, DM1A)被用于被用于免疫印迹在小鼠样本上 (图 7). Gene (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:2000; 图 5a
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, Sc-23950)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). Brain Behav (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 3
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz), DM1A)被用于被用于免疫细胞化学在人类样本上 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:500; 图 6
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, TU-02)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在小鼠样本上. Biochem Pharmacol (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, TU-02)被用于被用于免疫印迹在人类样本上 (图 6). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS Genet (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上. J Proteomics (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上. Leukemia (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 大鼠; 1:1000; 图 5
圣克鲁斯生物技术 TUBA3D抗体(santa Cruz, sc-8035)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:2000; 图 3c
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, SC-8035)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Bioorg Med Chem (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 s1c
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, SC-8035)被用于被用于免疫印迹在人类样本上 (图 s1c). Cell Death Differ (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-32293)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-32293)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 1:200; 图 8
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫组化; 小鼠; 图 8c
  • 免疫印迹; 小鼠; 1:1000; 图 8a
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫组化在小鼠样本上 (图 8c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). PLoS ONE (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 TUBA3D抗体(santa Cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, SC-32293)被用于被用于免疫印迹在小鼠样本上. Mol Oncol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, SC-23950)被用于被用于免疫印迹在小鼠样本上. Mol Oncol (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 4b). Cell Death Dis (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:250; 图 1
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1). Drug Metab Dispos (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 图 1, 6
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在小鼠样本上 (图 1, 6). Autophagy (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 TUBA3D抗体(santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 大鼠; 1:10,000; 图 3
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 3). BMC Gastroenterol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 f6
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, DM1A)被用于被用于免疫印迹在小鼠样本上 (图 f6). Sci Signal (2015) ncbi
大鼠 单克隆(YOL1/34)
  • 免疫印迹; brewer's yeast; 图 s4
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-53030)被用于被用于免疫印迹在brewer's yeast样本上 (图 s4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 图 5f
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在小鼠样本上 (图 5f). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 图 s5e
圣克鲁斯生物技术 TUBA3D抗体(santa cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上 (图 s5e). Nat Immunol (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Biol Chem (2015) ncbi
小鼠 单克隆(B-7)
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, B-7)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫细胞化学; 人类; 2 ug/ml
圣克鲁斯生物技术 TUBA3D抗体(Santa, sc-8035)被用于被用于免疫细胞化学在人类样本上浓度为2 ug/ml. Oncotarget (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 5d
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, 8035)被用于被用于免疫印迹在人类样本上 (图 5d). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, DM1A)被用于被用于免疫印迹在人类样本上. Sci Rep (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在大鼠样本上. Physiol Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-32293)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cancer Biol Ther (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Cell Death Dis (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 TUBA3D抗体(santa cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 5). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:1000
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-23950)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. J Biol Chem (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, Sc-8035)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Biochem (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 4c
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, DM1A)被用于被用于免疫印迹在人类样本上 (图 4c). Biochem J (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, B-7)被用于被用于免疫印迹在小鼠样本上. Oncotarget (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在小鼠样本上. J Clin Invest (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-32293)被用于被用于免疫印迹在人类样本上 (图 6). J Virol (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TUBA3D抗体(Santa-Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; 人类; 1:400
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-32293)被用于被用于免疫组化在人类样本上浓度为1:400. Respir Res (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:5000; 图 3
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). J Cell Physiol (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Prostate (2015) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:3000
圣克鲁斯生物技术 TUBA3D抗体(Santacruz, TU-02)被用于被用于免疫印迹在人类样本上浓度为1:3000. Cancer Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 白色念珠菌; 1:1000; 图 9
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-32293)被用于被用于免疫细胞化学在白色念珠菌样本上浓度为1:1000 (图 9). Nat Commun (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, SC-8035)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 克氏锥虫; 1:100
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, DM1A)被用于被用于免疫细胞化学在克氏锥虫样本上浓度为1:100. Mem Inst Oswaldo Cruz (2014) ncbi
小鼠 单克隆(TU-02)
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于. Cell Death Dis (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上. J Agric Food Chem (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上. Ann Neurol (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 猕猴; 图 2
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc5286)被用于被用于免疫印迹在猕猴样本上 (图 2). Mol Endocrinol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-32293)被用于被用于免疫印迹在小鼠样本上 (图 4). J Immunol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-23950)被用于被用于免疫印迹在小鼠样本上 (图 4). J Immunol (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology Inc, sc-5286)被用于被用于免疫印迹在人类样本上. Mol Cell Proteomics (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc8035)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上. J Proteome Res (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 TUBA3D抗体(santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫组化; 大鼠; 1:500
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotech, TU-02)被用于被用于免疫组化在大鼠样本上浓度为1:500. Exp Eye Res (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在小鼠样本上. J Innate Immun (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-32293)被用于被用于免疫细胞化学在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上. FEBS Lett (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:250
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:250. PLoS ONE (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 1:250
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-23950)被用于被用于免疫印迹在人类样本上浓度为1:250. PLoS ONE (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; African green monkey; 1:16,000
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在African green monkey样本上浓度为1:16,000. Biol Reprod (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:2500
  • 免疫印迹; 人类; 1:2500
圣克鲁斯生物技术 TUBA3D抗体(SantaCruz, SC-5286)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 和 被用于免疫印迹在人类样本上浓度为1:2500. Eur Respir J (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:5000; 图 st13
圣克鲁斯生物技术 TUBA3D抗体(Santa cruz, sc-5286)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 st13). Nat Cell Biol (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-32293)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:1000. Hum Mol Genet (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在小鼠样本上 (图 5). Endocrinology (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-23950)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, DM1A)被用于被用于免疫细胞化学在人类样本上. Cell Cycle (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:10,000; 图 3
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnologies, sc-8035)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). In Vitro Cell Dev Biol Anim (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫组化; 大鼠
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, s-5286)被用于被用于免疫组化在大鼠样本上. Methods Mol Biol (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:8000
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上浓度为1:8000. Diabetes (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在人类样本上. J Dermatol Sci (2014) ncbi
大鼠 单克隆(YOL1/34)
  • 免疫印迹; fission yeast
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-53030)被用于被用于免疫印迹在fission yeast样本上. Mol Cell Biol (2013) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Diabetologia (2013) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology,, sc-5286)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa-Cruz, sc-8035)被用于被用于免疫印迹在人类样本上. Cancer Res (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:2000
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-23950)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. J Comp Neurol (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在大鼠样本上. J Gerontol A Biol Sci Med Sci (2014) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Addict Biol (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Eur J Immunol (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-32293)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(B-7)
  • 免疫细胞化学; 鸡; 1:2500
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫细胞化学在鸡样本上浓度为1:2500. PLoS Genet (2013) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 1:10,000
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz biotechnology, Sc-8035)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. PLoS ONE (2013) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在大鼠样本上. Autophagy (2013) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类; 1:5000
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, SC-8035)被用于被用于免疫印迹在人类样本上浓度为1:5000. PLoS ONE (2012) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, Sc 5286)被用于被用于免疫印迹在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, Sc-8035)被用于被用于免疫印迹在人类样本上. Carcinogenesis (2013) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 小鼠; 1:1000; 图 7
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz, sc-8035)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). BMC Dev Biol (2011) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, sc-8035)被用于被用于免疫印迹在人类样本上. J Biol Chem (2009) ncbi
小鼠 单克隆(TU-02)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA3D抗体(Santa Cruz Biotechnology, TU-02)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2005) ncbi
碧迪BD
小鼠 单克隆(TUJ1)
  • 流式细胞仪; 人类; 图 2b
碧迪BD TUBA3D抗体(BD Biosciences, 560394)被用于被用于流式细胞仪在人类样本上 (图 2b). Stem Cell Res (2019) ncbi
小鼠 单克隆(TUJ1)
  • 流式细胞仪; 人类; 图 1d
碧迪BD TUBA3D抗体(BD Biosciences, 560394)被用于被用于流式细胞仪在人类样本上 (图 1d). Brain Behav Immun (2019) ncbi
小鼠 单克隆(TUJ1)
  • 流式细胞仪; 人类; 1:50; 图 s4c
碧迪BD TUBA3D抗体(BD Pharmingen, 560338)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s4c). Nat Biotechnol (2017) ncbi
小鼠 单克隆(5H1)
  • 免疫印迹; 小鼠; 1:2500; 图 1c
碧迪BD TUBA3D抗体(BD Pharmingen, 5H1)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 1c). Transl Psychiatry (2015) ncbi
小鼠 单克隆(TUJ1)
  • 流式细胞仪; 人类; 图 1
碧迪BD TUBA3D抗体(Becton Dickinson, 560338)被用于被用于流式细胞仪在人类样本上 (图 1). J Cell Biochem (2015) ncbi
文章列表
  1. Werder R, Liu T, Abo K, Lindstrom Vautrin J, Villacorta Martin C, Huang J, et al. CRISPR interference interrogation of COPD GWAS genes reveals the functional significance of desmoplakin in iPSC-derived alveolar epithelial cells. Sci Adv. 2022;8:eabo6566 pubmed 出版商
  2. Chen L, Hu Q, Liu H, Zhao Y, Chan S, Wang J. Nogo-A Induced Polymerization of Microtubule Is Involved in the Inflammatory Heat Hyperalgesia in Rat Dorsal Root Ganglion Neurons. Int J Mol Sci. 2021;22: pubmed 出版商
  3. Sabbir M, Taylor C, Zahradka P. CAMKK2 regulates mitochondrial function by controlling succinate dehydrogenase expression, post-translational modification, megacomplex assembly, and activity in a cell-type-specific manner. Cell Commun Signal. 2021;19:98 pubmed 出版商
  4. Mateos Quiros C, Garrido Jimenez S, Álvarez Hernán G, Diaz Chamorro S, Barrera Lopez J, Francisco Morcillo J, et al. Junctional Adhesion Molecule 3 Expression in the Mouse Airway Epithelium Is Linked to Multiciliated Cells. Front Cell Dev Biol. 2021;9:622515 pubmed 出版商
  5. Zhang H, Shang R, Bi P. Feedback regulation of Notch signaling and myogenesis connected by MyoD-Dll1 axis. PLoS Genet. 2021;17:e1009729 pubmed 出版商
  6. Rivero Hinojosa S, Pugacheva E, Kang S, Mendez Catala C, Kovalchuk A, Strunnikov A, et al. The combined action of CTCF and its testis-specific paralog BORIS is essential for spermatogenesis. Nat Commun. 2021;12:3846 pubmed 出版商
  7. Zhao Y, Xie L, Shen C, Qi Q, Qin Y, Xing J, et al. SIRT2-knockdown rescues GARS-induced Charcot-Marie-Tooth neuropathy. Aging Cell. 2021;20:e13391 pubmed 出版商
  8. Qiu R, Wu J, Gudenas B, Northcott P, Wechsler Reya R, Lu Q. Depletion of kinesin motor KIF20A to target cell fate control suppresses medulloblastoma tumour growth. Commun Biol. 2021;4:552 pubmed 出版商
  9. Fischietti M, Eckerdt F, Blyth G, Arslan A, Mati W, Oku C, et al. Schlafen 5 as a novel therapeutic target in pancreatic ductal adenocarcinoma. Oncogene. 2021;40:3273-3286 pubmed 出版商
  10. Lamers M, Mykytyn A, Breugem T, Wang Y, Wu D, Riesebosch S, et al. Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation. elife. 2021;10: pubmed 出版商
  11. Ryu H, Lee H, Lee J, Noh H, Shin M, Kumar V, et al. The molecular dynamics of subdistal appendages in multi-ciliated cells. Nat Commun. 2021;12:612 pubmed 出版商
  12. Han J, Kwon S, Kim Y, Choi J, Kim J, Lee Y, et al. Ablation of STAT3 in Purkinje cells reorganizes cerebellar synaptic plasticity in long-term fear memory network. elife. 2021;10: pubmed 出版商
  13. Mykytyn A, Breugem T, Riesebosch S, Schipper D, van den Doel P, Rottier R, et al. SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site. elife. 2021;10: pubmed 出版商
  14. Schilpp C, Lochbaum R, Braubach P, Jonigk D, Frick M, Dietl P, et al. TGF-β1 increases permeability of ciliated airway epithelia via redistribution of claudin 3 from tight junction into cell nuclei. Pflugers Arch. 2021;473:287-311 pubmed 出版商
  15. Watts L, Natsume T, Saito Y, Garzón J, Dong Q, Boteva L, et al. The RIF1-long splice variant promotes G1 phase 53BP1 nuclear bodies to protect against replication stress. elife. 2020;9: pubmed 出版商
  16. Ilik I, Malszycki M, Lübke A, Schade C, Meierhofer D, Aktas T. SON and SRRM2 are essential for nuclear speckle formation. elife. 2020;9: pubmed 出版商
  17. Bozal Basterra L, Gonzalez Santamarta M, Muratore V, Bermejo Arteagabeitia A, Da Fonseca C, Barroso Gomila O, et al. LUZP1, a novel regulator of primary cilia and the actin cytoskeleton, is a contributing factor in Townes-Brocks Syndrome. elife. 2020;9: pubmed 出版商
  18. Ouyang L, Yan B, Liu Y, Mao C, Wang M, Liu N, et al. The deubiquitylase UCHL3 maintains cancer stem-like properties by stabilizing the aryl hydrocarbon receptor. Signal Transduct Target Ther. 2020;5:78 pubmed 出版商
  19. Gunesch J, Dixon A, Ebrahim T, Berrien Elliott M, Tatineni S, Kumar T, et al. CD56 regulates human NK cell cytotoxicity through Pyk2. elife. 2020;9: pubmed 出版商
  20. Booth D, King N. Genome editing enables reverse genetics of multicellular development in the choanoflagellate Salpingoeca rosetta. elife. 2020;9: pubmed 出版商
  21. Lorenzen M, Nielsen J, Andreassen C, Juul A, Toft B, Rajpert De Meyts E, et al. Luteinizing Hormone Receptor Is Expressed in Testicular Germ Cell Tumors: Possible Implications for Tumor Growth and Prognosis. Cancers (Basel). 2020;12: pubmed 出版商
  22. Chan K, Son S, Schmid E, Fletcher D. A viral fusogen hijacks the actin cytoskeleton to drive cell-cell fusion. elife. 2020;9: pubmed 出版商
  23. Chong W, Wang W, Lo C, Chiu T, Chang T, Liu Y, et al. Super-resolution microscopy reveals coupling between mammalian centriole subdistal appendages and distal appendages. elife. 2020;9: pubmed 出版商
  24. Li S, Wei Z, Li G, Zhang Q, Niu S, Xu D, et al. Silica Perturbs Primary Cilia and Causes Myofibroblast Differentiation during Silicosis by Reduction of the KIF3A-Repressor GLI3 Complex. Theranostics. 2020;10:1719-1732 pubmed 出版商
  25. Karge A, Bonar N, Wood S, Petersen C. tec-1 kinase negatively regulates regenerative neurogenesis in planarians. elife. 2020;9: pubmed 出版商
  26. Clark D, McMillan L, Tan S, Bellomo G, Massoue C, Thompson H, et al. Transient protein accumulation at the center of the T cell antigen-presenting cell interface drives efficient IL-2 secretion. elife. 2019;8: pubmed 出版商
  27. Vohnoutka R, Gulvady A, Goreczny G, Alpha K, Handelman S, Sexton J, et al. The focal adhesion scaffold protein Hic-5 regulates vimentin organization in fibroblasts. Mol Biol Cell. 2019;30:3037-3056 pubmed 出版商
  28. Thomson B, Carota I, Souma T, Soman S, Vestweber D, Quaggin S. Targeting the vascular-specific phosphatase PTPRB protects against retinal ganglion cell loss in a pre-clinical model of glaucoma. elife. 2019;8: pubmed 出版商
  29. Moriyama M, Koshiba T, Ichinohe T. Influenza A virus M2 protein triggers mitochondrial DNA-mediated antiviral immune responses. Nat Commun. 2019;10:4624 pubmed 出版商
  30. Lai Y, Zhu M, Wu W, Rokutanda N, Togashi Y, Liang W, et al. HERC2 regulates RPA2 by mediating ATR-induced Ser33 phosphorylation and ubiquitin-dependent degradation. Sci Rep. 2019;9:14257 pubmed 出版商
  31. Nil Z, Herv s R, Gerbich T, Leal P, Yu Z, Saraf A, et al. Amyloid-like Assembly Activates a Phosphatase in the Developing Drosophila Embryo. Cell. 2019;178:1403-1420.e21 pubmed 出版商
  32. Hu M, Schulze K, Ghildyal R, Henstridge D, Kolanowski J, New E, et al. Respiratory syncytial virus co-opts host mitochondrial function to favour infectious virus production. elife. 2019;8: pubmed 出版商
  33. Kang Y, Torrente L, Falzone A, Elkins C, Liu M, Asara J, et al. Cysteine dioxygenase 1 is a metabolic liability for non-small cell lung cancer. elife. 2019;8: pubmed 出版商
  34. Douanne T, André Grégoire G, Thys A, Trillet K, Gavard J, Bidere N. CYLD Regulates Centriolar Satellites Proteostasis by Counteracting the E3 Ligase MIB1. Cell Rep. 2019;27:1657-1665.e4 pubmed 出版商
  35. Bernardini C, Bertocchi M, Zannoni A, Salaroli R, Tubon I, Dothel G, et al. Constitutive and LPS-stimulated secretome of porcine Vascular Wall-Mesenchymal Stem Cells exerts effects on in vitro endothelial angiogenesis. BMC Vet Res. 2019;15:123 pubmed 出版商
  36. Kuang Y, Muñoz A, Nalula G, Santostefano K, Sanghez V, Sanchez G, et al. Evaluation of commonly used ectoderm markers in iPSC trilineage differentiation. Stem Cell Res. 2019;37:101434 pubmed 出版商
  37. Lin K, Qiang W, Zhu M, Ding Y, Shi Q, Chen X, et al. Mammalian Pum1 and Pum2 Control Body Size via Translational Regulation of the Cell Cycle Inhibitor Cdkn1b. Cell Rep. 2019;26:2434-2450.e6 pubmed 出版商
  38. Zhou N, Gutierrez Uzquiza A, Zheng X, Chang R, Vogl D, Garfall A, et al. RUNX proteins desensitize multiple myeloma to lenalidomide via protecting IKZFs from degradation. Leukemia. 2019;: pubmed 出版商
  39. Sachs N, Papaspyropoulos A, Zomer van Ommen D, Heo I, Böttinger L, Klay D, et al. Long-term expanding human airway organoids for disease modeling. EMBO J. 2019;38: pubmed 出版商
  40. Mantri C, St John A. Immune synapses between mast cells and γδ T cells limit viral infection. J Clin Invest. 2019;129:1094-1108 pubmed 出版商
  41. Hill J, Zuluaga Ramirez V, Gajghate S, Winfield M, Sriram U, Rom S, et al. Activation of GPR55 induces neuroprotection of hippocampal neurogenesis and immune responses of neural stem cells following chronic, systemic inflammation. Brain Behav Immun. 2019;76:165-181 pubmed 出版商
  42. Li W, Yue F, Dai Y, Shi B, Xu G, Jiang X, et al. Suppressor of hepatocellular carcinoma RASSF1A activates autophagy initiation and maturation. Cell Death Differ. 2018;: pubmed 出版商
  43. Liu H, Lorenzini P, Zhang F, Xu S, Wong M, Zheng J, et al. Alternative splicing analysis in human monocytes and macrophages reveals MBNL1 as major regulator. Nucleic Acids Res. 2018;46:6069-6086 pubmed 出版商
  44. Xu P, Tao X, Zhao C, Huang Q, Chang H, Ban N, et al. DTX3L is upregulated in glioma and is associated with glioma progression. Int J Mol Med. 2017;40:491-498 pubmed 出版商
  45. Shin J, Choi D, Sohn K, Kim J, Im M, Lee Y, et al. Targeted deletion of Crif1 in mouse epidermis impairs skin homeostasis and hair morphogenesis. Sci Rep. 2017;7:44828 pubmed 出版商
  46. Miles A, Burr S, Grice G, Nathan J. The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1? prolyl hydroxylation by regulating cellular iron levels. elife. 2017;6: pubmed 出版商
  47. van Riel W, Rai A, Bianchi S, Katrukha E, Liu Q, Heck A, et al. Kinesin-4 KIF21B is a potent microtubule pausing factor. elife. 2017;6: pubmed 出版商
  48. Oliazadeh N, Gorman K, Eveleigh R, Bourque G, Moreau A. Identification of Elongated Primary Cilia with Impaired Mechanotransduction in Idiopathic Scoliosis Patients. Sci Rep. 2017;7:44260 pubmed 出版商
  49. Assis L, Silva Junior R, Dolce L, Alborghetti M, Honorato R, Nascimento A, et al. The molecular motor Myosin Va interacts with the cilia-centrosomal protein RPGRIP1L. Sci Rep. 2017;7:43692 pubmed 出版商
  50. Qi Y, Zhang X, Renier N, Wu Z, Atkin T, Sun Z, et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol. 2017;35:154-163 pubmed 出版商
  51. Beauchemin H, Shooshtarizadeh P, Vadnais C, Vassen L, Pastore Y, Moroy T. Gfi1b controls integrin signaling-dependent cytoskeleton dynamics and organization in megakaryocytes. Haematologica. 2017;102:484-497 pubmed 出版商
  52. Schauwecker S, Kim J, Licht J, Clevenger C. Histone H1 and Chromosomal Protein HMGN2 Regulate Prolactin-induced STAT5 Transcription Factor Recruitment and Function in Breast Cancer Cells. J Biol Chem. 2017;292:2237-2254 pubmed 出版商
  53. Sierra Potchanant E, Cerabona D, Sater Z, He Y, Sun Z, Gehlhausen J, et al. INPP5E Preserves Genomic Stability through Regulation of Mitosis. Mol Cell Biol. 2017;37: pubmed 出版商
  54. van de Ven R, de Groot J, Park D, van Domselaar R, de Jong D, Szuhai K, et al. p120-catenin prevents multinucleation through control of MKLP1-dependent RhoA activity during cytokinesis. Nat Commun. 2016;7:13874 pubmed 出版商
  55. Jung J, Jung H, Neupane S, Kim K, Kim J, Yamamoto H, et al. Involvement of PI3K and PKA pathways in mouse tongue epithelial differentiation. Acta Histochem. 2017;119:92-98 pubmed 出版商
  56. Da Ros M, Lehtiniemi T, Olotu O, Fischer D, Zhang F, Vihinen H, et al. FYCO1 and autophagy control the integrity of the haploid male germ cell-specific RNP granules. Autophagy. 2017;13:302-321 pubmed 出版商
  57. Mir R, Aranda L, Biaocchi T, Luo A, Sylvester A, Rasmussen C. A DII Domain-Based Auxin Reporter Uncovers Low Auxin Signaling during Telophase and Early G1. Plant Physiol. 2017;173:863-871 pubmed 出版商
  58. Hamdan M, Jones K, Cheong Y, Lane S. The sensitivity of the DNA damage checkpoint prevents oocyte maturation in endometriosis. Sci Rep. 2016;6:36994 pubmed 出版商
  59. Artemenko Y, Axiotakis L, Borleis J, Iglesias P, Devreotes P. Chemical and mechanical stimuli act on common signal transduction and cytoskeletal networks. Proc Natl Acad Sci U S A. 2016;113:E7500-E7509 pubmed
  60. Vuono E, Mukherjee A, Vierra D, Adroved M, Hodson C, Deans A, et al. The PTEN phosphatase functions cooperatively with the Fanconi anemia proteins in DNA crosslink repair. Sci Rep. 2016;6:36439 pubmed 出版商
  61. Fang Y, Kong Y, Xi J, Zhu M, Zhu T, Jiang T, et al. Preclinical activity of MBM-5 in gastrointestinal cancer by inhibiting NEK2 kinase activity. Oncotarget. 2016;7:79327-79341 pubmed 出版商
  62. Tofangchi A, Fan A, Saif M. Mechanism of Axonal Contractility in Embryonic Drosophila Motor Neurons In Vivo. Biophys J. 2016;111:1519-1527 pubmed 出版商
  63. Oksdath M, Guil A, Grassi D, Sosa L, Quiroga S. The Motor KIF5C Links the Requirements of Stable Microtubules and IGF-1 Receptor Membrane Insertion for Neuronal Polarization. Mol Neurobiol. 2017;54:6085-6096 pubmed 出版商
  64. Zhuang J, Kamp W, Li J, Liu C, Kang J, Wang P, et al. Forkhead Box O3A (FOXO3) and the Mitochondrial Disulfide Relay Carrier (CHCHD4) Regulate p53 Protein Nuclear Activity in Response to Exercise. J Biol Chem. 2016;291:24819-24827 pubmed
  65. Blanco F, Preet R, Aguado A, Vishwakarma V, Stevens L, Vyas A, et al. Impact of HuR inhibition by the small molecule MS-444 on colorectal cancer cell tumorigenesis. Oncotarget. 2016;7:74043-74058 pubmed 出版商
  66. Vanhoutte D, Schips T, Kwong J, Davis J, Tjondrokoesoemo A, Brody M, et al. Thrombospondin expression in myofibers stabilizes muscle membranes. elife. 2016;5: pubmed 出版商
  67. Hortemo K, Lunde P, Anonsen J, Kvaløy H, Munkvik M, Rehn T, et al. Exercise training increases protein O-GlcNAcylation in rat skeletal muscle. Physiol Rep. 2016;4: pubmed
  68. Justa Schuch D, Silva Garcia M, Pilla E, Engelke M, Kilisch M, Lenz C, et al. DPP9 is a novel component of the N-end rule pathway targeting the tyrosine kinase Syk. elife. 2016;5: pubmed 出版商
  69. Chen R, Wang S, Zhang Y, Hou R, Jiang J, Cui H. CD147 promotes cell motility via upregulation of p190-B RhoGAP in hepatocellular carcinoma. Cancer Cell Int. 2016;16:69 pubmed 出版商
  70. Xiaojun W, Yan L, Hong X, Xianghong Z, Shifeng L, Dingjie X, et al. Acetylated ?-Tubulin Regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) Exerts the Anti-fibrotic Effect in Rat Lung Fibrosis Induced by Silica. Sci Rep. 2016;6:32257 pubmed 出版商
  71. Balboula A, Nguyen A, Gentilello A, Quartuccio S, Drutovic D, Solc P, et al. Haspin kinase regulates microtubule-organizing center clustering and stability through Aurora kinase C in mouse oocytes. J Cell Sci. 2016;129:3648-3660 pubmed
  72. Naidenow J, Hrgovic I, Doll M, Hailemariam Jahn T, Lang V, Kleemann J, et al. Peroxisome proliferator-activated receptor (PPAR) ? and ? activators induce ICAM-1 expression in quiescent non stimulated endothelial cells. J Inflamm (Lond). 2016;13:27 pubmed 出版商
  73. Liu Q, Liu F, Yu K, Tas R, Grigoriev I, Remmelzwaal S, et al. MICAL3 Flavoprotein Monooxygenase Forms a Complex with Centralspindlin and Regulates Cytokinesis. J Biol Chem. 2016;291:20617-29 pubmed 出版商
  74. Ramakrishnan S, Ku S, Ciamporcero E, Miles K, Attwood K, Chintala S, et al. HDAC 1 and 6 modulate cell invasion and migration in clear cell renal cell carcinoma. BMC Cancer. 2016;16:617 pubmed 出版商
  75. Zhou A, Lin K, Zhang S, Chen Y, Zhang N, Xue J, et al. Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol. 2016;18:954-966 pubmed 出版商
  76. Busse B, Bezrukov L, Blank P, Zimmerberg J. Resin embedded multicycle imaging (REMI): a tool to evaluate protein domains. Sci Rep. 2016;6:30284 pubmed 出版商
  77. Furukawa Y, Tanemura K, Igarashi K, Ideta Otsuka M, Aisaki K, Kitajima S, et al. Learning and Memory Deficits in Male Adult Mice Treated with a Benzodiazepine Sleep-Inducing Drug during the Juvenile Period. Front Neurosci. 2016;10:339 pubmed 出版商
  78. Harrington K, Clevenger C. Identification of NEK3 Kinase Threonine 165 as a Novel Regulatory Phosphorylation Site That Modulates Focal Adhesion Remodeling Necessary for Breast Cancer Cell Migration. J Biol Chem. 2016;291:21388-21406 pubmed
  79. Bernabé Rubio M, Andrés G, Casares Arias J, Fernández Barrera J, Rangel L, Reglero Real N, et al. Novel role for the midbody in primary ciliogenesis by polarized epithelial cells. J Cell Biol. 2016;214:259-73 pubmed 出版商
  80. Mihajlovic A, Bruce A. Rho-associated protein kinase regulates subcellular localisation of Angiomotin and Hippo-signalling during preimplantation mouse embryo development. Reprod Biomed Online. 2016;33:381-90 pubmed 出版商
  81. Harwardt T, Lukas S, Zenger M, Reitberger T, Danzer D, Übner T, et al. Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response. PLoS Pathog. 2016;12:e1005748 pubmed 出版商
  82. Peng H, Cheng Y, Hsu Y, Wu G, Kuo C, Liou J, et al. MPT0B098, a Microtubule Inhibitor, Suppresses JAK2/STAT3 Signaling Pathway through Modulation of SOCS3 Stability in Oral Squamous Cell Carcinoma. PLoS ONE. 2016;11:e0158440 pubmed 出版商
  83. Medler T, Craig J, Fiorillo A, Feeney Y, Harrell J, Clevenger C. HDAC6 Deacetylates HMGN2 to Regulate Stat5a Activity and Breast Cancer Growth. Mol Cancer Res. 2016;14:994-1008 pubmed
  84. Grainger D, Kutzler L, Rannels S, Kimball S. Validation of a commercially available anti-REDD1 antibody using RNA interference and REDD1-/- mouse embryonic fibroblasts. F1000Res. 2016;5:250 pubmed 出版商
  85. Cunningham D, Parajuli K, Zhang C, Wang G, Mei J, Zhang Q, et al. Monomethyl Auristatin E Phosphate Inhibits Human Prostate Cancer Growth. Prostate. 2016;76:1420-30 pubmed 出版商
  86. Hamlin A, Basford J, Jaeschke A, Hui D. LRP1 Protein Deficiency Exacerbates Palmitate-induced Steatosis and Toxicity in Hepatocytes. J Biol Chem. 2016;291:16610-9 pubmed 出版商
  87. Gómez Sánchez R, Yakhine Diop S, Bravo San Pedro J, Pizarro Estrella E, Rodríguez Arribas M, Climent V, et al. PINK1 deficiency enhances autophagy and mitophagy induction. Mol Cell Oncol. 2016;3:e1046579 pubmed 出版商
  88. Xi Z, Yao M, Li Y, Xie C, Holst J, Liu T, et al. Guttiferone K impedes cell cycle re-entry of quiescent prostate cancer cells via stabilization of FBXW7 and subsequent c-MYC degradation. Cell Death Dis. 2016;7:e2252 pubmed 出版商
  89. Singh V, Singh M, Gorantla S, Poluektova L, Maggirwar S. Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice. Sci Rep. 2016;6:26876 pubmed 出版商
  90. Trairatphisan P, Wiesinger M, Bahlawane C, Haan S, Sauter T. A Probabilistic Boolean Network Approach for the Analysis of Cancer-Specific Signalling: A Case Study of Deregulated PDGF Signalling in GIST. PLoS ONE. 2016;11:e0156223 pubmed 出版商
  91. Derussy B, Boland M, Tandon R. Human Cytomegalovirus pUL93 Links Nucleocapsid Maturation and Nuclear Egress. J Virol. 2016;90:7109-7117 pubmed 出版商
  92. Elbaz B, Traka M, Kunjamma R, Dukala D, Brosius Lutz A, Anton E, et al. Adenomatous polyposis coli regulates radial axonal sorting and myelination in the PNS. Development. 2016;143:2356-66 pubmed 出版商
  93. Rao S, Flores Rodriguez N, Page S, Wong C, Robinson P, Chircop M. The Clathrin-dependent Spindle Proteome. Mol Cell Proteomics. 2016;15:2537-53 pubmed 出版商
  94. Kwon O, Kim K, Lee E, Kim M, Choi S, Li H, et al. Induction of MiR-21 by Stereotactic Body Radiotherapy Contributes to the Pulmonary Fibrotic Response. PLoS ONE. 2016;11:e0154942 pubmed 出版商
  95. Watanabe Y, Papoutsoglou P, Maturi V, Tsubakihara Y, Hottiger M, Heldin C, et al. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation. J Biol Chem. 2016;291:12706-23 pubmed 出版商
  96. Matias A, Manieri T, Cerchiaro G. Zinc Chelation Mediates the Lysosomal Disruption without Intracellular ROS Generation. Oxid Med Cell Longev. 2016;2016:6724585 pubmed 出版商
  97. Li R, Jin Z, Gao L, Liu P, Yang Z, Zhang D. Effective protein inhibition in intact mouse oocytes through peptide nanoparticle-mediated antibody transfection. Peerj. 2016;4:e1849 pubmed 出版商
  98. Jung A, Stoiber C, Herkt C, Schulz C, Bertrams W, Schmeck B. Legionella pneumophila-Derived Outer Membrane Vesicles Promote Bacterial Replication in Macrophages. PLoS Pathog. 2016;12:e1005592 pubmed 出版商
  99. Lai C, Tsai C, Kuo W, Ho T, Day C, Pai P, et al. Multi-Strain Probiotics Inhibit Cardiac Myopathies and Autophagy to Prevent Heart Injury in High-Fat Diet-Fed Rats. Int J Med Sci. 2016;13:277-85 pubmed 出版商
  100. Pinz S, Unser S, Rascle A. Signal transducer and activator of transcription STAT5 is recruited to c-Myc super-enhancer. BMC Mol Biol. 2016;17:10 pubmed 出版商
  101. Chozinski T, Halpern A, Okawa H, Kim H, Tremel G, Wong R, et al. Expansion microscopy with conventional antibodies and fluorescent proteins. Nat Methods. 2016;13:485-8 pubmed 出版商
  102. Chu C, Ossipova O, Ioannou A, Sokol S. Prickle3 synergizes with Wtip to regulate basal body organization and cilia growth. Sci Rep. 2016;6:24104 pubmed 出版商
  103. Fortes M, Marzuca Nassr G, Vitzel K, da Justa Pinheiro C, Newsholme P, Curi R. Housekeeping proteins: How useful are they in skeletal muscle diabetes studies and muscle hypertrophy models?. Anal Biochem. 2016;504:38-40 pubmed 出版商
  104. Thakur B, Dasgupta N, Ta A, Das S. Physiological TLR5 expression in the intestine is regulated by differential DNA binding of Sp1/Sp3 through simultaneous Sp1 dephosphorylation and Sp3 phosphorylation by two different PKC isoforms. Nucleic Acids Res. 2016;44:5658-72 pubmed 出版商
  105. Guerrera D, Shah J, Vasileva E, Sluysmans S, Méan I, Jond L, et al. PLEKHA7 Recruits PDZD11 to Adherens Junctions to Stabilize Nectins. J Biol Chem. 2016;291:11016-29 pubmed 出版商
  106. Amarnath S, Agarwala S. Cell-cycle-dependent TGF?-BMP antagonism regulates neural tube closure by modulating tight junctions. J Cell Sci. 2017;130:119-131 pubmed 出版商
  107. Prieto J, León M, Ponsoda X, Sendra R, Bort R, Ferrer Lorente R, et al. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat Commun. 2016;7:11124 pubmed 出版商
  108. Stritt S, Nurden P, Favier R, Favier M, Ferioli S, Gotru S, et al. Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg(2+) homeostasis and cytoskeletal architecture. Nat Commun. 2016;7:11097 pubmed 出版商
  109. Xing Y, Sun W, Wang Y, Gao F, Ma H. Mutual inhibition of insulin signaling and PHLPP-1 determines cardioprotective efficiency of Akt in aged heart. Aging (Albany NY). 2016;8:873-88 pubmed 出版商
  110. Kimball S, Gordon B, Moyer J, Dennis M, Jefferson L. Leucine induced dephosphorylation of Sestrin2 promotes mTORC1 activation. Cell Signal. 2016;28:896-906 pubmed 出版商
  111. Douanne T, Gavard J, Bidère N. The paracaspase MALT1 cleaves the LUBAC subunit HOIL1 during antigen receptor signaling. J Cell Sci. 2016;129:1775-80 pubmed 出版商
  112. Pal K, Hwang S, Somatilaka B, Badgandi H, Jackson P, DeFea K, et al. Smoothened determines ?-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium. J Cell Biol. 2016;212:861-75 pubmed 出版商
  113. Sakakini N, Turchi L, Bergon A, Holota H, Rekima S, Lopez F, et al. A Positive Feed-forward Loop Associating EGR1 and PDGFA Promotes Proliferation and Self-renewal in Glioblastoma Stem Cells. J Biol Chem. 2016;291:10684-99 pubmed 出版商
  114. Müller M, Mönkemöller V, Hennig S, Hubner W, Huser T. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat Commun. 2016;7:10980 pubmed 出版商
  115. Lee T, Liu C, Chang Y, Nieh S, Lin Y, Jao S, et al. Increased chemoresistance via Snail-Raf kinase inhibitor protein signaling in colorectal cancer in response to a nicotine derivative. Oncotarget. 2016;7:23512-20 pubmed 出版商
  116. Du Z, Li L, Huang X, Jin J, Huang S, Zhang Q, et al. The epigenetic modifier CHD5 functions as a novel tumor suppressor for renal cell carcinoma and is predominantly inactivated by promoter CpG methylation. Oncotarget. 2016;7:21618-30 pubmed 出版商
  117. Gilormini M, Malesys C, Armandy E, Manas P, Guy J, Magne N, et al. Preferential targeting of cancer stem cells in the radiosensitizing effect of ABT-737 on HNSCC. Oncotarget. 2016;7:16731-44 pubmed 出版商
  118. Bhardwaj R, Kumar R, Singh S, Selvaraj C, Dubey V. Understanding the importance of conservative hypothetical protein LdBPK_070020 in Leishmania donovani and its role in subsistence of the parasite. Arch Biochem Biophys. 2016;596:10-21 pubmed 出版商
  119. Marchildon F, Fu D, Lala Tabbert N, Wiper Bergeron N. CCAAT/enhancer binding protein beta protects muscle satellite cells from apoptosis after injury and in cancer cachexia. Cell Death Dis. 2016;7:e2109 pubmed 出版商
  120. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  121. Hong J, Lee J, Chung I. Telomerase activates transcription of cyclin D1 gene through an interaction with NOL1. J Cell Sci. 2016;129:1566-79 pubmed 出版商
  122. Chuang T, Lee K, Lou Y, Lu C, Tarn W. A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement. J Biol Chem. 2016;291:8565-74 pubmed 出版商
  123. Fu Z, Wang L, Cui H, Peng J, Wang S, Geng J, et al. A novel small-molecule compound targeting CD147 inhibits the motility and invasion of hepatocellular carcinoma cells. Oncotarget. 2016;7:9429-47 pubmed 出版商
  124. Wen B, Li S, Li H, Chen Y, Ma X, Wang J, et al. Microphthalmia-associated transcription factor regulates the visual cycle genes Rlbp1 and Rdh5 in the retinal pigment epithelium. Sci Rep. 2016;6:21208 pubmed 出版商
  125. Divisato G, Formicola D, Esposito T, Merlotti D, Pazzaglia L, Del Fattore A, et al. ZNF687 Mutations in Severe Paget Disease of Bone Associated with Giant Cell Tumor. Am J Hum Genet. 2016;98:275-86 pubmed 出版商
  126. Maiden S, Petrova Y, Gumbiner B. Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model. PLoS ONE. 2016;11:e0148574 pubmed 出版商
  127. Di Magno L, Basile A, Coni S, Manni S, Sdruscia G, D Amico D, et al. The energy sensor AMPK regulates Hedgehog signaling in human cells through a unique Gli1 metabolic checkpoint. Oncotarget. 2016;7:9538-49 pubmed 出版商
  128. Moudry P, Watanabe K, Wolanin K, Bartkova J, Wassing I, Watanabe S, et al. TOPBP1 regulates RAD51 phosphorylation and chromatin loading and determines PARP inhibitor sensitivity. J Cell Biol. 2016;212:281-8 pubmed 出版商
  129. Goulielmaki M, Koustas E, Moysidou E, Vlassi M, Sasazuki T, Shirasawa S, et al. BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells. Oncotarget. 2016;7:9188-221 pubmed 出版商
  130. Ikeda S, Kitadate A, Ito M, Abe F, Nara M, Watanabe A, et al. Disruption of CCL20-CCR6 interaction inhibits metastasis of advanced cutaneous T-cell lymphoma. Oncotarget. 2016;7:13563-74 pubmed 出版商
  131. M L, P P, T K, M P, E S, J P, et al. Essential role of HDAC6 in the regulation of PD-L1 in melanoma. Mol Oncol. 2016;10:735-750 pubmed 出版商
  132. Faria J, Loureiro I, Santarém N, Macedo Ribeiro S, Tavares J, Cordeiro da Silva A. Leishmania infantum Asparagine Synthetase A Is Dispensable for Parasites Survival and Infectivity. PLoS Negl Trop Dis. 2016;10:e0004365 pubmed 出版商
  133. Camlin N, Sobinoff A, Sutherland J, Beckett E, Jarnicki A, Vanders R, et al. Maternal Smoke Exposure Impairs the Long-Term Fertility of Female Offspring in a Murine Model. Biol Reprod. 2016;94:39 pubmed 出版商
  134. Kono M, Heincke D, Wilcke L, Wong T, Bruns C, Herrmann S, et al. Pellicle formation in the malaria parasite. J Cell Sci. 2016;129:673-80 pubmed 出版商
  135. Graindorge A, Frénal K, Jacot D, Salamun J, Marq J, Soldati Favre D. The Conoid Associated Motor MyoH Is Indispensable for Toxoplasma gondii Entry and Exit from Host Cells. PLoS Pathog. 2016;12:e1005388 pubmed 出版商
  136. Vivar O, Masi G, Carpier J, Magalhaes J, Galgano D, Pazour G, et al. IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo. Proc Natl Acad Sci U S A. 2016;113:386-91 pubmed 出版商
  137. Cawthorn W, Scheller E, Parlee S, Pham H, Learman B, Redshaw C, et al. Expansion of Bone Marrow Adipose Tissue During Caloric Restriction Is Associated With Increased Circulating Glucocorticoids and Not With Hypoleptinemia. Endocrinology. 2016;157:508-21 pubmed 出版商
  138. Sakamoto A, Akiyama Y, Shimada S, Zhu W, Yuasa Y, Tanaka S. DNA Methylation in the Exon 1 Region and Complex Regulation of Twist1 Expression in Gastric Cancer Cells. PLoS ONE. 2015;10:e0145630 pubmed 出版商
  139. Brunati M, Perucca S, Han L, Cattaneo A, Consolato F, Andolfo A, et al. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin. elife. 2015;4:e08887 pubmed 出版商
  140. Duffy D, Krstic A, Halasz M, Schwarzl T, Fey D, Iljin K, et al. Integrative omics reveals MYCN as a global suppressor of cellular signalling and enables network-based therapeutic target discovery in neuroblastoma. Oncotarget. 2015;6:43182-201 pubmed 出版商
  141. Loiselle J, Tessier S, Sutherland L. Post-transcriptional regulation of Rbm5 expression in undifferentiated H9c2 myoblasts. In Vitro Cell Dev Biol Anim. 2016;52:327-36 pubmed 出版商
  142. Verdone L, La Fortezza M, Ciccarone F, Caiafa P, Zampieri M, Caserta M. Poly(ADP-Ribosyl)ation Affects Histone Acetylation and Transcription. PLoS ONE. 2015;10:e0144287 pubmed 出版商
  143. Ye S, Zhang D, Cheng F, Wilson D, Mackay J, He K, et al. Wnt/β-catenin and LIF-Stat3 signaling pathways converge on Sp5 to promote mouse embryonic stem cell self-renewal. J Cell Sci. 2016;129:269-76 pubmed 出版商
  144. Chow C, Ebine K, Knab L, Bentrem D, Kumar K, Munshi H. Cancer Cell Invasion in Three-dimensional Collagen Is Regulated Differentially by Gα13 Protein and Discoidin Domain Receptor 1-Par3 Protein Signaling. J Biol Chem. 2016;291:1605-18 pubmed 出版商
  145. Lee J, Park K, Han D, Bang N, Kim D, Na H, et al. PharmDB-K: Integrated Bio-Pharmacological Network Database for Traditional Korean Medicine. PLoS ONE. 2015;10:e0142624 pubmed 出版商
  146. Zhang Z, Wu N, Lu Y, Davidson D, Colonna M, Veillette A. DNAM-1 controls NK cell activation via an ITT-like motif. J Exp Med. 2015;212:2165-82 pubmed 出版商
  147. Sun S, Shi G, Sha H, Ji Y, Han X, Shu X, et al. IRE1α is an endogenous substrate of endoplasmic-reticulum-associated degradation. Nat Cell Biol. 2015;17:1546-55 pubmed 出版商
  148. Seidel C, Schnekenburger M, Mazumder A, Teiten M, Kirsch G, Dicato M, et al. 4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer. Biochem Pharmacol. 2016;99:31-52 pubmed 出版商
  149. Yen Y, Hsiao J, Jiang S, Chang J, Wang S, Shen Y, et al. Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1. Oncotarget. 2015;6:41837-55 pubmed 出版商
  150. Roos A, Satterfield L, Zhao S, Fuja D, Shuck R, Hicks M, et al. Loss of Runx2 sensitises osteosarcoma to chemotherapy-induced apoptosis. Br J Cancer. 2015;113:1289-97 pubmed 出版商
  151. Waddell D, Duffin P, Haddock A, Triplett V, Saredy J, Kakareka K, et al. Isolation, expression analysis and characterization of NEFA-interacting nuclear protein 30 and RING finger and SPRY domain containing 1 in skeletal muscle. Gene. 2016;576:319-32 pubmed 出版商
  152. Podlasz P, Jakimiuk A, Chmielewska Krzesinska M, Kasica N, Nowik N, Kaleczyc J. Galanin regulates blood glucose level in the zebrafish: a morphological and functional study. Histochem Cell Biol. 2016;145:105-17 pubmed 出版商
  153. Ragot A, Pietropaolo S, Vincent J, Delage P, Zhang H, Allinquant B, et al. Genetic deletion of the Histone Deacetylase 6 exacerbates selected behavioral deficits in the R6/1 mouse model for Huntington's disease. Brain Behav. 2015;5:e00361 pubmed 出版商
  154. Ambroise G, Portier A, Roders N, Arnoult D, Vazquez A. Subcellular localization of PUMA regulates its pro-apoptotic activity in Burkitt's lymphoma B cells. Oncotarget. 2015;6:38181-94 pubmed 出版商
  155. Asghar A, Lajeunesse A, Dulla K, Combes G, Thebault P, Nigg E, et al. Bub1 autophosphorylation feeds back to regulate kinetochore docking and promote localized substrate phosphorylation. Nat Commun. 2015;6:8364 pubmed 出版商
  156. Blanco F, Jimbo M, Wulfkuhle J, Gallagher I, Deng J, Enyenihi L, et al. The mRNA-binding protein HuR promotes hypoxia-induced chemoresistance through posttranscriptional regulation of the proto-oncogene PIM1 in pancreatic cancer cells. Oncogene. 2016;35:2529-41 pubmed 出版商
  157. Bollu L, Katreddy R, Blessing A, Pham N, Zheng B, Wu X, et al. Intracellular activation of EGFR by fatty acid synthase dependent palmitoylation. Oncotarget. 2015;6:34992-5003 pubmed 出版商
  158. Machado Neto J, de Melo Campos P, Favaro P, Lazarini M, da Silva Santos Duarte A, Lorand Metze I, et al. Stathmin 1 inhibition amplifies ruxolitinib-induced apoptosis in JAK2V617F cells. Oncotarget. 2015;6:29573-84 pubmed 出版商
  159. Mansara P, Deshpande R, Vaidya M, Kaul Ghanekar R. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA) Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231. PLoS ONE. 2015;10:e0136542 pubmed 出版商
  160. Qiu D, Ye S, Ruiz B, Zhou X, Liu D, Zhang Q, et al. Klf2 and Tfcp2l1, Two Wnt/β-Catenin Targets, Act Synergistically to Induce and Maintain Naive Pluripotency. Stem Cell Reports. 2015;5:314-22 pubmed 出版商
  161. Jimbo M, Blanco F, Huang Y, Telonis A, Screnci B, Cosma G, et al. Targeting the mRNA-binding protein HuR impairs malignant characteristics of pancreatic ductal adenocarcinoma cells. Oncotarget. 2015;6:27312-31 pubmed 出版商
  162. Cooper S, Sadok A, Bousgouni V, Bakal C. Apolar and polar transitions drive the conversion between amoeboid and mesenchymal shapes in melanoma cells. Mol Biol Cell. 2015;26:4163-70 pubmed 出版商
  163. Stockley J, Markert E, Zhou Y, Robson C, Elliott D, Lindberg J, et al. The RNA-binding protein Sam68 regulates expression and transcription function of the androgen receptor splice variant AR-V7. Sci Rep. 2015;5:13426 pubmed 出版商
  164. Wolter S, Kloth C, Golombek M, Dittmar F, Försterling L, Seifert R. cCMP causes caspase-dependent apoptosis in mouse lymphoma cell lines. Biochem Pharmacol. 2015;98:119-31 pubmed 出版商
  165. Sakabe I, Hu R, Jin L, Clarke R, Kasid U. TMEM33: a new stress-inducible endoplasmic reticulum transmembrane protein and modulator of the unfolded protein response signaling. Breast Cancer Res Treat. 2015;153:285-97 pubmed 出版商
  166. Panet E, Ozer E, Mashriki T, Lazar I, Itzkovich D, Tzur A. Purifying Cytokinetic Cells from an Asynchronous Population. Sci Rep. 2015;5:13230 pubmed 出版商
  167. Lehti M, Kotaja N, Sironen A. KIF1-binding protein interacts with KIF3A in haploid male germ cells. Reproduction. 2015;150:209-16 pubmed 出版商
  168. Hamazaki J, Hirayama S, Murata S. Redundant Roles of Rpn10 and Rpn13 in Recognition of Ubiquitinated Proteins and Cellular Homeostasis. PLoS Genet. 2015;11:e1005401 pubmed 出版商
  169. Lee K, Im J, Shibata E, Park J, Handa N, Kowalczykowski S, et al. MCM8-9 complex promotes resection of double-strand break ends by MRE11-RAD50-NBS1 complex. Nat Commun. 2015;6:7744 pubmed 出版商
  170. Succoio M, Comegna M, D Ambrosio C, Scaloni A, Cimino F, Faraonio R. Proteomic analysis reveals novel common genes modulated in both replicative and stress-induced senescence. J Proteomics. 2015;128:18-29 pubmed 出版商
  171. Fink E, Mannava S, Bagati A, Bianchi Smiraglia A, Nair J, Moparthy K, et al. Mitochondrial thioredoxin reductase regulates major cytotoxicity pathways of proteasome inhibitors in multiple myeloma cells. Leukemia. 2016;30:104-11 pubmed 出版商
  172. Bach A, Derocq D, Laurent Matha V, Montcourrier P, Sebti S, Orsetti B, et al. Nuclear cathepsin D enhances TRPS1 transcriptional repressor function to regulate cell cycle progression and transformation in human breast cancer cells. Oncotarget. 2015;6:28084-103 pubmed 出版商
  173. Silva R, Dautel M, Di Genova B, Amberg D, Castilho B, Sattlegger E. The Gcn2 Regulator Yih1 Interacts with the Cyclin Dependent Kinase Cdc28 and Promotes Cell Cycle Progression through G2/M in Budding Yeast. PLoS ONE. 2015;10:e0131070 pubmed 出版商
  174. Nagaoka K, Matoba T, Mao Y, Nakano Y, Ikeda G, Egusa S, et al. A New Therapeutic Modality for Acute Myocardial Infarction: Nanoparticle-Mediated Delivery of Pitavastatin Induces Cardioprotection from Ischemia-Reperfusion Injury via Activation of PI3K/Akt Pathway and Anti-Inflammation in a Rat Model. PLoS ONE. 2015;10:e0132451 pubmed 出版商
  175. Lee J, Lee Y, Lim J, Byun H, Park I, Kim G, et al. Mitochondrial Respiratory Dysfunction Induces Claudin-1 Expression via Reactive Oxygen Species-mediated Heat Shock Factor 1 Activation, Leading to Hepatoma Cell Invasiveness. J Biol Chem. 2015;290:21421-31 pubmed 出版商
  176. Duan H, Li Y, Lim H, Wang W. Identification of 5-nitrofuran-2-amide derivatives that induce apoptosis in triple negative breast cancer cells by activating C/EBP-homologous protein expression. Bioorg Med Chem. 2015;23:4514-21 pubmed 出版商
  177. Nixon F, Gutiérrez Caballero C, Hood F, Booth D, Prior I, Royle S. The mesh is a network of microtubule connectors that stabilizes individual kinetochore fibers of the mitotic spindle. elife. 2015;4: pubmed 出版商
  178. Condelli V, Maddalena F, Sisinni L, Lettini G, Matassa D, Piscazzi A, et al. Targeting TRAP1 as a downstream effector of BRAF cytoprotective pathway: a novel strategy for human BRAF-driven colorectal carcinoma. Oncotarget. 2015;6:22298-309 pubmed
  179. Kiebala M, Singh M, Piepenbrink M, Qiu X, Kobie J, Maggirwar S. Platelet Activation in Human Immunodeficiency Virus Type-1 Patients Is Not Altered with Cocaine Abuse. PLoS ONE. 2015;10:e0130061 pubmed 出版商
  180. Petroni M, Sardina F, Heil C, Sahún Roncero M, Colicchia V, Veschi V, et al. The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress. Cell Death Differ. 2016;23:197-206 pubmed 出版商
  181. Bock F, Tanzer M, Haschka M, Krumschnabel G, Sohm B, Goetsch K, et al. The p53 binding protein PDCD5 is not rate-limiting in DNA damage induced cell death. Sci Rep. 2015;5:11268 pubmed 出版商
  182. Barr A, Bakal C. A sensitised RNAi screen reveals a ch-TOG genetic interaction network required for spindle assembly. Sci Rep. 2015;5:10564 pubmed 出版商
  183. García Cano J, Ambroise G, Pascual Serra R, Carrión M, Serrano Oviedo L, Ortega Muelas M, et al. Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance. Oncotarget. 2015;6:15551-65 pubmed
  184. Nagata T, Yasukawa H, Kyogoku S, Oba T, Takahashi J, Nohara S, et al. Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules. PLoS ONE. 2015;10:e0127942 pubmed 出版商
  185. Cicchini C, de Nonno V, Battistelli C, Cozzolino A, De Santis Puzzonia M, Ciafrè S, et al. Epigenetic control of EMT/MET dynamics: HNF4α impacts DNMT3s through miRs-29. Biochim Biophys Acta. 2015;1849:919-29 pubmed 出版商
  186. Kiss A, Gong X, Kowalewski J, Shafqat Abbasi H, Strömblad S, Lock J. Non-monotonic cellular responses to heterogeneity in talin protein expression-level. Integr Biol (Camb). 2015;7:1171-85 pubmed 出版商
  187. Bhatt D, Puig K, Gorr M, Wold L, Combs C. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain. PLoS ONE. 2015;10:e0127102 pubmed 出版商
  188. Teng Y, Radde B, Litchfield L, Ivanova M, Prough R, Clark B, et al. Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells. J Biol Chem. 2015;290:15799-811 pubmed 出版商
  189. Reales E, Bernabé Rubio M, Casares Arias J, Rentero C, Fernández Barrera J, Rangel L, et al. The MAL protein is crucial for proper membrane condensation at the ciliary base, which is required for primary cilium elongation. J Cell Sci. 2015;128:2261-70 pubmed 出版商
  190. Li W, Zhang C, Ren A, Li T, Jin R, Li G, et al. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation. PLoS ONE. 2015;10:e0126459 pubmed 出版商
  191. Woan K, Lienlaf M, Perez Villaroel P, Lee C, Cheng F, Knox T, et al. Targeting histone deacetylase 6 mediates a dual anti-melanoma effect: Enhanced antitumor immunity and impaired cell proliferation. Mol Oncol. 2015;9:1447-1457 pubmed 出版商
  192. Omari S, Waters M, Naranian T, Kim K, Perumalsamy A, Chi M, et al. Mcl-1 is a key regulator of the ovarian reserve. Cell Death Dis. 2015;6:e1755 pubmed 出版商
  193. Mahale S, Bharate S, Manda S, Joshi P, Jenkins P, Vishwakarma R, et al. Antitumour potential of BPT: a dual inhibitor of cdk4 and tubulin polymerization. Cell Death Dis. 2015;6:e1743 pubmed 出版商
  194. Barrett K, Fang H, Cukovic D, Dombkowski A, Kocarek T, Runge Morris M. Upregulation of UGT2B4 Expression by 3'-Phosphoadenosine-5'-Phosphosulfate Synthase Knockdown: Implications for Coordinated Control of Bile Acid Conjugation. Drug Metab Dispos. 2015;43:1061-70 pubmed 出版商
  195. Mauro Lizcano M, Esteban Martínez L, Seco E, Serrano Puebla A, García Ledo L, Figueiredo Pereira C, et al. New method to assess mitophagy flux by flow cytometry. Autophagy. 2015;11:833-43 pubmed 出版商
  196. Cruz Bermúdez A, Vallejo C, Vicente Blanco R, Gallardo M, Fernández Moreno M, Quintanilla M, et al. Enhanced tumorigenicity by mitochondrial DNA mild mutations. Oncotarget. 2015;6:13628-43 pubmed
  197. Jang D, Kwon H, Jeong K, Lee J, Pak Y. Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor. J Cell Sci. 2015;128:2179-90 pubmed 出版商
  198. Min K, Liggett J, Silva G, Wu W, Wang R, Shen R, et al. NAG-1/GDF15 accumulates in the nucleus and modulates transcriptional regulation of the Smad pathway. Oncogene. 2016;35:377-88 pubmed 出版商
  199. Chong L, Hsu Y, Lee T, Lin Y, Chiu Y, Yang K, et al. Fluvastatin attenuates hepatic steatosis-induced fibrogenesis in rats through inhibiting paracrine effect of hepatocyte on hepatic stellate cells. BMC Gastroenterol. 2015;15:22 pubmed 出版商
  200. Chung J, Bauer D, Ghamari A, Nizzi C, Deck K, Kingsley P, et al. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability. Sci Signal. 2015;8:ra34 pubmed 出版商
  201. Navis A, van Lith S, van Duijnhoven S, de Pooter M, Yetkin Arik B, Wesseling P, et al. Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein. Acta Neuropathol. 2015;130:131-44 pubmed 出版商
  202. Mertz T, Sharma S, Chabes A, Shcherbakova P. Colon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity. Proc Natl Acad Sci U S A. 2015;112:E2467-76 pubmed 出版商
  203. Ma S, Jiang B, Deng W, Gu Z, Wu F, Li T, et al. D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth. Oncotarget. 2015;6:8606-20 pubmed
  204. Shi Y, Chen J, Karner C, Long F. Hedgehog signaling activates a positive feedback mechanism involving insulin-like growth factors to induce osteoblast differentiation. Proc Natl Acad Sci U S A. 2015;112:4678-83 pubmed 出版商
  205. Eisner A, Pazyra Murphy M, Durresi E, Zhou P, Zhao X, Chadwick E, et al. The Eya1 phosphatase promotes Shh signaling during hindbrain development and oncogenesis. Dev Cell. 2015;33:22-35 pubmed 出版商
  206. Zhang Q, Kuang H, Chen C, Yan J, Do Umehara H, Liu X, et al. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol. 2015;16:458-66 pubmed 出版商
  207. Muramatsu R, Kuroda M, Matoba K, Lin H, Takahashi C, Koyama Y, et al. Prostacyclin prevents pericyte loss and demyelination induced by lysophosphatidylcholine in the central nervous system. J Biol Chem. 2015;290:11515-25 pubmed 出版商
  208. Yanagi T, Shi R, Aza Blanc P, Reed J, Matsuzawa S. PCTAIRE1-knockdown sensitizes cancer cells to TNF family cytokines. PLoS ONE. 2015;10:e0119404 pubmed 出版商
  209. Balboula A, Stein P, Schultz R, Schindler K. RBBP4 regulates histone deacetylation and bipolar spindle assembly during oocyte maturation in the mouse. Biol Reprod. 2015;92:105 pubmed 出版商
  210. Rappa G, Green T, Karbanová J, Corbeil D, Lorico A. Tetraspanin CD9 determines invasiveness and tumorigenicity of human breast cancer cells. Oncotarget. 2015;6:7970-91 pubmed
  211. Grabner B, Schramek D, Mueller K, Moll H, Svinka J, Hoffmann T, et al. Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis. Nat Commun. 2015;6:6285 pubmed 出版商
  212. Park S, Jeong J, Park Y, Park K, Lee H, Lee N, et al. Disrupted-in-schizophrenia-1 (DISC1) Regulates Endoplasmic Reticulum Calcium Dynamics. Sci Rep. 2015;5:8694 pubmed 出版商
  213. Hortemo K, Aronsen J, Lunde I, Sjaastad I, Lunde P, Sejersted O. Exhausting treadmill running causes dephosphorylation of sMLC2 and reduced level of myofilament MLCK2 in slow twitch rat soleus muscle. Physiol Rep. 2015;3: pubmed 出版商
  214. Kushwaha D, O Leary C, Cron K, Deraska P, Zhu K, D Andrea A, et al. USP9X inhibition promotes radiation-induced apoptosis in non-small cell lung cancer cells expressing mid-to-high MCL1. Cancer Biol Ther. 2015;16:392-401 pubmed 出版商
  215. Cathomas F, Stegen M, Sigrist H, Schmid L, Seifritz E, Gassmann M, et al. Altered emotionality and neuronal excitability in mice lacking KCTD12, an auxiliary subunit of GABAB receptors associated with mood disorders. Transl Psychiatry. 2015;5:e510 pubmed 出版商
  216. Nakagawa Y, Sedukhina A, Okamoto N, Nagasawa S, Suzuki N, Ohta T, et al. NF-κB signaling mediates acquired resistance after PARP inhibition. Oncotarget. 2015;6:3825-39 pubmed
  217. Miyake S, Muramatsu R, Hamaguchi M, Yamashita T. Prolyl hydroxylase regulates axonal rewiring and motor recovery after traumatic brain injury. Cell Death Dis. 2015;6:e1638 pubmed 出版商
  218. Wu L, Russell D, Wong S, Chen M, Tsai T, St John J, et al. Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development. 2015;142:681-91 pubmed 出版商
  219. Kwon H, Lee J, Jeong K, Jang D, Pak Y. Fatty acylated caveolin-2 is a substrate of insulin receptor tyrosine kinase for insulin receptor substrate-1-directed signaling activation. Biochim Biophys Acta. 2015;1853:1022-34 pubmed 出版商
  220. Bailey J, Fields A, Cheng K, Lee A, Wagenaar E, Lagrois R, et al. WD repeat-containing protein 5 (WDR5) localizes to the midbody and regulates abscission. J Biol Chem. 2015;290:8987-9001 pubmed 出版商
  221. Hsieh W, Huang Y, Wang T, Ming Y, Tsai C, Pang J. IFI27, a novel epidermal growth factor-stabilized protein, is functionally involved in proliferation and cell cycling of human epidermal keratinocytes. Cell Prolif. 2015;48:187-97 pubmed 出版商
  222. Jeong H, Gil N, Lee H, Cho S, Kim K, Chun K, et al. Timely Degradation of Wip1 Phosphatase by APC/C Activator Protein Cdh1 is Necessary for Normal Mitotic Progression. J Cell Biochem. 2015;116:1602-12 pubmed 出版商
  223. West A, Khoury Hanold W, Staron M, Tal M, Pineda C, Lang S, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520:553-7 pubmed 出版商
  224. Xue J, Chen Y, Wu Y, Wang Z, Zhou A, Zhang S, et al. Tumour suppressor TRIM33 targets nuclear β-catenin degradation. Nat Commun. 2015;6:6156 pubmed 出版商
  225. Grati M, Chakchouk I, Ma Q, Bensaïd M, DeSmidt A, Turki N, et al. A missense mutation in DCDC2 causes human recessive deafness DFNB66, likely by interfering with sensory hair cell and supporting cell cilia length regulation. Hum Mol Genet. 2015;24:2482-91 pubmed 出版商
  226. Kopanic J, Schlingmann B, Koval M, Lau A, Sorgen P, Su V. Degradation of gap junction connexins is regulated by the interaction with Cx43-interacting protein of 75 kDa (CIP75). Biochem J. 2015;466:571-85 pubmed 出版商
  227. Rizkallah R, Batsomboon P, Dudley G, Hurt M. Identification of the oncogenic kinase TOPK/PBK as a master mitotic regulator of C2H2 zinc finger proteins. Oncotarget. 2015;6:1446-61 pubmed
  228. Karner C, Esen E, Okunade A, Patterson B, Long F. Increased glutamine catabolism mediates bone anabolism in response to WNT signaling. J Clin Invest. 2015;125:551-62 pubmed 出版商
  229. Miconi G, Palumbo P, Dehcordi S, La Torre C, Lombardi F, Evtoski Z, et al. Immunophenotypic characterization of human glioblastoma stem cells: correlation with clinical outcome. J Cell Biochem. 2015;116:864-76 pubmed 出版商
  230. Earley L, Kawano Y, Adachi K, Sun X, Dai M, Nakai H. Identification and characterization of nuclear and nucleolar localization signals in the adeno-associated virus serotype 2 assembly-activating protein. J Virol. 2015;89:3038-48 pubmed 出版商
  231. Toropainen S, Malinen M, Kaikkonen S, Rytinki M, Jääskeläinen T, Sahu B, et al. SUMO ligase PIAS1 functions as a target gene selective androgen receptor coregulator on prostate cancer cell chromatin. Nucleic Acids Res. 2015;43:848-61 pubmed 出版商
  232. Sasaki M, Yoshimura Miyakoshi M, Sato Y, Nakanuma Y. A possible involvement of endoplasmic reticulum stress in biliary epithelial autophagy and senescence in primary biliary cirrhosis. J Gastroenterol. 2015;50:984-95 pubmed 出版商
  233. Van de Laar E, Clifford M, Hasenoeder S, Kim B, Wang D, Lee S, et al. Cell surface marker profiling of human tracheal basal cells reveals distinct subpopulations, identifies MST1/MSP as a mitogenic signal, and identifies new biomarkers for lung squamous cell carcinomas. Respir Res. 2014;15:160 pubmed 出版商
  234. Toda T, Ishida K, Kiyama H, Yamashita T, Lee S. Down-regulation of KCC2 expression and phosphorylation in motoneurons, and increases the number of in primary afferent projections to motoneurons in mice with post-stroke spasticity. PLoS ONE. 2014;9:e114328 pubmed 出版商
  235. Hong A, Lee J, Chung K. Ubiquitin-specific protease 22 (USP22) positively regulates RCAN1 protein levels through RCAN1 de-ubiquitination. J Cell Physiol. 2015;230:1651-60 pubmed 出版商
  236. Gonzalez Granado J, Navarro Puche A, Molina Sánchez P, Blanco Berrocal M, Viana R, Font de Mora J, et al. Sorting nexin 6 enhances lamin a synthesis and incorporation into the nuclear envelope. PLoS ONE. 2014;9:e115571 pubmed 出版商
  237. Machado Neto J, Lazarini M, Favaro P, de Melo Campos P, Scopim Ribeiro R, Franchi Junior G, et al. ANKHD1 silencing inhibits Stathmin 1 activity, cell proliferation and migration of leukemia cells. Biochim Biophys Acta. 2015;1853:583-93 pubmed 出版商
  238. Da Ros M, Hirvonen N, Olotu O, Toppari J, Kotaja N. Retromer vesicles interact with RNA granules in haploid male germ cells. Mol Cell Endocrinol. 2015;401:73-83 pubmed 出版商
  239. Bollu L, Ren J, Blessing A, Katreddy R, Gao G, Xu L, et al. Involvement of de novo synthesized palmitate and mitochondrial EGFR in EGF induced mitochondrial fusion of cancer cells. Cell Cycle. 2014;13:2415-30 pubmed 出版商
  240. Chuang C, Guh J, Lu C, Chen H, Chuang L. S100B is required for high glucose-induced pro-fibrotic gene expression and hypertrophy in mesangial cells. Int J Mol Med. 2015;35:546-52 pubmed 出版商
  241. Kim T, Kim H, Kang Y, Yoon S, Lee J, Choi W, et al. Psammaplin A induces Sirtuin 1-dependent autophagic cell death in doxorubicin-resistant MCF-7/adr human breast cancer cells and xenografts. Biochim Biophys Acta. 2015;1850:401-10 pubmed 出版商
  242. Colbert P, Vermeer D, Wieking B, Lee J, Vermeer P. EphrinB1: novel microtubule associated protein whose expression affects taxane sensitivity. Oncotarget. 2015;6:953-68 pubmed
  243. Wang S, Cui H, Liu Y, Zhao P, Zhang Y, Fu Z, et al. CD147 promotes Src-dependent activation of Rac1 signaling through STAT3/DOCK8 during the motility of hepatocellular carcinoma cells. Oncotarget. 2015;6:243-57 pubmed
  244. Liu F, Shen W, Qiu H, Hu X, Zhang C, Chu T. Prostate cancer cells induce osteoblastic differentiation via semaphorin 3A. Prostate. 2015;75:370-80 pubmed 出版商
  245. Vulto van Silfhout A, Nakagawa T, Bahi Buisson N, Haas S, Hu H, Bienek M, et al. Variants in CUL4B are associated with cerebral malformations. Hum Mutat. 2015;36:106-17 pubmed 出版商
  246. Akkuratov E, Lopacheva O, Kruusmägi M, Lopachev A, Shah Z, Boldyrev A, et al. Functional Interaction Between Na/K-ATPase and NMDA Receptor in Cerebellar Neurons. Mol Neurobiol. 2015;52:1726-1734 pubmed 出版商
  247. Lee K, Yeo S, Sung C, Kim S. Twist1 is a key regulator of cancer-associated fibroblasts. Cancer Res. 2015;75:73-85 pubmed 出版商
  248. Olmsted Z, Colliver A, Riehlman T, Paluh J. Kinesin-14 and kinesin-5 antagonistically regulate microtubule nucleation by γ-TuRC in yeast and human cells. Nat Commun. 2014;5:5339 pubmed 出版商
  249. Hock A, Vigneron A, Vousden K. Ubiquitin-specific peptidase 42 (USP42) functions to deubiquitylate histones and regulate transcriptional activity. J Biol Chem. 2014;289:34862-70 pubmed 出版商
  250. Lee K, Tarn W. TRAP150 activates splicing in composite terminal exons. Nucleic Acids Res. 2014;42:12822-32 pubmed 出版商
  251. Díaz Chiguer D, Hernández Luis F, Nogueda Torres B, Castillo R, Reynoso Ducoing O, Hernández Campos A, et al. JVG9, a benzimidazole derivative, alters the surface and cytoskeleton of Trypanosoma cruzi bloodstream trypomastigotes. Mem Inst Oswaldo Cruz. 2014;109:757-60 pubmed
  252. Pereira L, Pinto R, Silva D, Moreira A, Beitzinger C, Oliveira P, et al. Intracellular trafficking of AIP56, an NF-κB-cleaving toxin from Photobacterium damselae subsp. piscicida. Infect Immun. 2014;82:5270-85 pubmed 出版商
  253. Ali M, Chuang C, Saif M. Reprogramming cellular phenotype by soft collagen gels. Soft Matter. 2014;10:8829-37 pubmed 出版商
  254. Gray A, Stephens C, Bigelow R, Coleman D, Cardelli J. The polyphenols (-)-epigallocatechin-3-gallate and luteolin synergistically inhibit TGF-β-induced myofibroblast phenotypes through RhoA and ERK inhibition. PLoS ONE. 2014;9:e109208 pubmed 出版商
  255. Curran K, Allen L, Porter B, Dodge J, Lope C, Willadsen G, et al. Circadian genes, xBmal1 and xNocturnin, modulate the timing and differentiation of somites in Xenopus laevis. PLoS ONE. 2014;9:e108266 pubmed 出版商
  256. De Nicola F, Catena V, Rinaldo C, Bruno T, Iezzi S, Sorino C, et al. HIPK2 sustains apoptotic response by phosphorylating Che-1/AATF and promoting its degradation. Cell Death Dis. 2014;5:e1414 pubmed 出版商
  257. Zhao X, Zhu L, Chang Q, Jiang C, You Y, Luo T, et al. C-type lectin receptor dectin-3 mediates trehalose 6,6'-dimycolate (TDM)-induced Mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-κB activation. J Biol Chem. 2014;289:30052-62 pubmed 出版商
  258. Huang S, Lee C, Wang H, Chang Y, Lin C, Chen C, et al. 6-Dehydrogingerdione restrains lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages. J Agric Food Chem. 2014;62:9171-9 pubmed 出版商
  259. Ginet V, Pittet M, Rummel C, Osterheld M, Meuli R, Clarke P, et al. Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic. Ann Neurol. 2014;76:695-711 pubmed 出版商
  260. Sutinen P, Rahkama V, Rytinki M, Palvimo J. Nuclear mobility and activity of FOXA1 with androgen receptor are regulated by SUMOylation. Mol Endocrinol. 2014;28:1719-28 pubmed 出版商
  261. Cheng F, Lienlaf M, Wang H, Perez Villarroel P, Lee C, Woan K, et al. A novel role for histone deacetylase 6 in the regulation of the tolerogenic STAT3/IL-10 pathway in APCs. J Immunol. 2014;193:2850-62 pubmed 出版商
  262. Bastos L, de Marcondes P, de Freitas Junior J, Leve F, Mencalha A, de Souza W, et al. Progeny from irradiated colorectal cancer cells acquire an EMT-like phenotype and activate Wnt/?-catenin pathway. J Cell Biochem. 2014;115:2175-87 pubmed 出版商
  263. Dutta B, Yan R, Lim S, Tam J, Sze S. Quantitative profiling of chromatome dynamics reveals a novel role for HP1BP3 in hypoxia-induced oncogenesis. Mol Cell Proteomics. 2014;13:3236-49 pubmed 出版商
  264. de Souza E, Meirelles G, Godoy B, Perez A, Smetana J, Doxsey S, et al. Characterization of the human NEK7 interactome suggests catalytic and regulatory properties distinct from those of NEK6. J Proteome Res. 2014;13:4074-90 pubmed 出版商
  265. Mostocotto C, Carbone M, Battistelli C, Ciotti A, Amati P, Maione R. Poly(ADP-ribosyl)ation is required to modulate chromatin changes at c-MYC promoter during emergence from quiescence. PLoS ONE. 2014;9:e102575 pubmed 出版商
  266. Patel A, Burton D, Halvorsen K, Balkan W, Reiner T, Perez Stable C, et al. MutT Homolog 1 (MTH1) maintains multiple KRAS-driven pro-malignant pathways. Oncogene. 2015;34:2586-96 pubmed 出版商
  267. Lo Sasso G, Ryu D, Mouchiroud L, Fernando S, Anderson C, Katsyuba E, et al. Loss of Sirt1 function improves intestinal anti-bacterial defense and protects from colitis-induced colorectal cancer. PLoS ONE. 2014;9:e102495 pubmed 出版商
  268. Brohl A, Solomon D, Chang W, Wang J, Song Y, Sindiri S, et al. The genomic landscape of the Ewing Sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet. 2014;10:e1004475 pubmed 出版商
  269. Elzi D, Song M, Hakala K, Weintraub S, Shiio Y. Proteomic Analysis of the EWS-Fli-1 Interactome Reveals the Role of the Lysosome in EWS-Fli-1 Turnover. J Proteome Res. 2014;13:3783-91 pubmed 出版商
  270. Gaillard F, Kuny S, Sauve Y. Retinal distribution of Disabled-1 in a diurnal murine rodent, the Nile grass rat Arvicanthis niloticus. Exp Eye Res. 2014;125:236-43 pubmed 出版商
  271. Ranjan R, Deng J, Chung S, Lee Y, Park G, Xiao L, et al. The transcription factor nuclear factor of activated T cells c3 modulates the function of macrophages in sepsis. J Innate Immun. 2014;6:754-64 pubmed 出版商
  272. Pratt S, Shah S, Ward C, Kerr J, Stains J, Lovering R. Recovery of altered neuromuscular junction morphology and muscle function in mdx mice after injury. Cell Mol Life Sci. 2015;72:153-64 pubmed 出版商
  273. Tao W, Leng X, Chakraborty S, Ma H, Arlinghaus R. c-Abl activates janus kinase 2 in normal hematopoietic cells. J Biol Chem. 2014;289:21463-72 pubmed 出版商
  274. Liu Q, Boudot A, Ni J, Hennessey T, Beauparlant S, Rajabi H, et al. Cyclin D1 and C/EBP? LAP1 operate in a common pathway to promote mammary epithelial cell differentiation. Mol Cell Biol. 2014;34:3168-79 pubmed 出版商
  275. Strickland A, Rebelo A, Zhang F, Price J, Bolon B, Silva J, et al. Characterization of the mitofusin 2 R94W mutation in a knock-in mouse model. J Peripher Nerv Syst. 2014;19:152-64 pubmed 出版商
  276. Paschoud S, Jond L, Guerrera D, Citi S. PLEKHA7 modulates epithelial tight junction barrier function. Tissue Barriers. 2014;2:e28755 pubmed 出版商
  277. Lee M, Moreno C, Saavedra H. E2F activators signal and maintain centrosome amplification in breast cancer cells. Mol Cell Biol. 2014;34:2581-99 pubmed
  278. San Miguel Ruiz J, Letourneau P. The role of Arp2/3 in growth cone actin dynamics and guidance is substrate dependent. J Neurosci. 2014;34:5895-908 pubmed 出版商
  279. Huszar J, Payne C. MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells. FEBS Lett. 2014;588:1850-6 pubmed 出版商
  280. Yamamoto R, Ohshiro Y, Shimotani T, Yamamoto M, Matsuyama S, Ide H, et al. Hypersensitivity of mouse NEIL1-knockdown cells to hydrogen peroxide during S phase. J Radiat Res. 2014;55:707-12 pubmed 出版商
  281. Erdozain A, Morentin B, Bedford L, King E, Tooth D, Brewer C, et al. Alcohol-related brain damage in humans. PLoS ONE. 2014;9:e93586 pubmed 出版商
  282. Karpurapu M, Ranjan R, Deng J, Chung S, Lee Y, Xiao L, et al. Krüppel like factor 4 promoter undergoes active demethylation during monocyte/macrophage differentiation. PLoS ONE. 2014;9:e93362 pubmed 出版商
  283. Kuwahara M, Suzuki J, Tofukuji S, Yamada T, Kanoh M, Matsumoto A, et al. The Menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis. Nat Commun. 2014;5:3555 pubmed 出版商
  284. Hashimoto Y, Shirane M, Matsuzaki F, Saita S, Ohnishi T, Nakayama K. Protrudin regulates endoplasmic reticulum morphology and function associated with the pathogenesis of hereditary spastic paraplegia. J Biol Chem. 2014;289:12946-61 pubmed 出版商
  285. Gilan O, Diesch J, Amalia M, Jastrzebski K, Chueh A, Verrills N, et al. PR55?-containing protein phosphatase 2A complexes promote cancer cell migration and invasion through regulation of AP-1 transcriptional activity. Oncogene. 2015;34:1333-9 pubmed 出版商
  286. Kakiuchi K, Tsuda A, Goto Y, Shimada T, Taniguchi K, Takagishi K, et al. Cell-surface DEAD-box polypeptide 4-immunoreactive cells and gonocytes are two distinct populations in postnatal porcine testes. Biol Reprod. 2014;90:82 pubmed 出版商
  287. Witsch T, Niess G, Sakkas E, Likhoshvay T, Becker S, Herold S, et al. Transglutaminase 2: a new player in bronchopulmonary dysplasia?. Eur Respir J. 2014;44:109-21 pubmed 出版商
  288. Balboula A, Schindler K. Selective disruption of aurora C kinase reveals distinct functions from aurora B kinase during meiosis in mouse oocytes. PLoS Genet. 2014;10:e1004194 pubmed 出版商
  289. Gu L, Talati P, Vogiatzi P, Romero Weaver A, Abdulghani J, Liao Z, et al. Pharmacologic suppression of JAK1/2 by JAK1/2 inhibitor AZD1480 potently inhibits IL-6-induced experimental prostate cancer metastases formation. Mol Cancer Ther. 2014;13:1246-58 pubmed 出版商
  290. Buffington D, Pino C, Chen L, Westover A, Hageman G, Humes H. Bioartificial Renal Epithelial Cell System (BRECS): A Compact, Cryopreservable Extracorporeal Renal Replacement Device. Cell Med. 2012;4:33-43 pubmed
  291. Yamano K, Fogel A, Wang C, van der Bliek A, Youle R. Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. elife. 2014;3:e01612 pubmed 出版商
  292. Hwang W, Jiang J, Yang S, Huang T, Lan H, Teng H, et al. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol. 2014;16:268-80 pubmed 出版商
  293. Nakajima W, Hicks M, Tanaka N, Krystal G, Harada H. Noxa determines localization and stability of MCL-1 and consequently ABT-737 sensitivity in small cell lung cancer. Cell Death Dis. 2014;5:e1052 pubmed 出版商
  294. Pavet V, Shlyakhtina Y, He T, Ceschin D, Kohonen P, Perala M, et al. Plasminogen activator urokinase expression reveals TRAIL responsiveness and supports fractional survival of cancer cells. Cell Death Dis. 2014;5:e1043 pubmed 出版商
  295. Vittori A, Breda C, Repici M, Orth M, Roos R, Outeiro T, et al. Copy-number variation of the neuronal glucose transporter gene SLC2A3 and age of onset in Huntington's disease. Hum Mol Genet. 2014;23:3129-37 pubmed 出版商
  296. Turner M, Cronin J, Healey G, Sheldon I. Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6. Endocrinology. 2014;155:1453-65 pubmed 出版商
  297. Vellaichamy E, Das S, Subramanian U, Maeda N, Pandey K. Genetically altered mutant mouse models of guanylyl cyclase/natriuretic peptide receptor-A exhibit the cardiac expression of proinflammatory mediators in a gene-dose-dependent manner. Endocrinology. 2014;155:1045-56 pubmed 出版商
  298. Klinger M, Wang W, Kuhns S, Bärenz F, Dräger Meurer S, Pereira G, et al. The novel centriolar satellite protein SSX2IP targets Cep290 to the ciliary transition zone. Mol Biol Cell. 2014;25:495-507 pubmed 出版商
  299. Basford J, Koch S, Anjak A, Singh V, Krause E, Robbins N, et al. Smooth muscle LDL receptor-related protein-1 deletion induces aortic insufficiency and promotes vascular cardiomyopathy in mice. PLoS ONE. 2013;8:e82026 pubmed 出版商
  300. Song X, Chen H, Wang X, Deng X, Xi Y, He Q, et al. H. pylori-encoded CagA disrupts tight junctions and induces invasiveness of AGS gastric carcinoma cells via Cdx2-dependent targeting of Claudin-2. Cell Immunol. 2013;286:22-30 pubmed 出版商
  301. Boisvert R, Rego M, Azzinaro P, Mauro M, Howlett N. Coordinate nuclear targeting of the FANCD2 and FANCI proteins via a FANCD2 nuclear localization signal. PLoS ONE. 2013;8:e81387 pubmed 出版商
  302. Del Nagro C, Choi J, Xiao Y, Rangell L, Mohan S, Pandita A, et al. Chk1 inhibition in p53-deficient cell lines drives rapid chromosome fragmentation followed by caspase-independent cell death. Cell Cycle. 2014;13:303-14 pubmed 出版商
  303. Chang K, Chang W, Chang Y, Hung L, Lai C, Yeh Y, et al. Ran GTPase-activating protein 1 is a therapeutic target in diffuse large B-cell lymphoma. PLoS ONE. 2013;8:e79863 pubmed 出版商
  304. Leonard A, Manavis J, Blumbergs P, Vink R. Changes in substance P and NK1 receptor immunohistochemistry following human spinal cord injury. Spinal Cord. 2014;52:17-23 pubmed 出版商
  305. Chen Y, Pan H, Tseng H, Chu H, Hung Y, Yen Y, et al. Differentiated epithelial- and mesenchymal-like phenotypes in subcutaneous mouse xenografts using diffusion weighted-magnetic resonance imaging. Int J Mol Sci. 2013;14:21943-59 pubmed 出版商
  306. Loiselle J, Sutherland L. Differential downregulation of Rbm5 and Rbm10 during skeletal and cardiac differentiation. In Vitro Cell Dev Biol Anim. 2014;50:331-9 pubmed 出版商
  307. Proia D, Zhang C, Sequeira M, Jimenez J, He S, Spector N, et al. Preclinical activity profile and therapeutic efficacy of the HSP90 inhibitor ganetespib in triple-negative breast cancer. Clin Cancer Res. 2014;20:413-24 pubmed 出版商
  308. de Craene B, Denecker G, Vermassen P, Taminau J, Mauch C, Derore A, et al. Epidermal Snail expression drives skin cancer initiation and progression through enhanced cytoprotection, epidermal stem/progenitor cell expansion and enhanced metastatic potential. Cell Death Differ. 2014;21:310-20 pubmed 出版商
  309. Wilson V. Growth and differentiation of HaCaT keratinocytes. Methods Mol Biol. 2014;1195:33-41 pubmed 出版商
  310. Chen Z, Morris D, Jiang L, Liu Y, Rui L. SH2B1 in ?-cells regulates glucose metabolism by promoting ?-cell survival and islet expansion. Diabetes. 2014;63:585-95 pubmed 出版商
  311. Persson D, Halberg K, Jørgensen A, Møbjerg N, Kristensen R. Brain anatomy of the marine tardigrade Actinarctus doryphorus (Arthrotardigrada). J Morphol. 2014;275:173-90 pubmed 出版商
  312. Lee J, Park J, Kwon O, Kim H, Fornace A, Cha H. Off-target response of a Wip1 chemical inhibitor in skin keratinocytes. J Dermatol Sci. 2014;73:125-34 pubmed 出版商
  313. Yamano K, Youle R. PINK1 is degraded through the N-end rule pathway. Autophagy. 2013;9:1758-69 pubmed 出版商
  314. DeGennaro C, Alver B, Marguerat S, Stepanova E, Davis C, Bähler J, et al. Spt6 regulates intragenic and antisense transcription, nucleosome positioning, and histone modifications genome-wide in fission yeast. Mol Cell Biol. 2013;33:4779-92 pubmed 出版商
  315. de Souza W, Fortunato Miranda N, Robbs B, de Araujo W, de Freitas Junior J, Bastos L, et al. Claudin-3 overexpression increases the malignant potential of colorectal cancer cells: roles of ERK1/2 and PI3K-Akt as modulators of EGFR signaling. PLoS ONE. 2013;8:e74994 pubmed 出版商
  316. Jo S, Kim M, Park J, Kim T, Ahn Y. Txnip contributes to impaired glucose tolerance by upregulating the expression of genes involved in hepatic gluconeogenesis in mice. Diabetologia. 2013;56:2723-32 pubmed 出版商
  317. Chen Z, Chen J, Gu Y, Hu C, Li J, Lin S, et al. Aberrantly activated AREG-EGFR signaling is required for the growth and survival of CRTC1-MAML2 fusion-positive mucoepidermoid carcinoma cells. Oncogene. 2014;33:3869-77 pubmed 出版商
  318. Shats I, Gatza M, Liu B, Angus S, You L, Nevins J. FOXO transcription factors control E2F1 transcriptional specificity and apoptotic function. Cancer Res. 2013;73:6056-67 pubmed 出版商
  319. Schreiner A, Durry S, Aida T, Stock M, Ruther U, Tanaka K, et al. Laminar and subcellular heterogeneity of GLAST and GLT-1 immunoreactivity in the developing postnatal mouse hippocampus. J Comp Neurol. 2014;522:204-24 pubmed 出版商
  320. Mach J, Huizer Pajkos A, Cogger V, McKenzie C, Le Couteur D, Jones B, et al. The effect of aging on acetaminophen pharmacokinetics, toxicity and Nrf2 in Fischer 344 rats. J Gerontol A Biol Sci Med Sci. 2014;69:387-97 pubmed 出版商
  321. O Dell L, Natividad L, Pipkin J, Roman F, Torres I, Jurado J, et al. Enhanced nicotine self-administration and suppressed dopaminergic systems in a rat model of diabetes. Addict Biol. 2014;19:1006-19 pubmed 出版商
  322. Tan C, Hagen T. mTORC1 dependent regulation of REDD1 protein stability. PLoS ONE. 2013;8:e63970 pubmed 出版商
  323. Licandro G, Ling Khor H, Beretta O, Lai J, Derks H, Laudisi F, et al. The NLRP3 inflammasome affects DNA damage responses after oxidative and genotoxic stress in dendritic cells. Eur J Immunol. 2013;43:2126-37 pubmed 出版商
  324. Rodriguez Martin T, Cuchillo Ibanez I, Noble W, Nyenya F, Anderton B, Hanger D. Tau phosphorylation affects its axonal transport and degradation. Neurobiol Aging. 2013;34:2146-57 pubmed 出版商
  325. Tan C, Hagen T. Destabilization of CDC6 upon DNA damage is dependent on neddylation but independent of Cullin E3 ligases. Int J Biochem Cell Biol. 2013;45:1489-98 pubmed 出版商
  326. Gharbiah M, Nakamoto A, Nagy L. Analysis of ciliary band formation in the mollusc Ilyanassa obsoleta. Dev Genes Evol. 2013;223:225-35 pubmed 出版商
  327. Gal J, Chen J, Barnett K, Yang L, Brumley E, Zhu H. HDAC6 regulates mutant SOD1 aggregation through two SMIR motifs and tubulin acetylation. J Biol Chem. 2013;288:15035-45 pubmed 出版商
  328. Hirano T, Takagi K, Hoshino Y, Abe T. DNA damage response in male gametes of Cyrtanthus mackenii during pollen tube growth. AoB Plants. 2013;5:plt004 pubmed 出版商
  329. Gómez Herreros F, Romero Granados R, Zeng Z, Alvarez Quilón A, Quintero C, Ju L, et al. TDP2-dependent non-homologous end-joining protects against topoisomerase II-induced DNA breaks and genome instability in cells and in vivo. PLoS Genet. 2013;9:e1003226 pubmed 出版商
  330. Navis A, Bourgonje A, Wesseling P, Wright A, Hendriks W, Verrijp K, et al. Effects of dual targeting of tumor cells and stroma in human glioblastoma xenografts with a tyrosine kinase inhibitor against c-MET and VEGFR2. PLoS ONE. 2013;8:e58262 pubmed 出版商
  331. Tan C, Hagen T. Post-translational regulation of mTOR complex 1 in hypoxia and reoxygenation. Cell Signal. 2013;25:1235-44 pubmed 出版商
  332. Lang J, Maeda Y, Bannerman P, Xu J, Horiuchi M, Pleasure D, et al. Adenomatous polyposis coli regulates oligodendroglial development. J Neurosci. 2013;33:3113-30 pubmed 出版商
  333. Greer Y, Fields A, Brown A, Rubin J. Atypical protein kinase C? is required for Wnt3a-dependent neurite outgrowth and binds to phosphorylated dishevelled 2. J Biol Chem. 2013;288:9438-46 pubmed 出版商
  334. Brennan G, Jimenez Mateos E, McKiernan R, Engel T, Tzivion G, Henshall D. Transgenic overexpression of 14-3-3 zeta protects hippocampus against endoplasmic reticulum stress and status epilepticus in vivo. PLoS ONE. 2013;8:e54491 pubmed 出版商
  335. Sirohi K, Chalasani M, Sudhakar C, Kumari A, Radha V, Swarup G. M98K-OPTN induces transferrin receptor degradation and RAB12-mediated autophagic death in retinal ganglion cells. Autophagy. 2013;9:510-27 pubmed 出版商
  336. Ott C, Elia N, Jeong S, Insinna C, Sengupta P, Lippincott Schwartz J. Primary cilia utilize glycoprotein-dependent adhesion mechanisms to stabilize long-lasting cilia-cilia contacts. Cilia. 2012;1:3 pubmed 出版商
  337. Brandhagen B, Tieszen C, Ulmer T, Tracy M, Goyeneche A, Telleria C. Cytostasis and morphological changes induced by mifepristone in human metastatic cancer cells involve cytoskeletal filamentous actin reorganization and impairment of cell adhesion dynamics. BMC Cancer. 2013;13:35 pubmed 出版商
  338. Hu C, Sethi J, Hagen T. The role of the cullin-5 e3 ubiquitin ligase in the regulation of insulin receptor substrate-1. Biochem Res Int. 2012;2012:282648 pubmed 出版商
  339. Lei K, Chen L, Georgiou E, Sooranna S, Khanjani S, Brosens J, et al. Progesterone acts via the nuclear glucocorticoid receptor to suppress IL-1?-induced COX-2 expression in human term myometrial cells. PLoS ONE. 2012;7:e50167 pubmed 出版商
  340. Jarboui M, Bidoia C, Woods E, Roe B, Wynne K, Elia G, et al. Nucleolar protein trafficking in response to HIV-1 Tat: rewiring the nucleolus. PLoS ONE. 2012;7:e48702 pubmed 出版商
  341. Blakemore L, Boes C, Cordell R, Manson M. Curcumin-induced mitotic arrest is characterized by spindle abnormalities, defects in chromosomal congression and DNA damage. Carcinogenesis. 2013;34:351-60 pubmed 出版商
  342. Duncan A, Forcina J, Birt A, Townson D. Estrous cycle-dependent changes of Fas expression in the bovine corpus luteum: influence of keratin 8/18 intermediate filaments and cytokines. Reprod Biol Endocrinol. 2012;10:90 pubmed 出版商
  343. Queen K, Shi M, Zhang F, Cvek U, Scott R. Epstein-Barr virus-induced epigenetic alterations following transient infection. Int J Cancer. 2013;132:2076-86 pubmed 出版商
  344. Loessner D, Quent V, Kraemer J, Weber E, Hutmacher D, Magdolen V, et al. Combined expression of KLK4, KLK5, KLK6, and KLK7 by ovarian cancer cells leads to decreased adhesion and paclitaxel-induced chemoresistance. Gynecol Oncol. 2012;127:569-78 pubmed 出版商
  345. Holt J, Lane S, Jennings P, Garcia Higuera I, Moreno S, Jones K. APC(FZR1) prevents nondisjunction in mouse oocytes by controlling meiotic spindle assembly timing. Mol Biol Cell. 2012;23:3970-81 pubmed 出版商
  346. Gartner S, Liu Y, Natesan S. De novo generation of cells within human nurse macrophages and consequences following HIV-1 infection. PLoS ONE. 2012;7:e40139 pubmed 出版商
  347. Cha S, McAdams M, Kormish J, Wylie C, Kofron M. Foxi2 is an animally localized maternal mRNA in Xenopus, and an activator of the zygotic ectoderm activator Foxi1e. PLoS ONE. 2012;7:e41782 pubmed 出版商
  348. Toth J, Yang L, Dahl R, Petroski M. A gatekeeper residue for NEDD8-activating enzyme inhibition by MLN4924. Cell Rep. 2012;1:309-16 pubmed 出版商
  349. Watanabe T, Sakai Y, Koga D, Bochimoto H, Hira Y, Hosaka M, et al. A unique ball-shaped Golgi apparatus in the rat pituitary gonadotrope: its functional implications in relation to the arrangement of the microtubule network. J Histochem Cytochem. 2012;60:588-602 pubmed 出版商
  350. Thakur J, Sanyal K. A coordinated interdependent protein circuitry stabilizes the kinetochore ensemble to protect CENP-A in the human pathogenic yeast Candida albicans. PLoS Genet. 2012;8:e1002661 pubmed 出版商
  351. Beriault D, Haddad O, McCuaig J, Robinson Z, Russell D, Lane E, et al. The mechanical behavior of mutant K14-R125P keratin bundles and networks in NEB-1 keratinocytes. PLoS ONE. 2012;7:e31320 pubmed 出版商
  352. Roy E, Bruyère J, Flamant P, Bigou S, Ausseil J, Vitry S, et al. GM130 gain-of-function induces cell pathology in a model of lysosomal storage disease. Hum Mol Genet. 2012;21:1481-95 pubmed 出版商
  353. Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y. A possible involvement of p62/sequestosome-1 in the process of biliary epithelial autophagy and senescence in primary biliary cirrhosis. Liver Int. 2012;32:487-99 pubmed 出版商
  354. Charters G, Stones C, Shelling A, Baguley B, Finlay G. Centrosomal dysregulation in human metastatic melanoma cell lines. Cancer Genet. 2011;204:477-85 pubmed 出版商
  355. Choo Y, Boh B, Lou J, Eng J, Leck Y, Anders B, et al. Characterization of the role of COP9 signalosome in regulating cullin E3 ubiquitin ligase activity. Mol Biol Cell. 2011;22:4706-15 pubmed 出版商
  356. An C, Dong Y, Hagiwara N. Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6. BMC Dev Biol. 2011;11:59 pubmed 出版商
  357. Doll C, Burkart J, Hope K, Halpern M, Gamse J. Subnuclear development of the zebrafish habenular nuclei requires ER translocon function. Dev Biol. 2011;360:44-57 pubmed 出版商
  358. Shao Y, Wang L, Welter J, Ballock R. Primary cilia modulate Ihh signal transduction in response to hydrostatic loading of growth plate chondrocytes. Bone. 2012;50:79-84 pubmed 出版商
  359. Rauert H, Stühmer T, Bargou R, Wajant H, Siegmund D. TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms. Cell Death Dis. 2011;2:e194 pubmed 出版商
  360. He H, Yu F, Sun C, Luo Y. CBP/p300 and SIRT1 are involved in transcriptional regulation of S-phase specific histone genes. PLoS ONE. 2011;6:e22088 pubmed 出版商
  361. Lancaster M, Schroth J, Gleeson J. Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. Nat Cell Biol. 2011;13:700-7 pubmed 出版商
  362. Vanderperre B, Staskevicius A, Tremblay G, McCoy M, O Neill M, Cashman N, et al. An overlapping reading frame in the PRNP gene encodes a novel polypeptide distinct from the prion protein. FASEB J. 2011;25:2373-86 pubmed 出版商
  363. Boh B, Smith P, Hagen T. Neddylation-induced conformational control regulates cullin RING ligase activity in vivo. J Mol Biol. 2011;409:136-45 pubmed 出版商
  364. Stern C, Luoma J, Meitzen J, Mermelstein P. Corticotropin releasing factor-induced CREB activation in striatal neurons occurs via a novel G?? signaling pathway. PLoS ONE. 2011;6:e18114 pubmed 出版商
  365. Gerbe F, van Es J, Makrini L, Brulin B, Mellitzer G, Robine S, et al. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J Cell Biol. 2011;192:767-80 pubmed 出版商
  366. Chang H, Jennings P, Stewart J, Verrills N, Jones K. Essential role of protein phosphatase 2A in metaphase II arrest and activation of mouse eggs shown by okadaic acid, dominant negative protein phosphatase 2A, and FTY720. J Biol Chem. 2011;286:14705-12 pubmed 出版商
  367. Tooley J, Miller S, Stukenberg P. The Ndc80 complex uses a tripartite attachment point to couple microtubule depolymerization to chromosome movement. Mol Biol Cell. 2011;22:1217-26 pubmed 出版商
  368. Chua Y, Boh B, Ponyeam W, Hagen T. Regulation of cullin RING E3 ubiquitin ligases by CAND1 in vivo. PLoS ONE. 2011;6:e16071 pubmed 出版商
  369. Paschoud S, Yu D, Pulimeno P, Jond L, Turner J, Citi S. Cingulin and paracingulin show similar dynamic behaviour, but are recruited independently to junctions. Mol Membr Biol. 2011;28:123-35 pubmed 出版商
  370. Tong J, Furukawa Y, Sherwin A, Hornykiewicz O, Kish S. Heterogeneous intrastriatal pattern of proteins regulating axon growth in normal adult human brain. Neurobiol Dis. 2011;41:458-68 pubmed 出版商
  371. Skalski M, Sharma N, Williams K, Kruspe A, Coppolino M. SNARE-mediated membrane traffic is required for focal adhesion kinase signaling and Src-regulated focal adhesion turnover. Biochim Biophys Acta. 2011;1813:148-58 pubmed 出版商
  372. Soenen S, Himmelreich U, Nuytten N, De Cuyper M. Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials. 2011;32:195-205 pubmed 出版商
  373. Tai C, Shen S, Lee W, Liao C, Deng W, Chiou H, et al. Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells. Exp Cell Res. 2010;316:2969-81 pubmed 出版商
  374. Mire C, White J, Whitt M. A spatio-temporal analysis of matrix protein and nucleocapsid trafficking during vesicular stomatitis virus uncoating. PLoS Pathog. 2010;6:e1000994 pubmed 出版商
  375. Richter A, Schagdarsurengin U, Rastetter M, Steinmann K, Dammann R. Protein kinase A-mediated phosphorylation of the RASSF1A tumour suppressor at Serine 203 and regulation of RASSF1A function. Eur J Cancer. 2010;46:2986-95 pubmed 出版商
  376. Leck Y, Choo Y, Tan C, Smith P, Hagen T. Biochemical and cellular effects of inhibiting Nedd8 conjugation. Biochem Biophys Res Commun. 2010;398:588-93 pubmed 出版商
  377. Yu F, Chai T, He H, Hagen T, Luo Y. Thioredoxin-interacting protein (Txnip) gene expression: sensing oxidative phosphorylation status and glycolytic rate. J Biol Chem. 2010;285:25822-30 pubmed 出版商
  378. Ferrell N, Desai R, Fleischman A, Roy S, Humes H, Fissell W. A microfluidic bioreactor with integrated transepithelial electrical resistance (TEER) measurement electrodes for evaluation of renal epithelial cells. Biotechnol Bioeng. 2010;107:707-16 pubmed 出版商
  379. Hirano T, Hoshino Y. Sperm dimorphism in terms of nuclear shape and microtubule accumulation in Cyrtanthus mackenii. Sex Plant Reprod. 2010;23:153-62 pubmed 出版商
  380. Warters R, Cassidy P, Sunseri J, Parsawar K, Zhuplatov S, Kramer G, et al. The nuclear matrix shell proteome of human epidermis. J Dermatol Sci. 2010;58:113-22 pubmed 出版商
  381. Fang F, Zheng J, Galbaugh T, Fiorillo A, Hjort E, Zeng X, et al. Cyclophilin B as a co-regulator of prolactin-induced gene expression and function in breast cancer cells. J Mol Endocrinol. 2010;44:319-29 pubmed 出版商
  382. Irvine M, Philipsz S, Frausto M, Mijatov B, Gallagher S, Fung C, et al. Amino terminal hydrophobic import signals target the p14(ARF) tumor suppressor to the mitochondria. Cell Cycle. 2010;9:829-39 pubmed
  383. Louie C, Caridi G, Lopes V, Brancati F, Kispert A, Lancaster M, et al. AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis. Nat Genet. 2010;42:175-80 pubmed 出版商
  384. Liao C, Luo S, Tsai C, Tsao T, Chen S, Jiang M. CAS Enhances Chemotherapeutic Drug-Induced p53 Accumulation and Apoptosis: Use of CAS for High-Sensitivity Anticancer Drug Screening. Toxicol Mech Methods. 2008;18:771-6 pubmed 出版商
  385. Chang H, Minahan K, Merriman J, Jones K. Calmodulin-dependent protein kinase gamma 3 (CamKIIgamma3) mediates the cell cycle resumption of metaphase II eggs in mouse. Development. 2009;136:4077-81 pubmed 出版商
  386. Rossi M, Carbone M, Mostocotto C, Mancone C, Tripodi M, Maione R, et al. Mitochondrial localization of PARP-1 requires interaction with mitofilin and is involved in the maintenance of mitochondrial DNA integrity. J Biol Chem. 2009;284:31616-24 pubmed 出版商
  387. Lancaster M, Louie C, Silhavy J, Sintasath L, DeCambre M, Nigam S, et al. Impaired Wnt-beta-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy. Nat Med. 2009;15:1046-54 pubmed 出版商
  388. Sasaki M, Yamaguchi J, Ikeda H, Itatsu K, Nakanuma Y. Polycomb group protein Bmi1 is overexpressed and essential in anchorage-independent colony formation, cell proliferation and repression of cellular senescence in cholangiocarcinoma: tissue and culture studies. Hum Pathol. 2009;40:1723-30 pubmed 出版商
  389. Miyajima N, Maruyama S, Nonomura K, Hatakeyama S. TRIM36 interacts with the kinetochore protein CENP-H and delays cell cycle progression. Biochem Biophys Res Commun. 2009;381:383-7 pubmed 出版商
  390. Tsao T, Tsai C, Tung J, Chen S, Yue C, Liao C, et al. Function of CSE1L/CAS in the secretion of HT-29 human colorectal cells and its expression in human colon. Mol Cell Biochem. 2009;327:163-70 pubmed 出版商
  391. Shkarupeta M, Kostrjukova E, Lazarev V, Levitskii S, Basovskii Y, Govorun V. Localization of C. trachomatis Inc proteins in expression of their genes in HeLa cell culture. Bull Exp Biol Med. 2008;146:237-42 pubmed
  392. Frescas D, Guardavaccaro D, Kuchay S, Kato H, Poleshko A, Basrur V, et al. KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state. Cell Cycle. 2008;7:3539-47 pubmed
  393. Haferkamp S, Becker T, Scurr L, Kefford R, Rizos H. p16INK4a-induced senescence is disabled by melanoma-associated mutations. Aging Cell. 2008;7:733-45 pubmed
  394. Kim Y, Park S, Park J. Biomechanical analysis of cancerous and normal cells based on bulge generation in a microfluidic device. Analyst. 2008;133:1432-9 pubmed 出版商
  395. Cantagrel V, Silhavy J, Bielas S, Swistun D, Marsh S, Bertrand J, et al. Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome. Am J Hum Genet. 2008;83:170-9 pubmed 出版商
  396. Kano S, Miyajima N, Fukuda S, Hatakeyama S. Tripartite motif protein 32 facilitates cell growth and migration via degradation of Abl-interactor 2. Cancer Res. 2008;68:5572-80 pubmed 出版商
  397. Sasaki M, Ikeda H, Itatsu K, Yamaguchi J, Sawada S, Minato H, et al. The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma. Lab Invest. 2008;88:873-82 pubmed 出版商
  398. Itahana K, Zhang Y. Mitochondrial p32 is a critical mediator of ARF-induced apoptosis. Cancer Cell. 2008;13:542-53 pubmed 出版商
  399. Abdulghani J, Gu L, Dagvadorj A, Lutz J, Leiby B, Bonuccelli G, et al. Stat3 promotes metastatic progression of prostate cancer. Am J Pathol. 2008;172:1717-28 pubmed 出版商
  400. Nakaya T, Kawai T, Suzuki T. Regulation of FE65 nuclear translocation and function by amyloid beta-protein precursor in osmotically stressed cells. J Biol Chem. 2008;283:19119-31 pubmed 出版商
  401. Guardavaccaro D, Frescas D, Dorrello N, Peschiaroli A, Multani A, Cardozo T, et al. Control of chromosome stability by the beta-TrCP-REST-Mad2 axis. Nature. 2008;452:365-9 pubmed 出版商
  402. Omura T, Kaneko M, Onoguchi M, Koizumi S, Itami M, Ueyama M, et al. Novel functions of ubiquitin ligase HRD1 with transmembrane and proline-rich domains. J Pharmacol Sci. 2008;106:512-9 pubmed
  403. Carneiro A, Fragel Madeira L, Silva Neto M, Linden R. A role for CK2 upon interkinetic nuclear migration in the cell cycle of retinal progenitor cells. Dev Neurobiol. 2008;68:620-31 pubmed 出版商
  404. Sumioka A, Saito Y, Sakuma M, Araki Y, Yamamoto T, Suzuki T. The X11L/X11beta/MINT2 and X11L2/X11gamma/MINT3 scaffold proteins shuttle between the nucleus and cytoplasm. Exp Cell Res. 2008;314:1155-62 pubmed 出版商
  405. Kaneko M, Yasui S, Niinuma Y, Arai K, Omura T, Okuma Y, et al. A different pathway in the endoplasmic reticulum stress-induced expression of human HRD1 and SEL1 genes. FEBS Lett. 2007;581:5355-60 pubmed
  406. Woost P, Kolb R, Chang C, Finesilver M, Inagami T, Hopfer U. Development of an AT2-deficient proximal tubule cell line for transport studies. In Vitro Cell Dev Biol Anim. 2007;43:352-60 pubmed
  407. Gabet A, Accardi R, Bellopede A, Popp S, Boukamp P, Sylla B, et al. Impairment of the telomere/telomerase system and genomic instability are associated with keratinocyte immortalization induced by the skin human papillomavirus type 38. FASEB J. 2008;22:622-32 pubmed
  408. Lü L, Li J, Yew D, Rudd J, Mak Y. Oxidative stress on the astrocytes in culture derived from a senescence accelerated mouse strain. Neurochem Int. 2008;52:282-9 pubmed
  409. Egner A, Geisler C, von Middendorff C, Bock H, Wenzel D, Medda R, et al. Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys J. 2007;93:3285-90 pubmed
  410. Nishiya T, Kajita E, Horinouchi T, Nishimoto A, Miwa S. Distinct roles of TIR and non-TIR regions in the subcellular localization and signaling properties of MyD88. FEBS Lett. 2007;581:3223-9 pubmed
  411. Tong J, Hornykiewicz O, Furukawa Y, Kish S. Marked dissociation between high noradrenaline versus low noradrenaline transporter levels in human nucleus accumbens. J Neurochem. 2007;102:1691-1702 pubmed 出版商
  412. Supino R, Favini E, Cuccuru G, Zunino F, Scovassi A. Effect of paclitaxel on intracellular localization of c-Myc and P-c-Myc in prostate carcinoma cell lines. Ann N Y Acad Sci. 2007;1095:175-81 pubmed
  413. Gossot O, Geitmann A. Pollen tube growth: coping with mechanical obstacles involves the cytoskeleton. Planta. 2007;226:405-16 pubmed
  414. Li P, Waters R, Redfern S, Zhang M, Mao L, Annex B, et al. Oxidative phenotype protects myofibers from pathological insults induced by chronic heart failure in mice. Am J Pathol. 2007;170:599-608 pubmed
  415. Chew E, Poobalasingam T, Hawkey C, Hagen T. Characterization of cullin-based E3 ubiquitin ligases in intact mammalian cells--evidence for cullin dimerization. Cell Signal. 2007;19:1071-80 pubmed
  416. De Fanis U, Mori F, Kurnat R, Lee W, Bova M, Adkinson N, et al. GATA3 up-regulation associated with surface expression of CD294/CRTH2: a unique feature of human Th cells. Blood. 2007;109:4343-50 pubmed
  417. Wegmüller D, Raineri I, Gross B, Oakeley E, Moroni C. A cassette system to study embryonic stem cell differentiation by inducible RNA interference. Stem Cells. 2007;25:1178-85 pubmed
  418. Akoyev V, Takemoto D. ZO-1 is required for protein kinase C gamma-driven disassembly of connexin 43. Cell Signal. 2007;19:958-67 pubmed
  419. Kim J, Lee C, Bonifant C, Ressom H, Waldman T. Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA. Mol Cell Biol. 2007;27:662-77 pubmed
  420. Henley D, Isbill M, Fernando R, Foster J, Wimalasena J. Paclitaxel induced apoptosis in breast cancer cells requires cell cycle transit but not Cdc2 activity. Cancer Chemother Pharmacol. 2007;59:235-49 pubmed
  421. Valdes R, Liu W, Ullman B, Landfear S. Comprehensive examination of charged intramembrane residues in a nucleoside transporter. J Biol Chem. 2006;281:22647-55 pubmed
  422. Fissell W, Manley S, Westover A, Humes H, Fleischman A, Roy S. Differentiated growth of human renal tubule cells on thin-film and nanostructured materials. ASAIO J. 2006;52:221-7 pubmed
  423. Nakaya T, Suzuki T. Role of APP phosphorylation in FE65-dependent gene transactivation mediated by AICD. Genes Cells. 2006;11:633-45 pubmed
  424. Sharma M, Leung L, Brocardo M, Henderson J, Flegg C, Henderson B. Membrane localization of adenomatous polyposis coli protein at cellular protrusions: targeting sequences and regulation by beta-catenin. J Biol Chem. 2006;281:17140-9 pubmed
  425. Hough S, Clements I, Welch P, Wiederholt K. Differentiation of mouse embryonic stem cells after RNA interference-mediated silencing of OCT4 and Nanog. Stem Cells. 2006;24:1467-75 pubmed
  426. Hao M, Li X, Rizzo M, Rocheleau J, Dawant B, Piston D. Regulation of two insulin granule populations within the reserve pool by distinct calcium sources. J Cell Sci. 2005;118:5873-84 pubmed
  427. Barlow J, Wiley J, Mous M, Narendran A, Gee M, Goldberg M, et al. Differentiation of rhabdomyosarcoma cell lines using retinoic acid. Pediatr Blood Cancer. 2006;47:773-84 pubmed
  428. Remacle A, Rozanov D, Baciu P, Chekanov A, Golubkov V, Strongin A. The transmembrane domain is essential for the microtubular trafficking of membrane type-1 matrix metalloproteinase (MT1-MMP). J Cell Sci. 2005;118:4975-84 pubmed
  429. Bengoechea Alonso M, Punga T, Ericsson J. Hyperphosphorylation regulates the activity of SREBP1 during mitosis. Proc Natl Acad Sci U S A. 2005;102:11681-6 pubmed
  430. Akimoto T, Pohnert S, Li P, Zhang M, Gumbs C, Rosenberg P, et al. Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem. 2005;280:19587-93 pubmed
  431. Babcock H, Chen C, Zhuang X. Using single-particle tracking to study nuclear trafficking of viral genes. Biophys J. 2004;87:2749-58 pubmed
  432. Trushina E, Dyer R, Badger J, Ure D, Eide L, Tran D, et al. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol. 2004;24:8195-209 pubmed
  433. Jacobelli J, Chmura S, Buxton D, Davis M, Krummel M. A single class II myosin modulates T cell motility and stopping, but not synapse formation. Nat Immunol. 2004;5:531-8 pubmed
  434. Tsunematsu R, Nakayama K, Oike Y, Nishiyama M, Ishida N, Hatakeyama S, et al. Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J Biol Chem. 2004;279:9417-23 pubmed
  435. Ruddy M, Wong G, Liu X, Yamamoto H, Kasayama S, Kirkwood K, et al. Functional cooperation between interleukin-17 and tumor necrosis factor-alpha is mediated by CCAAT/enhancer-binding protein family members. J Biol Chem. 2004;279:2559-67 pubmed
  436. Laurent V, Jaubert Miazza L, Desjardins R, Day R, Lindberg I. Biosynthesis of proopiomelanocortin-derived peptides in prohormone convertase 2 and 7B2 null mice. Endocrinology. 2004;145:519-28 pubmed
  437. Nascimento A, Roland J, Gelfand V. Pigment cells: a model for the study of organelle transport. Annu Rev Cell Dev Biol. 2003;19:469-91 pubmed
  438. Cheng S, Shao J, Charlton Kachigian N, Loewy A, Towler D. MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. J Biol Chem. 2003;278:45969-77 pubmed
  439. Martin K, Hart C, Liu J, Leung W, Patton W. Simultaneous trichromatic fluorescence detection of proteins on Western blots using an amine-reactive dye in combination with alkaline phosphatase- and horseradish peroxidase-antibody conjugates. Proteomics. 2003;3:1215-27 pubmed
  440. Kudo Y, Kitajjma S, Sato S, Miyauchi M, Ogawa I, Takata T. Establishment of an oral squamous cell carcinoma cell line with high invasive and p27 degradation activities from a lymph node metastasis. Oral Oncol. 2003;39:515-20 pubmed
  441. Ashton A, Ware G, Kaul D, Ware J. Inhibition of tumor necrosis factor alpha-mediated NFkappaB activation and leukocyte adhesion, with enhanced endothelial apoptosis, by G protein-linked receptor (TP) ligands. J Biol Chem. 2003;278:11858-66 pubmed
  442. Rohde G, Wenzel D, Haucke V. A phosphatidylinositol (4,5)-bisphosphate binding site within mu2-adaptin regulates clathrin-mediated endocytosis. J Cell Biol. 2002;158:209-14 pubmed
  443. Errico A, Ballabio A, Rugarli E. Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Hum Mol Genet. 2002;11:153-63 pubmed
  444. Hernandez Blazquez F, Joazeiro P, Omori Y, Yamasaki H. Control of intracellular movement of connexins by E-cadherin in murine skin papilloma cells. Exp Cell Res. 2001;270:235-47 pubmed
  445. Gramolini A, Belanger G, Jasmin B. Distinct regions in the 3' untranslated region are responsible for targeting and stabilizing utrophin transcripts in skeletal muscle cells. J Cell Biol. 2001;154:1173-83 pubmed
  446. Lessman C, Kim H. Soluble tubulin complexes in oocytes of the common leopard frog, Rana pipiens, contain gamma-tubulin. Mol Reprod Dev. 2001;60:128-36 pubmed
  447. Akileswaran L, Taraska J, Sayer J, Gettemy J, Coghlan V. A-kinase-anchoring protein AKAP95 is targeted to the nuclear matrix and associates with p68 RNA helicase. J Biol Chem. 2001;276:17448-54 pubmed
  448. Vogelsberg Ragaglia V, Bruce J, Richter Landsberg C, Zhang B, Hong M, Trojanowski J, et al. Distinct FTDP-17 missense mutations in tau produce tau aggregates and other pathological phenotypes in transfected CHO cells. Mol Biol Cell. 2000;11:4093-104 pubmed
  449. Iijima K, Ando K, Takeda S, Satoh Y, Seki T, Itohara S, et al. Neuron-specific phosphorylation of Alzheimer's beta-amyloid precursor protein by cyclin-dependent kinase 5. J Neurochem. 2000;75:1085-91 pubmed
  450. Deloulme J, Assard N, Mbele G, Mangin C, Kuwano R, Baudier J. S100A6 and S100A11 are specific targets of the calcium- and zinc-binding S100B protein in vivo. J Biol Chem. 2000;275:35302-10 pubmed
  451. Pryde J, Walker A, Rossi A, Hannah S, Haslett C. Temperature-dependent arrest of neutrophil apoptosis. Failure of Bax insertion into mitochondria at 15 degrees C prevents the release of cytochrome c. J Biol Chem. 2000;275:33574-84 pubmed
  452. Berggren K, Steinberg T, Lauber W, Carroll J, Lopez M, Chernokalskaya E, et al. A luminescent ruthenium complex for ultrasensitive detection of proteins immobilized on membrane supports. Anal Biochem. 1999;276:129-43 pubmed
  453. Ashton A, Yokota R, John G, Zhao S, Suadicani S, Spray D, et al. Inhibition of endothelial cell migration, intercellular communication, and vascular tube formation by thromboxane A(2). J Biol Chem. 1999;274:35562-70 pubmed
  454. Fava F, Raynaud Messina B, Leung Tack J, Mazzolini L, Li M, Guillemot J, et al. Human 76p: A new member of the gamma-tubulin-associated protein family. J Cell Biol. 1999;147:857-68 pubmed
  455. Timm S, Titus B, Bernd K, Barroso M. The EF-hand Ca(2+)-binding protein p22 associates with microtubules in an N-myristoylation-dependent manner. Mol Biol Cell. 1999;10:3473-88 pubmed
  456. Panchuk Voloshina N, Bishop Stewart J, Bhalgat M, Millard P, Mao F, Leung W, et al. Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem. 1999;47:1179-88 pubmed
  457. Ando K, Oishi M, Takeda S, Iijima K, Isohara T, Nairn A, et al. Role of phosphorylation of Alzheimer's amyloid precursor protein during neuronal differentiation. J Neurosci. 1999;19:4421-7 pubmed
  458. Yvon A, Wadsworth P, Jordan M. Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol Biol Cell. 1999;10:947-59 pubmed
  459. Koester S, Schlossman S, Zhang C, Decker S, Bolton W. APO2.7 defines a shared apoptotic-necrotic pathway in a breast tumor hypoxia model. Cytometry. 1998;33:324-32 pubmed
  460. Roos U, De Brabander M, De Mey J. Indirect immunofluorescence of microtubules in Dictyostelium discoideum. A study with polyclonal and monoclonal antibodies to tubulins. Exp Cell Res. 1984;151:183-93 pubmed
  461. Hime G, Saint R. Zygotic expression of the pebble locus is required for cytokinesis during the postblastoderm mitoses of Drosophila. Development. 1992;114:165-71 pubmed