这是一篇来自已证抗体库的有关人类 TUBA8的综述,是根据70篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合TUBA8 抗体。
TUBA8 同义词: CDCBM8; TUBAL2; tubulin alpha-8 chain; tubulin alpha chain-like 2

圣克鲁斯生物技术
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 图 6g
  • 免疫印迹; 人类; 图 6e
  • 免疫印迹; 小鼠; 图 6a
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz Biotechnology, sc-23950)被用于被用于免疫细胞化学在人类样本上 (图 6g), 被用于免疫印迹在人类样本上 (图 6e) 和 被用于免疫印迹在小鼠样本上 (图 6a). Cell Death Differ (2018) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图 6g
圣克鲁斯生物技术 TUBA8抗体(SantaCruz, 6-11B-1)被用于被用于免疫印迹在小鼠样本上 (图 6g). Haematologica (2017) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 大鼠; 图 3
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在大鼠样本上 (图 3). Physiol Rep (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 大鼠; 图 2a
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-23950)被用于被用于免疫细胞化学在大鼠样本上 (图 2a). Sci Rep (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫细胞化学; 人类; 图 8b
  • 免疫印迹; 人类; 图 5e
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫细胞化学在人类样本上 (图 8b) 和 被用于免疫印迹在人类样本上 (图 5e). Nat Cell Biol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图 7
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-23950)被用于被用于免疫印迹在小鼠样本上 (图 7). Front Neurosci (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 6). PLoS Pathog (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 大鼠; 1:1000; 图 5
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Int J Med Sci (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; common platanna; 1:500; 图 s1
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, 6-11B-1)被用于被用于免疫组化在common platanna样本上浓度为1:500 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 1D
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 1D). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1 ug/ml; 图 5
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz Biotechnology, sc-23950)被用于被用于免疫印迹在小鼠样本上浓度为1 ug/ml (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, SC-5286)被用于被用于免疫印迹在小鼠样本上 (图 4). Cell Death Dis (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 TUBA8抗体(santa Cruz, sc5286)被用于被用于免疫印迹在小鼠样本上 (图 1). elife (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:500; 图 3g
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3g). Am J Hum Genet (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, SC-23950)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Mol Oncol (2016) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:2000; 图 4
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). Nat Cell Biol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-23950)被用于被用于免疫印迹在人类样本上 (图 3). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:2000; 图 5a
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, Sc-23950)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). Brain Behav (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:500; 图 6
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS Genet (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 TUBA8抗体(santa Cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz Biotechnology, SC-23950)被用于被用于免疫印迹在小鼠样本上. Mol Oncol (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 4b). Cell Death Dis (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:250; 图 1
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1). Drug Metab Dispos (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 TUBA8抗体(santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 图 s5e
圣克鲁斯生物技术 TUBA8抗体(santa cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上 (图 s5e). Nat Immunol (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Biol Chem (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; scFv
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, B-7)被用于被用于免疫印迹在scFv样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在大鼠样本上. Physiol Rep (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Cell Death Dis (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 TUBA8抗体(santa cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 5). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:1000
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-23950)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. J Biol Chem (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, B-7)被用于被用于免疫印迹在小鼠样本上. Oncotarget (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TUBA8抗体(Santa-Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上. J Agric Food Chem (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 猕猴; 图 2
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc5286)被用于被用于免疫印迹在猕猴样本上 (图 2). Mol Endocrinol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-23950)被用于被用于免疫印迹在小鼠样本上 (图 4). J Immunol (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz Biotechnology Inc, sc-5286)被用于被用于免疫印迹在人类样本上. Mol Cell Proteomics (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在人类样本上. FEBS Lett (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 1:250
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-23950)被用于被用于免疫印迹在人类样本上浓度为1:250. PLoS ONE (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; African green monkey; 1:16000
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在African green monkey样本上浓度为1:16000. Biol Reprod (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:2500
  • 免疫印迹; 小鼠; 1:2500
圣克鲁斯生物技术 TUBA8抗体(SantaCruz, SC-5286)被用于被用于免疫印迹在人类样本上浓度为1:2500 和 被用于免疫印迹在小鼠样本上浓度为1:2500. Eur Respir J (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 1:5000; 图 st13
圣克鲁斯生物技术 TUBA8抗体(Santa cruz, sc-5286)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 st13). Nat Cell Biol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-23950)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫组化; 大鼠
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz Biotechnology, s-5286)被用于被用于免疫组化在大鼠样本上. Methods Mol Biol (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:8000
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上浓度为1:8000. Diabetes (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz Biotechnology, sc-5286)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Diabetologia (2013) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz Biotechnology,, sc-5286)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:2000
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz Biotechnology, sc-23950)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. J Comp Neurol (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在大鼠样本上. J Gerontol A Biol Sci Med Sci (2014) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Eur J Immunol (2013) ncbi
小鼠 单克隆(B-7)
  • 免疫细胞化学; 鸡; 1:2500
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫细胞化学在鸡样本上浓度为1:2500. PLoS Genet (2013) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, sc-5286)被用于被用于免疫印迹在大鼠样本上. Autophagy (2013) ncbi
小鼠 单克隆(B-7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 TUBA8抗体(Santa Cruz, Sc 5286)被用于被用于免疫印迹在人类样本上. PLoS ONE (2012) ncbi
GeneTex
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
GeneTex TUBA8抗体(GeneTex, GTX11302)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2012) ncbi
赛默飞世尔
兔 多克隆
  • 免疫印迹; 人类; 图 7
赛默飞世尔 TUBA8抗体(Thermo Scientific, PA5-29135)被用于被用于免疫印迹在人类样本上 (图 7). Int J Pharm (2016) ncbi
文章列表
  1. Li W, Yue F, Dai Y, Shi B, Xu G, Jiang X, et al. Suppressor of hepatocellular carcinoma RASSF1A activates autophagy initiation and maturation. Cell Death Differ. 2018;: pubmed 出版商
  2. Beauchemin H, Shooshtarizadeh P, Vadnais C, Vassen L, Pastore Y, Moroy T. Gfi1b controls integrin signaling-dependent cytoskeleton dynamics and organization in megakaryocytes. Haematologica. 2017;102:484-497 pubmed 出版商
  3. Hortemo K, Lunde P, Anonsen J, Kvaløy H, Munkvik M, Rehn T, et al. Exercise training increases protein O-GlcNAcylation in rat skeletal muscle. Physiol Rep. 2016;4: pubmed
  4. Xiaojun W, Yan L, Hong X, Xianghong Z, Shifeng L, Dingjie X, et al. Acetylated ?-Tubulin Regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) Exerts the Anti-fibrotic Effect in Rat Lung Fibrosis Induced by Silica. Sci Rep. 2016;6:32257 pubmed 出版商
  5. Zhou A, Lin K, Zhang S, Chen Y, Zhang N, Xue J, et al. Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol. 2016;18:954-966 pubmed 出版商
  6. Furukawa Y, Tanemura K, Igarashi K, Ideta Otsuka M, Aisaki K, Kitajima S, et al. Learning and Memory Deficits in Male Adult Mice Treated with a Benzodiazepine Sleep-Inducing Drug during the Juvenile Period. Front Neurosci. 2016;10:339 pubmed 出版商
  7. Xi Z, Yao M, Li Y, Xie C, Holst J, Liu T, et al. Guttiferone K impedes cell cycle re-entry of quiescent prostate cancer cells via stabilization of FBXW7 and subsequent c-MYC degradation. Cell Death Dis. 2016;7:e2252 pubmed 出版商
  8. Jung A, Stoiber C, Herkt C, Schulz C, Bertrams W, Schmeck B. Legionella pneumophila-Derived Outer Membrane Vesicles Promote Bacterial Replication in Macrophages. PLoS Pathog. 2016;12:e1005592 pubmed 出版商
  9. Lai C, Tsai C, Kuo W, Ho T, Day C, Pai P, et al. Multi-Strain Probiotics Inhibit Cardiac Myopathies and Autophagy to Prevent Heart Injury in High-Fat Diet-Fed Rats. Int J Med Sci. 2016;13:277-85 pubmed 出版商
  10. Chu C, Ossipova O, Ioannou A, Sokol S. Prickle3 synergizes with Wtip to regulate basal body organization and cilia growth. Sci Rep. 2016;6:24104 pubmed 出版商
  11. Thakur B, Dasgupta N, Ta A, Das S. Physiological TLR5 expression in the intestine is regulated by differential DNA binding of Sp1/Sp3 through simultaneous Sp1 dephosphorylation and Sp3 phosphorylation by two different PKC isoforms. Nucleic Acids Res. 2016;44:5658-72 pubmed 出版商
  12. Stritt S, Nurden P, Favier R, Favier M, Ferioli S, Gotru S, et al. Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg(2+) homeostasis and cytoskeletal architecture. Nat Commun. 2016;7:11097 pubmed 出版商
  13. Lee T, Liu C, Chang Y, Nieh S, Lin Y, Jao S, et al. Increased chemoresistance via Snail-Raf kinase inhibitor protein signaling in colorectal cancer in response to a nicotine derivative. Oncotarget. 2016;7:23512-20 pubmed 出版商
  14. Marchildon F, Fu D, Lala Tabbert N, Wiper Bergeron N. CCAAT/enhancer binding protein beta protects muscle satellite cells from apoptosis after injury and in cancer cachexia. Cell Death Dis. 2016;7:e2109 pubmed 出版商
  15. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  16. Wen B, Li S, Li H, Chen Y, Ma X, Wang J, et al. Microphthalmia-associated transcription factor regulates the visual cycle genes Rlbp1 and Rdh5 in the retinal pigment epithelium. Sci Rep. 2016;6:21208 pubmed 出版商
  17. Divisato G, Formicola D, Esposito T, Merlotti D, Pazzaglia L, Del Fattore A, et al. ZNF687 Mutations in Severe Paget Disease of Bone Associated with Giant Cell Tumor. Am J Hum Genet. 2016;98:275-86 pubmed 出版商
  18. M L, P P, T K, M P, E S, J P, et al. Essential role of HDAC6 in the regulation of PD-L1 in melanoma. Mol Oncol. 2016;10:735-750 pubmed 出版商
  19. Garg N, Tyagi R, Singh B, Sharma G, Nirbhavane P, Kushwah V, et al. Nanostructured lipid carrier mediates effective delivery of methotrexate to induce apoptosis of rheumatoid arthritis via NF-κB and FOXO1. Int J Pharm. 2016;499:301-320 pubmed 出版商
  20. Lee J, Park K, Han D, Bang N, Kim D, Na H, et al. PharmDB-K: Integrated Bio-Pharmacological Network Database for Traditional Korean Medicine. PLoS ONE. 2015;10:e0142624 pubmed 出版商
  21. Sun S, Shi G, Sha H, Ji Y, Han X, Shu X, et al. IRE1α is an endogenous substrate of endoplasmic-reticulum-associated degradation. Nat Cell Biol. 2015;17:1546-55 pubmed 出版商
  22. Seidel C, Schnekenburger M, Mazumder A, Teiten M, Kirsch G, Dicato M, et al. 4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer. Biochem Pharmacol. 2016;99:31-52 pubmed 出版商
  23. Ragot A, Pietropaolo S, Vincent J, Delage P, Zhang H, Allinquant B, et al. Genetic deletion of the Histone Deacetylase 6 exacerbates selected behavioral deficits in the R6/1 mouse model for Huntington's disease. Brain Behav. 2015;5:e00361 pubmed 出版商
  24. Bollu L, Katreddy R, Blessing A, Pham N, Zheng B, Wu X, et al. Intracellular activation of EGFR by fatty acid synthase dependent palmitoylation. Oncotarget. 2015;6:34992-5003 pubmed 出版商
  25. Machado Neto J, de Melo Campos P, Favaro P, Lazarini M, da Silva Santos Duarte A, Lorand Metze I, et al. Stathmin 1 inhibition amplifies ruxolitinib-induced apoptosis in JAK2V617F cells. Oncotarget. 2015;6:29573-84 pubmed 出版商
  26. Mansara P, Deshpande R, Vaidya M, Kaul Ghanekar R. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA) Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231. PLoS ONE. 2015;10:e0136542 pubmed 出版商
  27. Hamazaki J, Hirayama S, Murata S. Redundant Roles of Rpn10 and Rpn13 in Recognition of Ubiquitinated Proteins and Cellular Homeostasis. PLoS Genet. 2015;11:e1005401 pubmed 出版商
  28. Lee K, Im J, Shibata E, Park J, Handa N, Kowalczykowski S, et al. MCM8-9 complex promotes resection of double-strand break ends by MRE11-RAD50-NBS1 complex. Nat Commun. 2015;6:7744 pubmed 出版商
  29. Lee J, Lee Y, Lim J, Byun H, Park I, Kim G, et al. Mitochondrial Respiratory Dysfunction Induces Claudin-1 Expression via Reactive Oxygen Species-mediated Heat Shock Factor 1 Activation, Leading to Hepatoma Cell Invasiveness. J Biol Chem. 2015;290:21421-31 pubmed 出版商
  30. Li W, Zhang C, Ren A, Li T, Jin R, Li G, et al. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation. PLoS ONE. 2015;10:e0126459 pubmed 出版商
  31. Woan K, Lienlaf M, Perez Villaroel P, Lee C, Cheng F, Knox T, et al. Targeting histone deacetylase 6 mediates a dual anti-melanoma effect: Enhanced antitumor immunity and impaired cell proliferation. Mol Oncol. 2015;9:1447-1457 pubmed 出版商
  32. Mahale S, Bharate S, Manda S, Joshi P, Jenkins P, Vishwakarma R, et al. Antitumour potential of BPT: a dual inhibitor of cdk4 and tubulin polymerization. Cell Death Dis. 2015;6:e1743 pubmed 出版商
  33. Barrett K, Fang H, Cukovic D, Dombkowski A, Kocarek T, Runge Morris M. Upregulation of UGT2B4 Expression by 3'-Phosphoadenosine-5'-Phosphosulfate Synthase Knockdown: Implications for Coordinated Control of Bile Acid Conjugation. Drug Metab Dispos. 2015;43:1061-70 pubmed 出版商
  34. Cruz Bermúdez A, Vallejo C, Vicente Blanco R, Gallardo M, Fernández Moreno M, Quintanilla M, et al. Enhanced tumorigenicity by mitochondrial DNA mild mutations. Oncotarget. 2015;6:13628-43 pubmed
  35. Jang D, Kwon H, Jeong K, Lee J, Pak Y. Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor. J Cell Sci. 2015;128:2179-90 pubmed 出版商
  36. Zhang Q, Kuang H, Chen C, Yan J, Do Umehara H, Liu X, et al. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol. 2015;16:458-66 pubmed 出版商
  37. Muramatsu R, Kuroda M, Matoba K, Lin H, Takahashi C, Koyama Y, et al. Prostacyclin prevents pericyte loss and demyelination induced by lysophosphatidylcholine in the central nervous system. J Biol Chem. 2015;290:11515-25 pubmed 出版商
  38. Yanagi T, Shi R, Aza Blanc P, Reed J, Matsuzawa S. PCTAIRE1-knockdown sensitizes cancer cells to TNF family cytokines. PLoS ONE. 2015;10:e0119404 pubmed 出版商
  39. Hortemo K, Aronsen J, Lunde I, Sjaastad I, Lunde P, Sejersted O. Exhausting treadmill running causes dephosphorylation of sMLC2 and reduced level of myofilament MLCK2 in slow twitch rat soleus muscle. Physiol Rep. 2015;3: pubmed 出版商
  40. Miyake S, Muramatsu R, Hamaguchi M, Yamashita T. Prolyl hydroxylase regulates axonal rewiring and motor recovery after traumatic brain injury. Cell Death Dis. 2015;6:e1638 pubmed 出版商
  41. Kwon H, Lee J, Jeong K, Jang D, Pak Y. Fatty acylated caveolin-2 is a substrate of insulin receptor tyrosine kinase for insulin receptor substrate-1-directed signaling activation. Biochim Biophys Acta. 2015;1853:1022-34 pubmed 出版商
  42. Bailey J, Fields A, Cheng K, Lee A, Wagenaar E, Lagrois R, et al. WD repeat-containing protein 5 (WDR5) localizes to the midbody and regulates abscission. J Biol Chem. 2015;290:8987-9001 pubmed 出版商
  43. Rizkallah R, Batsomboon P, Dudley G, Hurt M. Identification of the oncogenic kinase TOPK/PBK as a master mitotic regulator of C2H2 zinc finger proteins. Oncotarget. 2015;6:1446-61 pubmed
  44. Toropainen S, Malinen M, Kaikkonen S, Rytinki M, Jääskeläinen T, Sahu B, et al. SUMO ligase PIAS1 functions as a target gene selective androgen receptor coregulator on prostate cancer cell chromatin. Nucleic Acids Res. 2015;43:848-61 pubmed 出版商
  45. Toda T, Ishida K, Kiyama H, Yamashita T, Lee S. Down-regulation of KCC2 expression and phosphorylation in motoneurons, and increases the number of in primary afferent projections to motoneurons in mice with post-stroke spasticity. PLoS ONE. 2014;9:e114328 pubmed 出版商
  46. Machado Neto J, Lazarini M, Favaro P, de Melo Campos P, Scopim Ribeiro R, Franchi Junior G, et al. ANKHD1 silencing inhibits Stathmin 1 activity, cell proliferation and migration of leukemia cells. Biochim Biophys Acta. 2015;1853:583-93 pubmed 出版商
  47. Bollu L, Ren J, Blessing A, Katreddy R, Gao G, Xu L, et al. Involvement of de novo synthesized palmitate and mitochondrial EGFR in EGF induced mitochondrial fusion of cancer cells. Cell Cycle. 2014;13:2415-30 pubmed 出版商
  48. Huang S, Lee C, Wang H, Chang Y, Lin C, Chen C, et al. 6-Dehydrogingerdione restrains lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages. J Agric Food Chem. 2014;62:9171-9 pubmed 出版商
  49. Sutinen P, Rahkama V, Rytinki M, Palvimo J. Nuclear mobility and activity of FOXA1 with androgen receptor are regulated by SUMOylation. Mol Endocrinol. 2014;28:1719-28 pubmed 出版商
  50. Cheng F, Lienlaf M, Wang H, Perez Villarroel P, Lee C, Woan K, et al. A novel role for histone deacetylase 6 in the regulation of the tolerogenic STAT3/IL-10 pathway in APCs. J Immunol. 2014;193:2850-62 pubmed 出版商
  51. Dutta B, Yan R, Lim S, Tam J, Sze S. Quantitative profiling of chromatome dynamics reveals a novel role for HP1BP3 in hypoxia-induced oncogenesis. Mol Cell Proteomics. 2014;13:3236-49 pubmed 出版商
  52. Lo Sasso G, Ryu D, Mouchiroud L, Fernando S, Anderson C, Katsyuba E, et al. Loss of Sirt1 function improves intestinal anti-bacterial defense and protects from colitis-induced colorectal cancer. PLoS ONE. 2014;9:e102495 pubmed 出版商
  53. Tao W, Leng X, Chakraborty S, Ma H, Arlinghaus R. c-Abl activates janus kinase 2 in normal hematopoietic cells. J Biol Chem. 2014;289:21463-72 pubmed 出版商
  54. Huszar J, Payne C. MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells. FEBS Lett. 2014;588:1850-6 pubmed 出版商
  55. Erdozain A, Morentin B, Bedford L, King E, Tooth D, Brewer C, et al. Alcohol-related brain damage in humans. PLoS ONE. 2014;9:e93586 pubmed 出版商
  56. Kakiuchi K, Tsuda A, Goto Y, Shimada T, Taniguchi K, Takagishi K, et al. Cell-surface DEAD-box polypeptide 4-immunoreactive cells and gonocytes are two distinct populations in postnatal porcine testes. Biol Reprod. 2014;90:82 pubmed 出版商
  57. Witsch T, Niess G, Sakkas E, Likhoshvay T, Becker S, Herold S, et al. Transglutaminase 2: a new player in bronchopulmonary dysplasia?. Eur Respir J. 2014;44:109-21 pubmed 出版商
  58. Hwang W, Jiang J, Yang S, Huang T, Lan H, Teng H, et al. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol. 2014;16:268-80 pubmed 出版商
  59. Klinger M, Wang W, Kuhns S, Bärenz F, Dräger Meurer S, Pereira G, et al. The novel centriolar satellite protein SSX2IP targets Cep290 to the ciliary transition zone. Mol Biol Cell. 2014;25:495-507 pubmed 出版商
  60. Wilson V. Growth and differentiation of HaCaT keratinocytes. Methods Mol Biol. 2014;1195:33-41 pubmed 出版商
  61. Chen Z, Morris D, Jiang L, Liu Y, Rui L. SH2B1 in ?-cells regulates glucose metabolism by promoting ?-cell survival and islet expansion. Diabetes. 2014;63:585-95 pubmed 出版商
  62. Jo S, Kim M, Park J, Kim T, Ahn Y. Txnip contributes to impaired glucose tolerance by upregulating the expression of genes involved in hepatic gluconeogenesis in mice. Diabetologia. 2013;56:2723-32 pubmed 出版商
  63. Chen Z, Chen J, Gu Y, Hu C, Li J, Lin S, et al. Aberrantly activated AREG-EGFR signaling is required for the growth and survival of CRTC1-MAML2 fusion-positive mucoepidermoid carcinoma cells. Oncogene. 2014;33:3869-77 pubmed 出版商
  64. Schreiner A, Durry S, Aida T, Stock M, Ruther U, Tanaka K, et al. Laminar and subcellular heterogeneity of GLAST and GLT-1 immunoreactivity in the developing postnatal mouse hippocampus. J Comp Neurol. 2014;522:204-24 pubmed 出版商
  65. Mach J, Huizer Pajkos A, Cogger V, McKenzie C, Le Couteur D, Jones B, et al. The effect of aging on acetaminophen pharmacokinetics, toxicity and Nrf2 in Fischer 344 rats. J Gerontol A Biol Sci Med Sci. 2014;69:387-97 pubmed 出版商
  66. Licandro G, Ling Khor H, Beretta O, Lai J, Derks H, Laudisi F, et al. The NLRP3 inflammasome affects DNA damage responses after oxidative and genotoxic stress in dendritic cells. Eur J Immunol. 2013;43:2126-37 pubmed 出版商
  67. Gómez Herreros F, Romero Granados R, Zeng Z, Alvarez Quilón A, Quintero C, Ju L, et al. TDP2-dependent non-homologous end-joining protects against topoisomerase II-induced DNA breaks and genome instability in cells and in vivo. PLoS Genet. 2013;9:e1003226 pubmed 出版商
  68. Sirohi K, Chalasani M, Sudhakar C, Kumari A, Radha V, Swarup G. M98K-OPTN induces transferrin receptor degradation and RAB12-mediated autophagic death in retinal ganglion cells. Autophagy. 2013;9:510-27 pubmed 出版商
  69. Jarboui M, Bidoia C, Woods E, Roe B, Wynne K, Elia G, et al. Nucleolar protein trafficking in response to HIV-1 Tat: rewiring the nucleolus. PLoS ONE. 2012;7:e48702 pubmed 出版商
  70. Wei P, Lo W, Su M, Shew J, Lee W. Non-targeting siRNA induces NPGPx expression to cooperate with exoribonuclease XRN2 for releasing the stress. Nucleic Acids Res. 2012;40:323-32 pubmed 出版商