这是一篇来自已证抗体库的有关人类 TUBB的综述,是根据279篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合TUBB 抗体。
TUBB 同义词: CDCBM6; CSCSC1; M40; OK/SW-cl.56; TUBB1; TUBB5

赛默飞世尔
小鼠 单克隆(AA10)
  • 免疫细胞化学; 小鼠; 图 1i
赛默飞世尔 TUBB抗体(Thermo Fisher, 480011)被用于被用于免疫细胞化学在小鼠样本上 (图 1i). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 人类; 图 9
赛默飞世尔 TUBB抗体(Thermo Fisher Scientific, MA5-16308)被用于被用于免疫印迹在人类样本上 (图 9). Cells (2019) ncbi
小鼠 单克隆(BT7R)
赛默飞世尔 TUBB抗体(Invitrogen, MA5-C16308-BTIN)被用于. J Biol Chem (2019) ncbi
小鼠 单克隆(BT7R)
  • 免疫细胞化学; 小鼠; 1:100; 图 3h
赛默飞世尔 TUBB抗体(Thermo Fisher, MA5-16308-A647)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3h). Mol Cancer Res (2018) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 小鼠; 图 2a
赛默飞世尔 TUBB抗体(Thermo Scientific, MA5-16308)被用于被用于免疫印迹在小鼠样本上 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 人类; 图 3a
赛默飞世尔 TUBB抗体(Thermo Scientific, MA5-16308)被用于被用于免疫印迹在人类样本上 (图 3a). Autophagy (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 1:4000; 图 8a
赛默飞世尔 TUBB抗体(Invitrogen, 32-2600)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 8a). J Physiol (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 5d
赛默飞世尔 TUBB抗体(生活技术, 1559509A)被用于被用于免疫印迹在人类样本上 (图 5d). J Biol Chem (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 小鼠; 1:500; 图 s1e
赛默飞世尔 TUBB抗体(Invitrogen, 32-2600)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s1e). Neurotherapeutics (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 TUBB抗体(Invitrogen, 32-2600)被用于被用于免疫印迹在人类样本上 (图 5). Reprod Biol (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 3b
赛默飞世尔 TUBB抗体(Invitrogen, 32-2600)被用于被用于免疫印迹在人类样本上 (图 3b). J Hematol Oncol (2016) ncbi
小鼠 单克隆(AA10)
  • 免疫细胞化学; 人类; 1:1000; 图 4d
赛默飞世尔 TUBB抗体(Novex, 480011)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4d). Mol Neurobiol (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 小鼠; 1:500; 图 4
赛默飞世尔 TUBB抗体(Invitrogen, 32-2600)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 大鼠; 1:5000; 表 1
赛默飞世尔 TUBB抗体(Thermo Fisher, MA5-16308)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (表 1). J Nutr Biochem (2016) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 人类; 1:10,000; 图 1
赛默飞世尔 TUBB抗体(Thermo Scientific, MA5-16308)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Cancer Res (2016) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛默飞世尔 TUBB抗体(ThermoFisher, BT7R)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). PLoS Genet (2016) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 大鼠; 图 4
赛默飞世尔 TUBB抗体(生活技术, 32-2600)被用于被用于免疫印迹在大鼠样本上 (图 4). J Neurotrauma (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1s1
赛默飞世尔 TUBB抗体(Invitrogen, 32-2600)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1s1). elife (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 TUBB抗体(ThermoFisher Scientific, PA5-16863)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 小鼠
赛默飞世尔 TUBB抗体(生活技术, 32?C2600)被用于被用于免疫细胞化学在小鼠样本上. Eur J Immunol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 TUBB抗体(Thermo Scientific, PA1-16947)被用于. Chem Pharm Bull (Tokyo) (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类
赛默飞世尔 TUBB抗体(Invitrogen, 32?C2600)被用于被用于免疫印迹在人类样本上. Clin Transl Gastroenterol (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 人类; 1:500; 图 1,4
赛默飞世尔 TUBB抗体(生活技术, 32-C2600)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1,4). Sci Rep (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 s5
赛默飞世尔 TUBB抗体(生活技术, 32-2600)被用于被用于免疫印迹在人类样本上 (图 s5). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 大鼠; 0.5 ng/ml
赛默飞世尔 TUBB抗体(生活技术, 32-2600)被用于被用于免疫印迹在大鼠样本上浓度为0.5 ng/ml. J Cell Physiol (2015) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 大鼠; 1:5000; 图 4a
赛默飞世尔 TUBB抗体(Thermo, BT7R)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 4a). Exp Eye Res (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 TUBB抗体(Thermo Fisher Scientific, PA1-41331)被用于. Mol Med (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠
赛默飞世尔 TUBB抗体(生活技术, 32-2600)被用于被用于免疫印迹在小鼠样本上. J Cereb Blood Flow Metab (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 TUBB抗体(Thermo Scientific, PA1-16947)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(AA10)
  • 免疫印迹; 小鼠; 1:5000
赛默飞世尔 TUBB抗体(生活技术, 480011)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. PLoS ONE (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 TUBB抗体(Invitrogen, 322600)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Med (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 TUBB抗体(ZYMED, 22833)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Front Cell Neurosci (2014) ncbi
domestic rabbit 多克隆
赛默飞世尔 TUBB抗体(Thermo, RB-9249-PO)被用于. Hum Mol Genet (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛默飞世尔 TUBB抗体(Thermo Scientific Pierce Antibodies, PA1-16947)被用于被用于免疫印迹在人类样本上. Cereb Cortex (2016) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 犬
赛默飞世尔 TUBB抗体(Zymed, 32-2600)被用于被用于免疫印迹在犬样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(2 28 33)
  • 免疫组化-冰冻切片; 小鼠; 1:500
赛默飞世尔 TUBB抗体(Invitrogen, 32-2600)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. BMC Neurosci (2014) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 TUBB抗体(Invitrogen, 32-2600)被用于被用于免疫印迹在人类样本上 (图 2). Nat Commun (2014) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 大鼠
赛默飞世尔 TUBB抗体(生活技术, 32-2600)被用于被用于免疫印迹在大鼠样本上. Brain Res (2014) ncbi
小鼠 单克隆(2 28 33)
  • 免疫组化; 小鼠; 1:300
赛默飞世尔 TUBB抗体(Invitrogen, 2-28-33)被用于被用于免疫组化在小鼠样本上浓度为1:300. Brain Struct Funct (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 人类
赛默飞世尔 TUBB抗体(Novex, 32-2600)被用于被用于免疫细胞化学在人类样本上. Histochem Cell Biol (2014) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 小鼠; 1:3000
赛默飞世尔 TUBB抗体(Pierce, MA5-16308)被用于被用于免疫印迹在小鼠样本上浓度为1:3000. Front Neurosci (2013) ncbi
小鼠 单克隆(AA10)
  • 免疫细胞化学; 人类; 1:1000
赛默飞世尔 TUBB抗体(Novex, 480011)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Oxid Med Cell Longev (2013) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 1:2000; 图 3
赛默飞世尔 TUBB抗体(Invitrogen, 32-2600)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). J Biol Chem (2013) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBB抗体(生活技术, clone 2-28-33)被用于被用于免疫印迹在人类样本上 (图 1). Int J Cancer (2013) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 4, 5
赛默飞世尔 TUBB抗体(Zymed, 32-2600)被用于被用于免疫印迹在人类样本上 (图 4, 5). Exp Cell Res (2011) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛默飞世尔 TUBB抗体(Zymed Laboratories, 32-2600)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Neuro Oncol (2011) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 TUBB抗体(Zymed Laboratories, 32-2600)被用于被用于免疫印迹在小鼠样本上 (图 3). Free Radic Biol Med (2009) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; African green monkey; 图 2
赛默飞世尔 TUBB抗体(Invitrogen, 2-28-33)被用于被用于免疫细胞化学在African green monkey样本上 (图 2). Angew Chem Int Ed Engl (2008) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 8
赛默飞世尔 TUBB抗体(Zymed, 32-2600)被用于被用于免疫印迹在人类样本上 (图 8). J Invest Dermatol (2008) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 TUBB抗体(Zymed Laboratories, 2-28-33)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Biochim Biophys Acta (2007) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 TUBB抗体(生活技术, 32-2600)被用于被用于免疫印迹在小鼠样本上 (图 6). J Immunol (2006) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 TUBB抗体(Zymed, 2-28-33)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2004) ncbi
圣克鲁斯生物技术
小鼠 单克隆(G-8)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TUBB抗体(Santacruz Biotechnology, sc-55529)被用于被用于免疫印迹在人类样本上 (图 1). elife (2020) ncbi
小鼠 单克隆(D-10)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 TUBB抗体(Santa, sc-5274)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Rep (2019) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫印迹; 人类; 1:1000; 图 5d
圣克鲁斯生物技术 TUBB抗体(Santa, TUB 2.1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). J Hematol Oncol (2019) ncbi
小鼠 单克隆(D-10)
  • 免疫印迹; 人类; 图 s2a
圣克鲁斯生物技术 TUBB抗体(Santa, sc-5274)被用于被用于免疫印迹在人类样本上 (图 s2a). Cell (2019) ncbi
小鼠 单克隆(37)
  • 免疫组化-石蜡切片; 人类; 1:150; 图 5
圣克鲁斯生物技术 TUBB抗体(Santa Cruz Biotechnology, sc-101527)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 5). Int J Mol Sci (2017) ncbi
小鼠 单克隆(2-28-33)
  • 免疫细胞化学; 人类; 图 2A
圣克鲁斯生物技术 TUBB抗体(Santa Cruz, sc-23949)被用于被用于免疫细胞化学在人类样本上 (图 2A). PLoS ONE (2016) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 大鼠; 1:500; 图 3
圣克鲁斯生物技术 TUBB抗体(Santa Cruz, sc-23949)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(D-10)
  • 免疫印迹; 大鼠; 图 1
圣克鲁斯生物技术 TUBB抗体(Santa Cruz, sc-5274)被用于被用于免疫印迹在大鼠样本上 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(G-8)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TUBB抗体(Santa Cruz, sc-55529)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(SAP.4G5)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 TUBB抗体(Santa Cruz, sc58884)被用于被用于免疫印迹在人类样本上 (图 3). Mol Carcinog (2017) ncbi
小鼠 单克隆(G-8)
圣克鲁斯生物技术 TUBB抗体(Santa-Cruz, sc-55529)被用于. J Virol (2016) ncbi
小鼠 单克隆(G-8)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 TUBB抗体(santa Cruz, sc-55529)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(D-10)
  • 免疫细胞化学; 小鼠; 图 2
圣克鲁斯生物技术 TUBB抗体(Santa Cruz, sc-5274)被用于被用于免疫细胞化学在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(D-10)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 TUBB抗体(Santa Cruz, sc-5274)被用于被用于免疫印迹在人类样本上 (图 2). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(3F3-G2)
  • 免疫印迹; 人类; 1:500; 图 3
圣克鲁斯生物技术 TUBB抗体(Santa Cruz, sc-53140)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Oncol Rep (2016) ncbi
小鼠 单克隆(3F3-G2)
  • 免疫印迹; 人类; 1:5000; 图 4
圣克鲁斯生物技术 TUBB抗体(Santa Cruz, sc-53140)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). BMC Cancer (2015) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 小鼠; 1:1000; 图 7
圣克鲁斯生物技术 TUBB抗体(Santa-Cruz, sc23949)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). elife (2015) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫印迹; 小鼠; 图 s1
圣克鲁斯生物技术 TUBB抗体(Santa Cruz, TUB2.1)被用于被用于免疫印迹在小鼠样本上 (图 s1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(F-1)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 TUBB抗体(Santa Cruz, sc-166729)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Death Differ (2016) ncbi
小鼠 单克隆(D-10)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术 TUBB抗体(Santa Cruz, sc-5274)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(D-10)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 TUBB抗体(Santa Cruz Biotechnology, sc-5274)被用于被用于免疫细胞化学在人类样本上. J Appl Microbiol (2015) ncbi
小鼠 单克隆(D-10)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术 TUBB抗体(Santa Cruz Biotechnology, sc-5274)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(D-10)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 TUBB抗体(Santa Cruz Biotechnology, Sc-5274)被用于被用于免疫印迹在小鼠样本上 (图 5). Gastroenterology (2015) ncbi
小鼠 单克隆(D-10)
  • 免疫印迹; 小鼠; 1:250; 图 2
圣克鲁斯生物技术 TUBB抗体(Santa Cruz, sc-5274)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术 TUBB抗体(Santa Cruz Biotechnology, SC-58886)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Neurosci (2015) ncbi
小鼠 单克隆(G-8)
  • 免疫印迹; 人类; 图  3
圣克鲁斯生物技术 TUBB抗体(Santa Cruz Biotechnology, sc-55529)被用于被用于免疫印迹在人类样本上 (图  3). Clin Exp Metastasis (2015) ncbi
小鼠 单克隆(3F3-G2)
  • 免疫细胞化学; 小鼠; 图 3
圣克鲁斯生物技术 TUBB抗体(Santa Cruz, SC-53140)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Front Mol Neurosci (2015) ncbi
小鼠 单克隆(G-8)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 5
圣克鲁斯生物技术 TUBB抗体(Santa Cruz Biotechnology, G-8)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 5). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(SAP.4G5)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 TUBB抗体(SCBT, sc58884)被用于被用于免疫印迹在小鼠样本上 (图 2). DNA Repair (Amst) (2015) ncbi
小鼠 单克隆(D-10)
  • 免疫印迹; 人类; 图 s1
圣克鲁斯生物技术 TUBB抗体(Santa Cruz, sc-5274)被用于被用于免疫印迹在人类样本上 (图 s1). Mol Cell Biol (2015) ncbi
小鼠 单克隆(3F3-G2)
  • 免疫印迹; 小鼠; 1:20000
圣克鲁斯生物技术 TUBB抗体(Santa Cruz Biotechnology, sc-53140)被用于被用于免疫印迹在小鼠样本上浓度为1:20000. J Neurosci (2014) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 TUBB抗体(Santa Cruz, 2-28-33)被用于被用于免疫印迹在人类样本上 (图 3). Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(G-8)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 TUBB抗体(Santa Cruz, sc-55529)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(G-8)
  • 免疫印迹; pigs ; 图 2
圣克鲁斯生物技术 TUBB抗体(Santa Cruz, SC-55529)被用于被用于免疫印迹在pigs 样本上 (图 2). PLoS ONE (2014) ncbi
小鼠 单克隆(D-10)
  • 免疫印迹; 大鼠; 1:8000; 图 4
圣克鲁斯生物技术 TUBB抗体(Santa cruz, sc-5274)被用于被用于免疫印迹在大鼠样本上浓度为1:8000 (图 4). Brain Struct Funct (2015) ncbi
小鼠 单克隆(D-10)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 TUBB抗体(Santa Cruz Biotechnology, sc-5274)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Pharm Pharmacol (2014) ncbi
小鼠 单克隆(G-8)
  • 免疫印迹; 鸡
圣克鲁斯生物技术 TUBB抗体(Santa Cruz Biotechnology, sc-55529)被用于被用于免疫印迹在鸡样本上. Proteomics (2014) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 TUBB抗体(Santa Cruz, 2-28-33)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(D-10)
  • 免疫印迹; 人类; 1:3000; 图 2
圣克鲁斯生物技术 TUBB抗体(Santa Cruz Biotechnology, SC-5274)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2). Urology (2014) ncbi
小鼠 单克隆(D-10)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 TUBB抗体(Santa Cruz, D-10)被用于被用于免疫印迹在人类样本上 (图 2). Clin Cancer Res (2010) ncbi
小鼠 单克隆(D-10)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 TUBB抗体(Santa Cruz, sc-5274)被用于被用于免疫印迹在小鼠样本上. Nat Immunol (2008) ncbi
小鼠 单克隆(D-10)
  • 免疫印迹; 大鼠
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 TUBB抗体(Santa Cruz Biotechnology, sc-5274)被用于被用于免疫印迹在大鼠样本上 和 被用于免疫印迹在小鼠样本上. Diabetologia (2005) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR16774)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab179513)被用于被用于免疫组化在人类样本上. Sci Transl Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:10,000
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫印迹在斑马鱼样本上浓度为1:10,000. Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5p
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5p). Mol Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 6a
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). Cell Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 6j
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 6j). J Exp Med (2020) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 图 1c
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab21057)被用于被用于免疫细胞化学在人类样本上 (图 1c). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫印迹在人类样本上 (图 3c). Redox Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫印迹在人类样本上 (图 3c). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EPR16774)
  • 免疫细胞化学; African green monkey; 1:250; 图 s9a
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, Ab179513)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:250 (图 s9a). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3p
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫印迹在人类样本上 (图 s3p). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s1a
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫细胞化学在人类样本上 (图 s1a). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:600; 图 s4g
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫细胞化学在人类样本上浓度为1:600 (图 s4g). Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2e
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫印迹在小鼠样本上 (图 2e). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 1
  • 免疫细胞化学; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1) 和 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). Cilia (2017) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 人类; 图 2
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab21057)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Eur J Rheumatol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 3). Neural Plast (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫印迹在人类样本上 (图 2). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, Ab6046-100)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Reprod Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab21058)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫印迹在人类样本上 (图 2a). Nature (2016) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 1
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, AB21057)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). Ann Clin Transl Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6). Mol Reprod Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 3e
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 1:50,000; 图 s2
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫印迹在犬样本上浓度为1:50,000 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫印迹在人类样本上 (图 2). Biochem Biophys Res Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab21058)被用于被用于免疫印迹在小鼠样本上 (图 4). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫印迹在小鼠样本上 (图 4). Front Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 2c
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, 6046)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 2c). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 3
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab21058)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Arch Biochem Biophys (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:6000; 图 6b
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于被用于免疫印迹在人类样本上浓度为1:6000 (图 6b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司 TUBB抗体(abcam, Ab21058)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncogene (2016) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 TUBB抗体(Abcam, ab6046)被用于. Development (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling Technology, 2146)被用于被用于免疫印迹在人类样本上 (图 4a). Oncogene (2021) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 TUBB抗体(CST, 5346)被用于被用于免疫印迹在人类样本上 (图 5d). Front Cell Dev Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s5c
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 2146)被用于被用于免疫印迹在小鼠样本上 (图 s5c). Cell (2020) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫细胞化学; 小鼠; 1:50; 图 s5
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 3623)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 s5). Cell (2019) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 牛; 图 2b
赛信通(上海)生物试剂有限公司 TUBB抗体(CST, 5346s)被用于被用于免疫印迹在牛样本上 (图 2b). Biomed Res Int (2019) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫细胞化学; 人类; 1:100; 图 5a
  • 免疫印迹; 人类; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 2128)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 7e). Front Mol Neurosci (2019) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫细胞化学; 小鼠; 1:100; 图 5c
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 3623)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5c). Development (2019) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 2128)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Nat Commun (2018) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 人类; 图 1 B, 1D
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling Tech, 2128)被用于被用于免疫印迹在人类样本上 (图 1 B, 1D). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 2128)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 9F3)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 9F3)被用于被用于免疫印迹在人类样本上 (图 8). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signalling, 7634)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:10; 图 2
  • 免疫印迹; 人类; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 2146)被用于被用于免疫细胞化学在人类样本上浓度为1:10 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 小鼠; 1:2,500; 图 9
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling Technology, 2128)被用于被用于免疫印迹在小鼠样本上浓度为1:2,500 (图 9). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell signaling, 2146s)被用于被用于免疫细胞化学在人类样本上 (图 5). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 6
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell signaling, 2146)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). J Ovarian Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1A
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 2146)被用于被用于免疫印迹在小鼠样本上 (图 1A). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 2146)被用于被用于免疫印迹在人类样本上 (图 s1). Autophagy (2016) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling Technology, 2128)被用于被用于免疫印迹在人类样本上 (图 3). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling Technology, 2146)被用于. Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 0.5 ug/ml; 图 st1
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell signaling, 2146S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为0.5 ug/ml (图 st1) 和 被用于免疫印迹在人类样本上 (图 4). Nature (2016) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 2128)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). J Diabetes Res (2016) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 36233)被用于被用于免疫印迹在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling Technology, 2146)被用于被用于免疫印迹在人类样本上 (图 1d). Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 6181)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling Technology, 2146)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1500; 图 s1d
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 2146)被用于被用于免疫印迹在小鼠样本上浓度为1:1500 (图 s1d). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling Technology, 2146)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 人类; 1:500; 图 7
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell signaling, 2128)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7). Nat Commun (2016) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling Technology, 2128)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling Technology, 2128)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Endocrinology (2016) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 2128)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; fruit fly ; 图 5
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 21164)被用于被用于免疫印迹在fruit fly 样本上 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 2128S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 人类; 1:5000; 图 5
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell signaling, 9F3)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 小鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling Technologies, 5346)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Mol Metab (2015) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫细胞化学; 小鼠; 1:75; 图 2
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling Technology, 3623)被用于被用于免疫细胞化学在小鼠样本上浓度为1:75 (图 2). Biol Reprod (2015) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 2128)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2014) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 小鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 2128S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 人类; 1:10,000; 图 7
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 2128)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 7). Nat Cell Biol (2014) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 2128)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Int J Mol Med (2014) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 TUBB抗体(CST, 2128S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signaling, 9F3)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Nat Neurosci (2014) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 TUBB抗体(CST, 5346)被用于被用于免疫印迹在大鼠样本上. FASEB J (2014) ncbi
domestic rabbit 单克隆(9F3)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 TUBB抗体(Cell Signalling, 53463)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Cell (2014) ncbi
西格玛奥德里奇
小鼠 单克隆(TUB-1A2)
西格玛奥德里奇 TUBB抗体(Sigma, T9028)被用于. EMBO Rep (2021) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 小鼠; 图 1d
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫印迹在小鼠样本上 (图 1d). elife (2020) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 人类; 图 3c
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫印迹在人类样本上 (图 3c). Transl Oncol (2020) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫组化; red swamp crayfish; 图 3e
西格玛奥德里奇 TUBB抗体(Sigma, T9028)被用于被用于免疫组化在red swamp crayfish样本上 (图 3e). J Comp Neurol (2019) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫印迹; 人类; 图 2a
西格玛奥德里奇 TUBB抗体(Sigma-Aldrich, T9028)被用于被用于免疫印迹在人类样本上 (图 2a). J Mol Cell Biol (2019) ncbi
小鼠 单克隆(AA2)
  • 免疫细胞化学; 人类; 1:100; 图 s3k
西格玛奥德里奇 TUBB抗体(Sigma Aldrich, T8328)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s3k). J Cell Biol (2019) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 小鼠; 1:2000; 图 1a
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1a). Proc Natl Acad Sci U S A (2019) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫印迹; 人类; 图 s6a
西格玛奥德里奇 TUBB抗体(Sigma-Aldrich, T9028)被用于被用于免疫印迹在人类样本上 (图 s6a). FEBS Lett (2017) ncbi
小鼠 单克隆(B3)
  • 免疫细胞化学; 人类; 1:500; 图 3
  • 免疫细胞化学; 小鼠; 1:500; 图 3
西格玛奥德里奇 TUBB抗体(Sigma, T9822)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3). Cilia (2017) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫细胞化学; 大鼠; 1:1000; 图 7d
西格玛奥德里奇 TUBB抗体(Sigma-Aldrich, T9028)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 7d). J Cell Biol (2017) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 st15
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 st15
  • 免疫组化-石蜡切片; 大鼠; 1:800; 图 st15
西格玛奥德里奇 TUBB抗体(Sigma-Aldrich, T9028)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 st15), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 st15) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:800 (图 st15). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫细胞化学; 大鼠; 1:2000; 图 1b
西格玛奥德里奇 TUBB抗体(Sigma, T9028)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2000 (图 1b). Mol Neurobiol (2017) ncbi
小鼠 单克隆(B3)
  • 免疫细胞化学; 人类; 1:1000; 图 1C
西格玛奥德里奇 TUBB抗体(Sigma, T9822)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1C). Methods Cell Biol (2016) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 人类; 1:5000; 图 1s1
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1s1). elife (2016) ncbi
小鼠 单克隆(B3)
  • 免疫组化; 人类; 图 4
西格玛奥德里奇 TUBB抗体(Sigma-Aldrich, T9822)被用于被用于免疫组化在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 小鼠; 图 6
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫印迹在小鼠样本上 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫印迹; 大鼠; 1:1000; 图 2c
西格玛奥德里奇 TUBB抗体(Sigma, T 9028)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2c). Science (2016) ncbi
小鼠 单克隆(AA2)
  • 免疫细胞化学; 小鼠; 图 1
西格玛奥德里奇 TUBB抗体(Sigma-Aldrich, T8328)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Nature (2016) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 人类; 1:5000; 图 1a
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1a). Nat Commun (2016) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 TUBB抗体(Sigma-Aldrich, T8328)被用于被用于免疫印迹在小鼠样本上 (图 1). Diabetes (2016) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 人类; 图 1d
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫印迹在人类样本上 (图 1d). Genes Dev (2016) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBB抗体(Sigma-Aldrich, T8328)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 人类; 图 s1
  • 免疫印迹; 大鼠; 图 s1
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫印迹在人类样本上 (图 s1) 和 被用于免疫印迹在大鼠样本上 (图 s1). elife (2016) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 人类; 图 e3
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫印迹在人类样本上 (图 e3). Nature (2016) ncbi
小鼠 单克隆(AA2)
  • 免疫细胞化学; 牛; 1:500; 图 2
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫细胞化学在牛样本上浓度为1:500 (图 2). Anim Biotechnol (2016) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫细胞化学; 小鼠; 1:400; 图 1
西格玛奥德里奇 TUBB抗体(Sigma, T9028)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 1). Brain Behav (2015) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫印迹; 大豆; 1:5000
西格玛奥德里奇 TUBB抗体(Sigma, T9028)被用于被用于免疫印迹在大豆样本上浓度为1:5000. Front Plant Sci (2015) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 人类; 图 7
西格玛奥德里奇 TUBB抗体(Sigma/Aldrich,, T8328)被用于被用于免疫印迹在人类样本上 (图 7). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(AA2)
  • 免疫细胞化学; 大鼠
西格玛奥德里奇 TUBB抗体(Sigma-Aldrich, T8328)被用于被用于免疫细胞化学在大鼠样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫印迹; 人类; 图 2a
西格玛奥德里奇 TUBB抗体(Sigma, T9028)被用于被用于免疫印迹在人类样本上 (图 2a). J Biol Chem (2015) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫细胞化学; 金鱼; 1:200; 图 3
西格玛奥德里奇 TUBB抗体(Sigma-Aldrich, T9028)被用于被用于免疫细胞化学在金鱼样本上浓度为1:200 (图 3). J Gen Physiol (2015) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 小鼠; 1:40000
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫印迹在小鼠样本上浓度为1:40000. Neurobiol Dis (2015) ncbi
小鼠 单克隆(AA2)
  • 免疫细胞化学; domestic water buffalo; 1:400; 图 6
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫细胞化学在domestic water buffalo样本上浓度为1:400 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 小鼠; 1:5000; 图 1b
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1b). Nat Genet (2015) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 小鼠; 1:500; 图 6
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). Nat Neurosci (2015) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 人类; 1:2000; 图 s12
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s12). Nat Chem Biol (2015) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫组化; California sea hare; 1:200
西格玛奥德里奇 TUBB抗体(Sigma, T9028)被用于被用于免疫组化在California sea hare样本上浓度为1:200. J Comp Neurol (2015) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBB抗体(Sigma, T9028)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 小鼠; 1:1000; 图 st2
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 st2). Nat Commun (2015) ncbi
小鼠 单克隆(B3)
  • 免疫组化-石蜡切片; 小鼠
西格玛奥德里奇 TUBB抗体(Sigma-Aldrich, T9822)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Neurosci (2015) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫组化-石蜡切片; 小鼠
西格玛奥德里奇 TUBB抗体(Sigma-Aldrich, T9028)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Neurosci (2015) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 人类; 1:2000; 图 s11
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s11). Nat Commun (2015) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫印迹在小鼠样本上 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 小鼠; 1:1000; 图 6
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Sci Rep (2015) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(B3)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 TUBB抗体(Sigma, B3)被用于被用于免疫印迹在小鼠样本上 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(AA2)
  • 免疫组化; 人类; 1:1000
西格玛奥德里奇 TUBB抗体(Sigma, AA2)被用于被用于免疫组化在人类样本上浓度为1:1000. Eukaryot Cell (2015) ncbi
小鼠 单克隆(AA2)
  • 免疫细胞化学; domestic water buffalo; 1:500
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫细胞化学在domestic water buffalo样本上浓度为1:500. Reprod Fertil Dev (2016) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫细胞化学; 小鼠; 图 5
西格玛奥德里奇 TUBB抗体(Sigma-Aldrich, T9028)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Nat Protoc (2014) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫细胞化学; 人类
西格玛奥德里奇 TUBB抗体(Sigma, TUB-1A2)被用于被用于免疫细胞化学在人类样本上. Eur J Cell Biol (2014) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫细胞化学; African green monkey; 1:10000
西格玛奥德里奇 TUBB抗体(Sigma-Aldrich, TUB-1A2)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:10000. Nat Neurosci (2014) ncbi
小鼠 单克隆(AA2)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 TUBB抗体(Sigma-Aldrich, T8328)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Cell Biol (2014) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 小鼠; 1:1000; 图 8
西格玛奥德里奇 TUBB抗体(Sigma, T8328)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Nat Commun (2014) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBB抗体(Sigma, AA2)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫细胞化学; 人类; 1:800
西格玛奥德里奇 TUBB抗体(Sigma-Aldrich, T9028)被用于被用于免疫细胞化学在人类样本上浓度为1:800. Biol Cell (2014) ncbi
小鼠 单克隆(TUB-1A2)
  • 免疫组化; Arthrotardigrada; 1:300
西格玛奥德里奇 TUBB抗体(Sigma-Aldrich, T9028)被用于被用于免疫组化在Arthrotardigrada样本上浓度为1:300. J Morphol (2014) ncbi
小鼠 单克隆(AA2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBB抗体(Sigma, AA2)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(E7)
  • 免疫印迹; 小鼠; 1:15,000; 图 s7-1e
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫印迹在小鼠样本上浓度为1:15,000 (图 s7-1e). elife (2021) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; fruit fly ; 1:4000; 图 3b
Developmental Studies Hybridoma Bank TUBB抗体(DHSB, E7C)被用于被用于免疫印迹在fruit fly 样本上浓度为1:4000 (图 3b). elife (2020) ncbi
小鼠 单克隆(E7)
  • 免疫细胞化学; 人类; 1:100; 图 1s2c
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, AB_2315513)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1s2c). elife (2020) ncbi
小鼠 单克隆(E7)
  • 免疫细胞化学; 小鼠; 1:200; 图 3e
Developmental Studies Hybridoma Bank TUBB抗体(Developmental Studies Hybridoma Bank, E7)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3e). Int J Mol Sci (2020) ncbi
小鼠 单克隆(E7)
  • 免疫组化; fruit fly ; 1:50; 图 2b
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫组化在fruit fly 样本上浓度为1:50 (图 2b). Dev Cell (2019) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; African green monkey; 1:1000; 图 1b
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7-S)被用于被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 1b). Cell Rep (2019) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; 人类; 1:1000; 图 1f
  • 免疫印迹; 小鼠; 1:1000; 图 4h
Developmental Studies Hybridoma Bank TUBB抗体(Developmental Studies Hybridoma Bank, E7)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1f) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4h). Sci Signal (2019) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; 人类; 图 3b
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7-c)被用于被用于免疫印迹在人类样本上 (图 3b). J Biol Chem (2017) ncbi
小鼠 单克隆(E7)
  • 免疫组化; fruit fly ; 图 3a
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫组化在fruit fly 样本上 (图 3a). J Cell Sci (2017) ncbi
小鼠 单克隆(E7)
  • 免疫细胞化学; 小鼠; 图 1a
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫细胞化学在小鼠样本上 (图 1a). J Cell Biol (2017) ncbi
小鼠 单克隆(E7)
  • 免疫细胞化学; 人类; 1:1000; 图 11a
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7-C)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 11a). elife (2016) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; fruit fly ; 1:10,000; 图 3
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫印迹在fruit fly 样本上浓度为1:10,000 (图 3). elife (2016) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; fruit fly ; 1:1000; 图 2
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 2). J Neurogenet (2016) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; 人类; 图 s4
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫印迹在人类样本上 (图 s4). Cell Rep (2016) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; fruit fly ; 1:20,000; 图 s3e
Developmental Studies Hybridoma Bank TUBB抗体(Developmental Studies Hybridoma Bank, E7)被用于被用于免疫印迹在fruit fly 样本上浓度为1:20,000 (图 s3e). Mol Psychiatry (2017) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; pigs ; 1:500; 图 2
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫印迹在pigs 样本上浓度为1:500 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; 小鼠; 图 2
Developmental Studies Hybridoma Bank TUBB抗体(DHSB, E7)被用于被用于免疫印迹在小鼠样本上 (图 2). Skelet Muscle (2016) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; fruit fly ; 1:2000; 图 4
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫印迹在fruit fly 样本上浓度为1:2000 (图 4). Mol Neurobiol (2017) ncbi
小鼠 单克隆(E7)
  • 免疫细胞化学; 人类; 1:200; 图 3
  • 免疫组化; 非洲爪蛙; 1:200; 图 s8
Developmental Studies Hybridoma Bank TUBB抗体(Hybridoma Bank, E7)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3) 和 被用于免疫组化在非洲爪蛙样本上浓度为1:200 (图 s8). Nat Commun (2016) ncbi
小鼠 单克隆(E7)
  • 免疫细胞化学; African green monkey; 图 2
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫细胞化学在African green monkey样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; 人类; 图 1
Developmental Studies Hybridoma Bank TUBB抗体(Developmental Studies Hybridoma Bank, E7)被用于被用于免疫印迹在人类样本上 (图 1). Mol Biol Cell (2016) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; 人类; 1:2000; 图 7
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7). Traffic (2016) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; 大鼠; 图 1
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫印迹在大鼠样本上 (图 1). Mol Biol Cell (2016) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; 大鼠; 1:5000
Developmental Studies Hybridoma Bank TUBB抗体(Developmental Studies Hybridoma Bank, E7)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. J Neurosci (2015) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; 人类; 图 7b
Developmental Studies Hybridoma Bank TUBB抗体(Developmental Studies Hybridoma Bank, E7)被用于被用于免疫印迹在人类样本上 (图 7b). Mol Cell Biol (2015) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; 小鼠; 1:1000
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Development (2015) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; fruit fly ; 1:10,000; 图 S4
Developmental Studies Hybridoma Bank TUBB抗体(Developmental Studies Hybridoma Bank, E7)被用于被用于免疫印迹在fruit fly 样本上浓度为1:10,000 (图 S4). PLoS Genet (2015) ncbi
小鼠 单克隆(E7)
  • 免疫细胞化学; fruit fly ; 1:100; 图 4.2
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫细胞化学在fruit fly 样本上浓度为1:100 (图 4.2). elife (2015) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; fruit fly ; 1:700
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫印迹在fruit fly 样本上浓度为1:700. Nat Commun (2015) ncbi
小鼠 单克隆(E7)
  • 免疫细胞化学; Octopus bimaculoides; 图 4d
Developmental Studies Hybridoma Bank TUBB抗体(Developmental Studies Hybridoma Bank, E7)被用于被用于免疫细胞化学在Octopus bimaculoides样本上 (图 4d). J Exp Biol (2015) ncbi
小鼠 单克隆(E7)
  • 免疫细胞化学; 小鼠; 1:300
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7-c)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300. Cell Signal (2015) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; 人类
Developmental Studies Hybridoma Bank TUBB抗体(Developmental Studies Hybridoma Bank, E7)被用于被用于免疫印迹在人类样本上. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; fruit fly ; 1:700; 图 1
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫印迹在fruit fly 样本上浓度为1:700 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; fruit fly ; 1:1000; 图 4
Developmental Studies Hybridoma Bank TUBB抗体(Developmental Studies Hybridoma Bank, E7)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 4). J Cell Sci (2015) ncbi
小鼠 单克隆(E7)
  • 免疫细胞化学; fruit fly ; 1:50; 图 2a
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫细胞化学在fruit fly 样本上浓度为1:50 (图 2a). Open Biol (2015) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; 人类; 图 2
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cell Biol (2015) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; 小鼠; 1:5000
Developmental Studies Hybridoma Bank TUBB抗体(University of Iowa Developmental Studies Hybridoma Bank, E7)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Front Genet (2014) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; 小鼠
Developmental Studies Hybridoma Bank TUBB抗体(Developmental, mAbE7)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; 人类
Developmental Studies Hybridoma Bank TUBB抗体(Developmental Studies Hybridoma Bank, E7)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; 人类
Developmental Studies Hybridoma Bank TUBB抗体(Developmental Studies Hybridoma Bank, E-7)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; 小鼠; 图 1
Developmental Studies Hybridoma Bank TUBB抗体(Developmental Studies Hybridoma Bank, E7)被用于被用于免疫印迹在小鼠样本上 (图 1). J Proteome Res (2014) ncbi
小鼠 单克隆(E7)
  • 免疫组化-冰冻切片; 小鼠
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫组化-冰冻切片在小鼠样本上. Proteome Sci (2014) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; 人类
Developmental Studies Hybridoma Bank TUBB抗体(Developmental Studies Hybridoma Bank, E7)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; fruit fly ; 1:1000
Developmental Studies Hybridoma Bank TUBB抗体(Developmental Studies Hybridoma Bank, E7)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000. J Neurosci (2014) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; 小鼠; 图 5
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫印迹在小鼠样本上 (图 5). Bone (2014) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在大鼠样本上. Genes Cells (2014) ncbi
小鼠 单克隆(E7)
  • 免疫印迹; fruit fly ; 1:10
Developmental Studies Hybridoma Bank TUBB抗体(Developmental Studies Hybridoma Bank, E7)被用于被用于免疫印迹在fruit fly 样本上浓度为1:10. Proteomics (2011) ncbi
小鼠 单克隆(E7)
  • 免疫组化; 大鼠; 1:1000
Developmental Studies Hybridoma Bank TUBB抗体(DSHB, E7)被用于被用于免疫组化在大鼠样本上浓度为1:1000. J Comp Neurol (2009) ncbi
文章列表
  1. Gutiérrez Gutiérrez Ó, Felix D, Salvetti A, Amro E, Thems A, Pietsch S, et al. Regeneration in starved planarians depends on TRiC/CCT subunits modulating the unfolded protein response. EMBO Rep. 2021;22:e52905 pubmed 出版商
  2. Qiu C, Albayram O, Kondo A, Wang B, Kim N, Arai K, et al. Cis P-tau underlies vascular contribution to cognitive impairment and dementia and can be effectively targeted by immunotherapy in mice. Sci Transl Med. 2021;13: pubmed 出版商
  3. Wood A, Lin C, Li M, Nishtala K, Alaei S, Rosselló F, et al. FKRP-dependent glycosylation of fibronectin regulates muscle pathology in muscular dystrophy. Nat Commun. 2021;12:2951 pubmed 出版商
  4. Fischietti M, Eckerdt F, Blyth G, Arslan A, Mati W, Oku C, et al. Schlafen 5 as a novel therapeutic target in pancreatic ductal adenocarcinoma. Oncogene. 2021;40:3273-3286 pubmed 出版商
  5. Zewdu R, Mehrabad E, Ingram K, Fang P, Gillis K, Camolotto S, et al. An NKX2-1/ERK/WNT feedback loop modulates gastric identity and response to targeted therapy in lung adenocarcinoma. elife. 2021;10: pubmed 出版商
  6. Trivedi D, Cm V, Bisht K, Janardan V, Pandit A, Basak B, et al. A genome engineering resource to uncover principles of cellular organization and tissue architecture by lipid signaling. elife. 2020;9: pubmed 出版商
  7. Gao J, Wu Y, He D, Zhu X, Li H, Liu H, et al. Anti-aging effects of Ribes meyeri anthocyanins on neural stem cells and aging mice. Aging (Albany NY). 2020;12:17738-17753 pubmed 出版商
  8. Bozal Basterra L, Gonzalez Santamarta M, Muratore V, Bermejo Arteagabeitia A, Da Fonseca C, Barroso Gomila O, et al. LUZP1, a novel regulator of primary cilia and the actin cytoskeleton, is a contributing factor in Townes-Brocks Syndrome. elife. 2020;9: pubmed 出版商
  9. Yin S, Song M, Zhao R, Liu X, Kang W, Lee J, et al. Xanthohumol Inhibits the Growth of Keratin 18-Overexpressed Esophageal Squamous Cell Carcinoma in vitro and in vivo. Front Cell Dev Biol. 2020;8:366 pubmed 出版商
  10. Lamas Toranzo I, Hamze J, Bianchi E, Fernandez Fuertes B, Pérez Cerezales S, Laguna Barraza R, et al. TMEM95 is a sperm membrane protein essential for mammalian fertilization. elife. 2020;9: pubmed 出版商
  11. Chleilat E, Pethe A, Pfeifer D, Krieglstein K, Roussa E. TGF-β Signaling Regulates SLC8A3 Expression and Prevents Oxidative Stress in Developing Midbrain Dopaminergic and Dorsal Raphe Serotonergic Neurons. Int J Mol Sci. 2020;21: pubmed 出版商
  12. Lochab S, Singh Y, Sengupta S, Nandicoori V. Mycobacterium tuberculosis exploits host ATM kinase for survival advantage through SecA2 secretome. elife. 2020;9: pubmed 出版商
  13. Jin D, Guo J, Wu Y, Yang L, Wang X, Du J, et al. m6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Mol Cancer. 2020;19:40 pubmed 出版商
  14. Rhodes J, Feldmann A, Hernández Rodríguez B, Díaz N, Brown J, Fursova N, et al. Cohesin Disrupts Polycomb-Dependent Chromosome Interactions in Embryonic Stem Cells. Cell Rep. 2020;30:820-835.e10 pubmed 出版商
  15. Lee J, Hall J, Kroehling L, Wu L, Najar T, Nguyen H, et al. Serum Amyloid A Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease. Cell. 2020;180:79-91.e16 pubmed 出版商
  16. Chen W, Wang Q, Xu X, Saxton B, Tessema M, Leng S, et al. Vasorin/ATIA Promotes Cigarette Smoke-Induced Transformation of Human Bronchial Epithelial Cells by Suppressing Autophagy-Mediated Apoptosis. Transl Oncol. 2020;13:32-41 pubmed 出版商
  17. Brenneis G, Beltz B. Adult neurogenesis in crayfish: Origin, expansion, and migration of neural progenitor lineages in a pseudostratified neuroepithelium. J Comp Neurol. 2019;: pubmed 出版商
  18. Zhang B, Ma H, Khan T, Ma A, Li T, Zhang H, et al. A DNAH17 missense variant causes flagella destabilization and asthenozoospermia. J Exp Med. 2020;217: pubmed 出版商
  19. Wenta T, Rychlowski M, Jarzab M, Lipinska B. HtrA4 Protease Promotes Chemotherapeutic-Dependent Cancer Cell Death. Cells. 2019;8: pubmed 出版商
  20. Wang R, Yu R, Zhu C, Lin H, Lu X, Wang H. Tubulin detyrosination promotes human trophoblast syncytium formation. J Mol Cell Biol. 2019;: pubmed 出版商
  21. Akera T, Trimm E, Lampson M. Molecular Strategies of Meiotic Cheating by Selfish Centromeres. Cell. 2019;178:1132-1144.e10 pubmed 出版商
  22. Njah K, Chakraborty S, Qiu B, Arumugam S, Raju A, Pobbati A, et al. A Role of Agrin in Maintaining the Stability of Vascular Endothelial Growth Factor Receptor-2 during Tumor Angiogenesis. Cell Rep. 2019;28:949-965.e7 pubmed 出版商
  23. Guo Z, Zhao K, Feng X, Yan D, Yao R, Chen Y, et al. mTORC2 Regulates Lipogenic Gene Expression through PPARγ to Control Lipid Synthesis in Bovine Mammary Epithelial Cells. Biomed Res Int. 2019;2019:5196028 pubmed 出版商
  24. Hsu C, Altschuler S, Wu L. Patterns of Early p21 Dynamics Determine Proliferation-Senescence Cell Fate after Chemotherapy. Cell. 2019;: pubmed 出版商
  25. Sun T, Song Y, Dai J, Mao D, Ma M, Ni J, et al. Spectraplakin Shot Maintains Perinuclear Microtubule Organization in Drosophila Polyploid Cells. Dev Cell. 2019;49:731-747.e7 pubmed 出版商
  26. Tian X, Firsanov D, Zhang Z, Cheng Y, Luo L, Tombline G, et al. SIRT6 Is Responsible for More Efficient DNA Double-Strand Break Repair in Long-Lived Species. Cell. 2019;177:622-638.e22 pubmed 出版商
  27. Hausott B, Park J, Valovka T, Offterdinger M, Hess M, Geley S, et al. Subcellular Localization of Sprouty2 in Human Glioma Cells. Front Mol Neurosci. 2019;12:73 pubmed 出版商
  28. Daldello E, Luong X, Yang C, Kuhn J, Conti M. Cyclin B2 is required for progression through meiosis in mouse oocytes. Development. 2019;146: pubmed 出版商
  29. Juettner V, Kruse K, Dan A, Vu V, Khan Y, Le J, et al. VE-PTP stabilizes VE-cadherin junctions and the endothelial barrier via a phosphatase-independent mechanism. J Cell Biol. 2019;218:1725-1742 pubmed 出版商
  30. Gorla M, Santiago C, Chaudhari K, Layman A, Oliver P, Bashaw G. Ndfip Proteins Target Robo Receptors for Degradation and Allow Commissural Axons to Cross the Midline in the Developing Spinal Cord. Cell Rep. 2019;26:3298-3312.e4 pubmed 出版商
  31. Shanbhag V, Jasmer McDonald K, Zhu S, Martin A, Gudekar N, Khan A, et al. ATP7A delivers copper to the lysyl oxidase family of enzymes and promotes tumorigenesis and metastasis. Proc Natl Acad Sci U S A. 2019;116:6836-6841 pubmed 出版商
  32. Wobser M, Weber A, Glunz A, Tauch S, Seitz K, Butelmann T, et al. Elucidating the mechanism of action of domatinostat (4SC-202) in cutaneous T cell lymphoma cells. J Hematol Oncol. 2019;12:30 pubmed 出版商
  33. DeLalio L, Billaud M, Ruddiman C, Johnstone S, Butcher J, Wolpe A, et al. Constitutive SRC-mediated phosphorylation of pannexin 1 at tyrosine 198 occurs at the plasma membrane. J Biol Chem. 2019;294:6940-6956 pubmed 出版商
  34. Yoon J, McArthur M, Park J, Basu D, Wakamiya M, Prakash L, et al. Error-Prone Replication through UV Lesions by DNA Polymerase θ Protects against Skin Cancers. Cell. 2019;176:1295-1309.e15 pubmed 出版商
  35. Zhang J, Li H, Wu Q, Chen Y, Deng Y, Yang Z, et al. Tumoral NOX4 recruits M2 tumor-associated macrophages via ROS/PI3K signaling-dependent various cytokine production to promote NSCLC growth. Redox Biol. 2019;22:101116 pubmed 出版商
  36. Zhang S, Wu H, Wang K, Liu M. STK33/ERK2 signal pathway contribute the tumorigenesis of colorectal cancer HCT15 cells. Biosci Rep. 2019;39: pubmed 出版商
  37. Ruiz K, Thaker T, Agnew C, Miller Vedam L, Trenker R, Herrera C, et al. Functional role of PGAM5 multimeric assemblies and their polymerization into filaments. Nat Commun. 2019;10:531 pubmed 出版商
  38. Beug S, Cheung H, Sanda T, St Jean M, Beauregard C, Mamady H, et al. The transcription factor SP3 drives TNF-α expression in response to Smac mimetics. Sci Signal. 2019;12: pubmed 出版商
  39. Xia J, Chiu L, Nehring R, Bravo Núñez M, Mei Q, Perez M, et al. Bacteria-to-Human Protein Networks Reveal Origins of Endogenous DNA Damage. Cell. 2019;176:127-143.e24 pubmed 出版商
  40. Zhang Y, Tan L, Yang Q, Li C, Liou Y. The microtubule-associated protein HURP recruits the centrosomal protein TACC3 to regulate K-fiber formation and support chromosome congression. J Biol Chem. 2018;293:15733-15747 pubmed 出版商
  41. Rai A, Chen J, Selbach M, Pelkmans L. Kinase-controlled phase transition of membraneless organelles in mitosis. Nature. 2018;559:211-216 pubmed 出版商
  42. Li T, Song L, Sun Y, Li J, Yi C, Lam S, et al. Tip60-mediated lipin 1 acetylation and ER translocation determine triacylglycerol synthesis rate. Nat Commun. 2018;9:1916 pubmed 出版商
  43. Ryu K, Nandu T, Kim J, Challa S, DeBerardinis R, Kraus W. Metabolic regulation of transcription through compartmentalized NAD+ biosynthesis. Science. 2018;360: pubmed 出版商
  44. Chu T, Connell M, Zhou L, He Z, Won J, Chen H, et al. Cell Cycle-Dependent Tumor Engraftment and Migration Are Enabled by Aurora-A. Mol Cancer Res. 2018;16:16-31 pubmed 出版商
  45. Wei J, Xu H, Meng W. Noncentrosomal microtubules regulate autophagosome transport through CAMSAP2-EB1 cross-talk. FEBS Lett. 2017;591:2379-2393 pubmed 出版商
  46. Nandi S, Mishra P. H2S and homocysteine control a novel feedback regulation of cystathionine beta synthase and cystathionine gamma lyase in cardiomyocytes. Sci Rep. 2017;7:3639 pubmed 出版商
  47. Hua K, Ferland R. Fixation methods can differentially affect ciliary protein immunolabeling. Cilia. 2017;6:5 pubmed 出版商
  48. Suresh S, Chavalmane A, Dj V, Yarreiphang H, Rai S, Paul A, et al. A novel autophagy modulator 6-Bio ameliorates SNCA/?-synuclein toxicity. Autophagy. 2017;13:1221-1234 pubmed 出版商
  49. García Castañeda M, Vega A, Rodríguez R, Montiel Jaen M, Cisneros B, Zarain Herzberg A, et al. Functional impact of an oculopharyngeal muscular dystrophy mutation in PABPN1. J Physiol. 2017;595:4167-4187 pubmed 出版商
  50. Yasuda K, Clatterbuck Soper S, Jackrel M, Shorter J, Mili S. FUS inclusions disrupt RNA localization by sequestering kinesin-1 and inhibiting microtubule detyrosination. J Cell Biol. 2017;216:1015-1034 pubmed 出版商
  51. Jia P, Li F, Gu W, Zhang W, Cai Y. Gab3 overexpression in human glioma mediates Akt activation and tumor cell proliferation. PLoS ONE. 2017;12:e0173473 pubmed 出版商
  52. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  53. Francis J, Newman L, Cunningham L, Kahn R. A Trimer Consisting of the Tubulin-specific Chaperone D (TBCD), Regulatory GTPase ARL2, and β-Tubulin Is Required for Maintaining the Microtubule Network. J Biol Chem. 2017;292:4336-4349 pubmed 出版商
  54. Rotoli D, Pérez Rodríguez N, Morales M, Maeso M, Avila J, Mobasheri A, et al. IQGAP1 in Podosomes/Invadosomes Is Involved in the Progression of Glioblastoma Multiforme Depending on the Tumor Status. Int J Mol Sci. 2017;18: pubmed 出版商
  55. Gao S, Geng C, Song T, Lin X, Liu J, Cai Z, et al. Activation of c-Abl Kinase Potentiates the Anti-myeloma Drug Lenalidomide by Promoting DDA1 Protein Recruitment to the CRL4 Ubiquitin Ligase. J Biol Chem. 2017;292:3683-3691 pubmed 出版商
  56. Aggarwal T, Hoeber J, Ivert P, Vasylovska S, Kozlova E. Boundary Cap Neural Crest Stem Cells Promote Survival of Mutant SOD1 Motor Neurons. Neurotherapeutics. 2017;14:773-783 pubmed 出版商
  57. Alcoba D, Schneider J, Arruda L, Martiny P, Capp E, von Eye Corleta H, et al. Brilliant cresyl blue staining does not present cytotoxic effects on human luteinized follicular cells, according to gene/protein expression, as well as to cytotoxicity tests. Reprod Biol. 2017;17:60-68 pubmed 出版商
  58. Takács Z, Jankovics F, Vilmos P, Lenart P, Röper K, Erdelyi M. The spectraplakin Short stop is an essential microtubule regulator involved in epithelial closure in Drosophila. J Cell Sci. 2017;130:712-724 pubmed 出版商
  59. Wakatsuki S, Tokunaga S, Shibata M, Araki T. GSK3B-mediated phosphorylation of MCL1 regulates axonal autophagy to promote Wallerian degeneration. J Cell Biol. 2017;216:477-493 pubmed 出版商
  60. Yuan H, Sehgal P. MxA Is a Novel Regulator of Endosome-Associated Transcriptional Signaling by Bone Morphogenetic Proteins 4 and 9 (BMP4 and BMP9). PLoS ONE. 2016;11:e0166382 pubmed 出版商
  61. Moyle L, Blanc E, Jaka O, Prueller J, Banerji C, Tedesco F, et al. Ret function in muscle stem cells points to tyrosine kinase inhibitor therapy for facioscapulohumeral muscular dystrophy. elife. 2016;5: pubmed 出版商
  62. Wang W, Ye H, Wei P, Han B, He B, Chen Z, et al. LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. J Hematol Oncol. 2016;9:117 pubmed
  63. Kunzler A, Zeidán Chuliá F, Gasparotto J, Girardi C, Klafke K, Petiz L, et al. Changes in Cell Cycle and Up-Regulation of Neuronal Markers During SH-SY5Y Neurodifferentiation by Retinoic Acid are Mediated by Reactive Species Production and Oxidative Stress. Mol Neurobiol. 2017;54:6903-6916 pubmed 出版商
  64. Badillo Soto M, Rodríguez Rodríguez M, Pérez Pérez M, Daza Benítez L, Bollain Y Goytia J, Carrillo Jiménez M, et al. Potential protein targets of the peptidylarginine deiminase 2 and peptidylarginine deiminase 4 enzymes in rheumatoid synovial tissue and its possible meaning. Eur J Rheumatol. 2016;3:44-49 pubmed
  65. Oksdath M, Guil A, Grassi D, Sosa L, Quiroga S. The Motor KIF5C Links the Requirements of Stable Microtubules and IGF-1 Receptor Membrane Insertion for Neuronal Polarization. Mol Neurobiol. 2017;54:6085-6096 pubmed 出版商
  66. Tang Y, Hendriks J, Gensch T, Dai L, Li J. Automatic Bayesian single molecule identification for localization microscopy. Sci Rep. 2016;6:33521 pubmed 出版商
  67. Dias T, Alves M, Rato L, Casal S, Silva B, Oliveira P. White tea intake prevents prediabetes-induced metabolic dysfunctions in testis and epididymis preserving sperm quality. J Nutr Biochem. 2016;37:83-93 pubmed 出版商
  68. Vafai S, Mevers E, Higgins K, Fomina Y, Zhang J, Mandinova A, et al. Natural Product Screening Reveals Naphthoquinone Complex I Bypass Factors. PLoS ONE. 2016;11:e0162686 pubmed 出版商
  69. Yan X, Liu J, Ye Z, Huang J, He F, Xiao W, et al. CaMKII-Mediated CREB Phosphorylation Is Involved in Ca2+-Induced BDNF mRNA Transcription and Neurite Outgrowth Promoted by Electrical Stimulation. PLoS ONE. 2016;11:e0162784 pubmed 出版商
  70. Kim J, Kim C, Sohn E, Kim J. Cytoplasmic translocation of high-mobility group box-1 protein is induced by diabetes and high glucose in retinal pericytes. Mol Med Rep. 2016;14:3655-61 pubmed 出版商
  71. Wu P, Liu H, Huang T, Hsueh Y. AIM 2 inflammasomes regulate neuronal morphology and influence anxiety and memory in mice. Sci Rep. 2016;6:32405 pubmed 出版商
  72. Liu M, Li Y, Liu A, Li R, Su Y, Du J, et al. The exon junction complex regulates the splicing of cell polarity gene dlg1 to control Wingless signaling in development. elife. 2016;5: pubmed 出版商
  73. Khanom R, Nguyen C, Kayamori K, Zhao X, Morita K, Miki Y, et al. Keratin 17 Is Induced in Oral Cancer and Facilitates Tumor Growth. PLoS ONE. 2016;11:e0161163 pubmed 出版商
  74. Visavadiya N, Springer J. Altered Cerebellar Circuitry following Thoracic Spinal Cord Injury in Adult Rats. Neural Plast. 2016;2016:8181393 pubmed 出版商
  75. Löfdahl A, Rydell Törmänen K, Müller C, Martina Holst C, Thiman L, Ekström G, et al. 5-HT2B receptor antagonists attenuate myofibroblast differentiation and subsequent fibrotic responses in vitro and in vivo. Physiol Rep. 2016;4: pubmed 出版商
  76. Kim M, Froese C, Xie H, Trimble W. Immunofluorescent staining of septins in primary cilia. Methods Cell Biol. 2016;136:269-83 pubmed 出版商
  77. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  78. Krusche B, Ottone C, Clements M, Johnstone E, Goetsch K, Lieven H, et al. EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. elife. 2016;5: pubmed 出版商
  79. Liu C, Lin S, Hsu H, Yang S, Lin C, Yang M, et al. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells. Nat Commun. 2016;7:11798 pubmed 出版商
  80. Cormerais Y, Giuliano S, Lefloch R, Front B, Durivault J, Tambutte E, et al. Genetic Disruption of the Multifunctional CD98/LAT1 Complex Demonstrates the Key Role of Essential Amino Acid Transport in the Control of mTORC1 and Tumor Growth. Cancer Res. 2016;76:4481-92 pubmed 出版商
  81. Cui Y, Zhao J, Yi L, Jiang Y. microRNA-153 Targets mTORC2 Component Rictor to Inhibit Glioma Cells. PLoS ONE. 2016;11:e0156915 pubmed 出版商
  82. Li C, Zhang Y, Tang L, Zhao H, Gao C, Gao L, et al. Expression of factors involved in the regulation of angiogenesis in the full-term human placenta: Effects of in vitro fertilization. Reprod Biol. 2016;16:104-12 pubmed 出版商
  83. Sharma N, Kumawat K, Rastogi M, Basu A, Singh S. Japanese Encephalitis Virus exploits the microRNA-432 to regulate the expression of Suppressor of Cytokine Signaling (SOCS) 5. Sci Rep. 2016;6:27685 pubmed 出版商
  84. Magnowska M, Gorkiewicz T, Suska A, Wawrzyniak M, Rutkowska Wlodarczyk I, Kaczmarek L, et al. Transient ECM protease activity promotes synaptic plasticity. Sci Rep. 2016;6:27757 pubmed 出版商
  85. Tu S, Narendra V, Yamaji M, Vidal S, Rojas L, Wang X, et al. Co-repressor CBFA2T2 regulates pluripotency and germline development. Nature. 2016;534:387-90 pubmed 出版商
  86. Backhaus P, Langenhan T, Neuser K. Effects of transgenic expression of botulinum toxins in Drosophila. J Neurogenet. 2016;30:22-31 pubmed 出版商
  87. Li X, Cheng K, Liu Z, Yang J, Wang B, Jiang X, et al. The MDM2-p53-pyruvate carboxylase signalling axis couples mitochondrial metabolism to glucose-stimulated insulin secretion in pancreatic β-cells. Nat Commun. 2016;7:11740 pubmed 出版商
  88. Genç B, Jara J, Schultz M, Manuel M, Stanford M, Gautam M, et al. Absence of UCHL 1 function leads to selective motor neuropathy. Ann Clin Transl Neurol. 2016;3:331-45 pubmed 出版商
  89. Wang B, Qi T, Chen S, Ye L, Huang Z, Li H. RFX1 maintains testis cord integrity by regulating the expression of Itga6 in male mouse embryos. Mol Reprod Dev. 2016;83:606-14 pubmed 出版商
  90. Airik R, Schueler M, Airik M, Cho J, Ulanowicz K, Porath J, et al. SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling. PLoS ONE. 2016;11:e0156081 pubmed 出版商
  91. Zuckerwise L, Li J, Lu L, Men Y, Geng T, Buhimschi C, et al. H19 long noncoding RNA alters trophoblast cell migration and invasion by regulating TβR3 in placentae with fetal growth restriction. Oncotarget. 2016;7:38398-38407 pubmed 出版商
  92. Broadus M, Chen T, Neitzel L, Ng V, Jodoin J, Lee L, et al. Identification of a Paralog-Specific Notch1 Intracellular Domain Degron. Cell Rep. 2016;15:1920-9 pubmed 出版商
  93. Al Nakouzi N, Wang C, Beraldi E, Jäger W, Ettinger S, Fazli L, et al. Clusterin knockdown sensitizes prostate cancer cells to taxane by modulating mitosis. EMBO Mol Med. 2016;8:761-78 pubmed 出版商
  94. Topalidou I, Cattin Ortolá J, Pappas A, Cooper K, Merrihew G, MacCoss M, et al. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles. PLoS Genet. 2016;12:e1006074 pubmed 出版商
  95. Ribeiro J, Schorl C, Yano N, Romano N, Kim K, Singh R, et al. HE4 promotes collateral resistance to cisplatin and paclitaxel in ovarian cancer cells. J Ovarian Res. 2016;9:28 pubmed 出版商
  96. Chen L, DeWispelaere A, Dastvan F, Osborne W, Blechner C, Windhorst S, et al. Smooth Muscle-Alpha Actin Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Inhibiting Rac1 Activity. PLoS ONE. 2016;11:e0155726 pubmed 出版商
  97. Karvela M, Baquero P, Kuntz E, Mukhopadhyay A, Mitchell R, Allan E, et al. ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells. Autophagy. 2016;12:936-48 pubmed 出版商
  98. Ding J, Nie M, Liu J, Hu X, Ma L, Deng Z, et al. Trbp Is Required for Differentiation of Myoblasts and Normal Regeneration of Skeletal Muscle. PLoS ONE. 2016;11:e0155349 pubmed 出版商
  99. Scott T, Wicker C, Suganya R, Dhar B, Pittman T, Horbinski C, et al. Polyubiquitination of apurinic/apyrimidinic endonuclease 1 by Parkin. Mol Carcinog. 2017;56:325-336 pubmed 出版商
  100. Verhoeven R, Tong S, Zhang G, Zong J, Chen Y, Jin D, et al. NF-κB Signaling Regulates Expression of Epstein-Barr Virus BART MicroRNAs and Long Noncoding RNAs in Nasopharyngeal Carcinoma. J Virol. 2016;90:6475-88 pubmed 出版商
  101. Zhang Y, He Q, Hu Z, Feng Y, Fan L, Tang Z, et al. Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. Nat Struct Mol Biol. 2016;23:522-30 pubmed 出版商
  102. Wagstaff L, Goschorska M, Kozyrska K, Duclos G, Kucinski I, Chessel A, et al. Mechanical cell competition kills cells via induction of lethal p53 levels. Nat Commun. 2016;7:11373 pubmed 出版商
  103. Robison P, Caporizzo M, Ahmadzadeh H, Bogush A, Chen C, Margulies K, et al. Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. Science. 2016;352:aaf0659 pubmed 出版商
  104. Monyak R, Emerson D, Schoenfeld B, Zheng X, Chambers D, Rosenfelt C, et al. Insulin signaling misregulation underlies circadian and cognitive deficits in a Drosophila fragile X model. Mol Psychiatry. 2017;22:1140-1148 pubmed 出版商
  105. Mukherjee A, Garrels W, Talluri T, Tiedemann D, Bosze Z, Ivics Z, et al. Expression of Active Fluorophore Proteins in the Milk of Transgenic Pigs Bypassing the Secretory Pathway. Sci Rep. 2016;6:24464 pubmed 出版商
  106. Cong X, Doering J, Mázala D, Chin E, Grange R, Jiang H. The SH3 and cysteine-rich domain 3 (Stac3) gene is important to growth, fiber composition, and calcium release from the sarcoplasmic reticulum in postnatal skeletal muscle. Skelet Muscle. 2016;6:17 pubmed 出版商
  107. Verbist K, Guy C, Milasta S, Liedmann S, Kaminski M, Wang R, et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature. 2016;532:389-93 pubmed 出版商
  108. Xiong W, Li J, Zhang E, Huang H. BMAL1 regulates transcription initiation and activates circadian clock gene expression in mammals. Biochem Biophys Res Commun. 2016;473:1019-1025 pubmed 出版商
  109. Winick Ng W, Caetano F, Winick Ng J, Morey T, Heit B, Rylett R. 82-kDa choline acetyltransferase and SATB1 localize to ?-amyloid induced matrix attachment regions. Sci Rep. 2016;6:23914 pubmed 出版商
  110. Aaes T, Kaczmarek A, Delvaeye T, De Craene B, De Koker S, Heyndrickx L, et al. Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity. Cell Rep. 2016;15:274-87 pubmed 出版商
  111. Phelps Polirer K, Abt M, Smith D, Yeh E. Co-Targeting of JNK and HUNK in Resistant HER2-Positive Breast Cancer. PLoS ONE. 2016;11:e0153025 pubmed 出版商
  112. Kaur A, Webster M, Marchbank K, Behera R, Ndoye A, Kugel C, et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature. 2016;532:250-4 pubmed 出版商
  113. Wang X, Zhang X, Zhou T, Li N, Jang C, Xiao Z, et al. Elevated Neuronal Excitability Due to Modulation of the Voltage-Gated Sodium Channel Nav1.6 by Aβ1-42. Front Neurosci. 2016;10:94 pubmed 出版商
  114. Chen S, Chen M, Deng S, Hao X, Wang X, Liu Y. Sodium-hydrogen exchanger NHA1 and NHA2 control sperm motility and male fertility. Cell Death Dis. 2016;7:e2152 pubmed 出版商
  115. Wen Y, Li H, Zeng Y, Wen W, Pendleton K, Lui V, et al. MAPK1E322K mutation increases head and neck squamous cell carcinoma sensitivity to erlotinib through enhanced secretion of amphiregulin. Oncotarget. 2016;7:23300-11 pubmed 出版商
  116. Chanu S, Sarkar S. Targeted Downregulation of dMyc Suppresses Pathogenesis of Human Neuronal Tauopathies in Drosophila by Limiting Heterochromatin Relaxation and Tau Hyperphosphorylation. Mol Neurobiol. 2017;54:2706-2719 pubmed 出版商
  117. Jin Z, Li R, Zhou C, Shi L, Zhang X, Yang Z, et al. Efficient Gene Knockdown in Mouse Oocytes through Peptide Nanoparticle-Mediated SiRNA Transfection. PLoS ONE. 2016;11:e0150462 pubmed 出版商
  118. Prause M, Mayer C, Brorsson C, Frederiksen K, Billestrup N, Størling J, et al. JNK1 Deficient Insulin-Producing Cells Are Protected against Interleukin-1β-Induced Apoptosis Associated with Abrogated Myc Expression. J Diabetes Res. 2016;2016:1312705 pubmed 出版商
  119. Zhang X, Peng D, Xi Y, Yuan C, Sagum C, Klein B, et al. G9a-mediated methylation of ERα links the PHF20/MOF histone acetyltransferase complex to hormonal gene expression. Nat Commun. 2016;7:10810 pubmed 出版商
  120. Petridou N, Skourides P. A ligand-independent integrin β1 mechanosensory complex guides spindle orientation. Nat Commun. 2016;7:10899 pubmed 出版商
  121. Dhawan S, Dirice E, Kulkarni R, Bhushan A. Inhibition of TGF-β Signaling Promotes Human Pancreatic β-Cell Replication. Diabetes. 2016;65:1208-18 pubmed 出版商
  122. Li W, Xu X, Pozzo Miller L. Excitatory synapses are stronger in the hippocampus of Rett syndrome mice due to altered synaptic trafficking of AMPA-type glutamate receptors. Proc Natl Acad Sci U S A. 2016;113:E1575-84 pubmed 出版商
  123. Lamprecht M, Elkin B, Kesavabhotla K, Crary J, Hammers J, Huh J, et al. Strong Correlation of Genome-Wide Expression after Traumatic Brain Injury In Vitro and In Vivo Implicates a Role for SORLA. J Neurotrauma. 2017;34:97-108 pubmed 出版商
  124. Mason J, Davison Versagli C, Leliaert A, Pape D, McCallister C, Zuo J, et al. Oncogenic Ras differentially regulates metabolism and anoikis in extracellular matrix-detached cells. Cell Death Differ. 2016;23:1271-82 pubmed 出版商
  125. Xu M, Bian S, Li J, He J, Chen H, Ge L, et al. MeCP2 suppresses LIN28A expression via binding to its methylated-CpG islands in pancreatic cancer cells. Oncotarget. 2016;7:14476-85 pubmed 出版商
  126. Weyemi U, Redon C, Choudhuri R, Aziz T, Maeda D, Boufraqech M, et al. The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition. Nat Commun. 2016;7:10711 pubmed 出版商
  127. WoÅ› M, Szczepanowska J, PikuÅ‚a S, Tylki SzymaÅ„ska A, ZabÅ‚ocki K, Bandorowicz PikuÅ‚a J. Mitochondrial dysfunction in fibroblasts derived from patients with Niemann-Pick type C disease. Arch Biochem Biophys. 2016;593:50-9 pubmed 出版商
  128. Xu J, Wang N, Luo J, Xia J. Syntabulin regulates the trafficking of PICK1-containing vesicles in neurons. Sci Rep. 2016;6:20924 pubmed 出版商
  129. Zhao Y, Wei J, Tian Q, Liu A, Yi Y, Einhorn T, et al. Progranulin suppresses titanium particle induced inflammatory osteolysis by targeting TNFα signaling. Sci Rep. 2016;6:20909 pubmed 出版商
  130. Cekan P, Hasegawa K, Pan Y, Tubman E, Odde D, Chen J, et al. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell senescence. Mol Biol Cell. 2016;27:1346-57 pubmed 出版商
  131. Nakazawa M, Eisinger Mathason T, Sadri N, Ochocki J, Gade T, Amin R, et al. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun. 2016;7:10539 pubmed 出版商
  132. Ancelin K, Syx L, Borensztein M, Ranisavljevic N, Vassilev I, Briseño Roa L, et al. Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. elife. 2016;5: pubmed 出版商
  133. Capell B, Drake A, Zhu J, Shah P, Dou Z, Dorsey J, et al. MLL1 is essential for the senescence-associated secretory phenotype. Genes Dev. 2016;30:321-36 pubmed 出版商
  134. Podmirseg S, Jäkel H, Ranches G, Kullmann M, Sohm B, Villunger A, et al. Caspases uncouple p27(Kip1) from cell cycle regulated degradation and abolish its ability to stimulate cell migration and invasion. Oncogene. 2016;35:4580-90 pubmed 出版商
  135. Roßner F, Gieseler C, Morkel M, Royer H, Rivera M, Bläker H, et al. Uncoupling of EGFR-RAS signaling and nuclear localization of YBX1 in colorectal cancer. Oncogenesis. 2016;5:e187 pubmed 出版商
  136. Zhou H, Wang T, Zheng T, Teng J, Chen J. Cep57 is a Mis12-interacting kinetochore protein involved in kinetochore targeting of Mad1-Mad2. Nat Commun. 2016;7:10151 pubmed 出版商
  137. Tagliatti E, Fadda M, Falace A, Benfenati F, Fassio A. Arf6 regulates the cycling and the readily releasable pool of synaptic vesicles at hippocampal synapse. elife. 2016;5: pubmed 出版商
  138. Kraft L, Manral P, Dowler J, Kenworthy A. Nuclear LC3 Associates with Slowly Diffusing Complexes that Survey the Nucleolus. Traffic. 2016;17:369-99 pubmed 出版商
  139. Fokina A, Chechenova M, Karginov A, Ter Avanesyan M, Agaphonov M. Genetic Evidence for the Role of the Vacuole in Supplying Secretory Organelles with Ca2+ in Hansenula polymorpha. PLoS ONE. 2015;10:e0145915 pubmed 出版商
  140. Zhao D, Gish G, Braunschweig U, Li Y, Ni Z, Schmitges F, et al. SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination. Nature. 2016;529:48-53 pubmed 出版商
  141. Fan S, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell. 2016;27:702-15 pubmed 出版商
  142. Huang R, Langdon S, Tse M, Mullen P, Um I, Faratian D, et al. The role of HDAC2 in chromatin remodelling and response to chemotherapy in ovarian cancer. Oncotarget. 2016;7:4695-711 pubmed 出版商
  143. Borriello A, Naviglio S, Bencivenga D, Caldarelli I, Tramontano A, Speranza M, et al. Histone Deacetylase Inhibitors Increase p27(Kip1) by Affecting Its Ubiquitin-Dependent Degradation through Skp2 Downregulation. Oxid Med Cell Longev. 2016;2016:2481865 pubmed 出版商
  144. Ghosh K, Selokar N, Gahlawat S, Kumar D, Kumar P, Yadav P. Amnion Epithelial Cells of Buffalo (Bubalus Bubalis) Term Placenta Expressed Embryonic Stem Cells Markers and Differentiated into Cells of Neurogenic Lineage In Vitro. Anim Biotechnol. 2016;27:38-43 pubmed 出版商
  145. Franco Villanueva A, Wandosell F, Antón I. Neuritic complexity of hippocampal neurons depends on WIP-mediated mTORC1 and Abl family kinases activities. Brain Behav. 2015;5:e00359 pubmed 出版商
  146. Anadón C, Guil S, Simó Riudalbas L, Moutinho C, Setien F, Martínez Cardús A, et al. Gene amplification-associated overexpression of the RNA editing enzyme ADAR1 enhances human lung tumorigenesis. Oncogene. 2016;35:4407-13 pubmed 出版商
  147. Debruyne D, Bhatnagar N, Sharma B, Luther W, Moore N, Cheung N, et al. ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene. 2016;35:3681-91 pubmed 出版商
  148. Gzyl J, Chmielowska BÄ…k J, PrzymusiÅ„ski R, Gwóźdź E. Cadmium affects microtubule organization and post-translational modifications of tubulin in seedlings of soybean (Glycine max L.). Front Plant Sci. 2015;6:937 pubmed 出版商
  149. Lesmana R, Sinha R, Singh B, Zhou J, Ohba K, Wu Y, et al. Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle. Endocrinology. 2016;157:23-38 pubmed 出版商
  150. Aquino Gálvez A, González Ávila G, Delgado Tello J, Castillejos López M, Mendoza Milla C, Zúñiga J, et al. Effects of 2-methoxyestradiol on apoptosis and HIF-1α and HIF-2α expression in lung cancer cells under normoxia and hypoxia. Oncol Rep. 2016;35:577-83 pubmed 出版商
  151. Wu S, Guo Z, Hopkins C, Wei N, Chu E, Wipf P, et al. Bis-cyclopropane analog of disorazole C1 is a microtubule-destabilizing agent active in ABCB1-overexpressing human colon cancer cells. Oncotarget. 2015;6:40866-79 pubmed 出版商
  152. Pasini L, Re A, Tebaldi T, Ricci G, Boi S, Adami V, et al. TrkA is amplified in malignant melanoma patients and induces an anti-proliferative response in cell lines. BMC Cancer. 2015;15:777 pubmed 出版商
  153. Dijk W, Heine M, Vergnes L, Boon M, Schaart G, Hesselink M, et al. ANGPTL4 mediates shuttling of lipid fuel to brown adipose tissue during sustained cold exposure. elife. 2015;4: pubmed 出版商
  154. Riquelme S, Pogu J, Anegon I, Bueno S, Kalergis A. Carbon monoxide impairs mitochondria-dependent endosomal maturation and antigen presentation in dendritic cells. Eur J Immunol. 2015;45:3269-88 pubmed 出版商
  155. Piroli G, Manuel A, Clapper A, Walla M, Baatz J, Palmiter R, et al. Succination is Increased on Select Proteins in the Brainstem of the NADH dehydrogenase (ubiquinone) Fe-S protein 4 (Ndufs4) Knockout Mouse, a Model of Leigh Syndrome. Mol Cell Proteomics. 2016;15:445-61 pubmed 出版商
  156. Pathak T, Agrawal T, Richhariya S, Sadaf S, Hasan G. Store-Operated Calcium Entry through Orai Is Required for Transcriptional Maturation of the Flight Circuit in Drosophila. J Neurosci. 2015;35:13784-99 pubmed 出版商
  157. Miles W, Lepesant J, Bourdeaux J, Texier M, Kerenyi M, Nakakido M, et al. The LSD1 Family of Histone Demethylases and the Pumilio Posttranscriptional Repressor Function in a Complex Regulatory Feedback Loop. Mol Cell Biol. 2015;35:4199-211 pubmed 出版商
  158. Santi A, Caselli A, Ranaldi F, Paoli P, Mugnaioni C, Michelucci E, et al. Cancer associated fibroblasts transfer lipids and proteins to cancer cells through cargo vesicles supporting tumor growth. Biochim Biophys Acta. 2015;1853:3211-23 pubmed 出版商
  159. Ojelade S, Acevedo S, Kalahasti G, Rodan A, Rothenfluh A. RhoGAP18B Isoforms Act on Distinct Rho-Family GTPases and Regulate Behavioral Responses to Alcohol via Cofilin. PLoS ONE. 2015;10:e0137465 pubmed 出版商
  160. Kelly J, Shao Q, Jagger D, Laird D. Cx30 exhibits unique characteristics including a long half-life when assembled into gap junctions. J Cell Sci. 2015;128:3947-60 pubmed 出版商
  161. Okolicsanyi R, Camilleri E, Oikari L, Yu C, Cool S, Van Wijnen A, et al. Human Mesenchymal Stem Cells Retain Multilineage Differentiation Capacity Including Neural Marker Expression after Extended In Vitro Expansion. PLoS ONE. 2015;10:e0137255 pubmed 出版商
  162. Wang J, Zhang Y, Hou J, Qian X, Zhang H, Zhang Z, et al. Ube2s regulates Sox2 stability and mouse ES cell maintenance. Cell Death Differ. 2016;23:393-404 pubmed 出版商
  163. Han Y, Wang Z, Bae E. Synthesis of the Proposed Structure of Damaurone D and Evaluation of Its Anti-inflammatory Activity. Chem Pharm Bull (Tokyo). 2015;63:907-12 pubmed 出版商
  164. Sun D, Buttitta L. Protein phosphatase 2A promotes the transition to G0 during terminal differentiation in Drosophila. Development. 2015;142:3033-45 pubmed 出版商
  165. Chakraborty R, Li Y, Zhou L, Golic K. Corp Regulates P53 in Drosophila melanogaster via a Negative Feedback Loop. PLoS Genet. 2015;11:e1005400 pubmed 出版商
  166. Gentili C, Castor D, Kaden S, Lauterbach D, Gysi M, Steigemann P, et al. Chromosome Missegregation Associated with RUVBL1 Deficiency. PLoS ONE. 2015;10:e0133576 pubmed 出版商
  167. Evans T, Santiago C, Arbeille E, Bashaw G. Robo2 acts in trans to inhibit Slit-Robo1 repulsion in pre-crossing commissural axons. elife. 2015;4:e08407 pubmed 出版商
  168. Zhou J, Joshi B, Duan X, Pant A, Qiu Z, Kuick R, et al. EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging. Clin Transl Gastroenterol. 2015;6:e101 pubmed 出版商
  169. Cho Y, Park D, Cavalli V. Filamin A is required in injured axons for HDAC5 activity and axon regeneration. J Biol Chem. 2015;290:22759-70 pubmed 出版商
  170. Patergnani S, Giorgi C, Maniero S, Missiroli S, Maniscalco P, Bononi I, et al. The endoplasmic reticulum mitochondrial calcium cross talk is downregulated in malignant pleural mesothelioma cells and plays a critical role in apoptosis inhibition. Oncotarget. 2015;6:23427-44 pubmed
  171. Niehues S, Bussmann J, Steffes G, Erdmann I, Köhrer C, Sun L, et al. Impaired protein translation in Drosophila models for Charcot-Marie-Tooth neuropathy caused by mutant tRNA synthetases. Nat Commun. 2015;6:7520 pubmed 出版商
  172. Graffe M, Zenisek D, Taraska J. A marginal band of microtubules transports and organizes mitochondria in retinal bipolar synaptic terminals. J Gen Physiol. 2015;146:109-17 pubmed 出版商
  173. Tang Y, Dai L, Zhang X, Li J, Hendriks J, Fan X, et al. SNSMIL, a real-time single molecule identification and localization algorithm for super-resolution fluorescence microscopy. Sci Rep. 2015;5:11073 pubmed 出版商
  174. Fremont R, Tewari A, Khodakhah K. Aberrant Purkinje cell activity is the cause of dystonia in a shRNA-based mouse model of Rapid Onset Dystonia-Parkinsonism. Neurobiol Dis. 2015;82:200-212 pubmed 出版商
  175. Nan X, Tamgüney T, Collisson E, Lin L, Pitt C, Galeas J, et al. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway. Proc Natl Acad Sci U S A. 2015;112:7996-8001 pubmed 出版商
  176. Powell J, Hutchison J, Hess B, Straub T. Bacillus anthracis spores germinate extracellularly at air-liquid interface in an in vitro lung model under serum-free conditions. J Appl Microbiol. 2015;119:711-23 pubmed 出版商
  177. Mohapatra S, Sandhu A, Singh K, Singla S, Chauhan M, Manik R, et al. Establishment of Trophectoderm Cell Lines from Buffalo (Bubalus bubalis) Embryos of Different Sources and Examination of In Vitro Developmental Competence, Quality, Epigenetic Status and Gene Expression in Cloned Embryos Derived from Them. PLoS ONE. 2015;10:e0129235 pubmed 出版商
  178. Ding J, Chen J, Wang Y, Kataoka M, Ma L, Zhou P, et al. Trbp regulates heart function through microRNA-mediated Sox6 repression. Nat Genet. 2015;47:776-83 pubmed 出版商
  179. Kang J, Shen W, Zhou C, Xu D, Macdonald R. The human epilepsy mutation GABRG2(Q390X) causes chronic subunit accumulation and neurodegeneration. Nat Neurosci. 2015;18:988-96 pubmed 出版商
  180. Ramirez M, Oakley T. Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides. J Exp Biol. 2015;218:1513-20 pubmed 出版商
  181. Torres Fuentes J, Rios M, Moreno R. Involvement of a P2X7 Receptor in the Acrosome Reaction Induced by ATP in Rat Spermatozoa. J Cell Physiol. 2015;230:3068-75 pubmed 出版商
  182. Pang B, de Jong J, Qiao X, Wessels L, Neefjes J. Chemical profiling of the genome with anti-cancer drugs defines target specificities. Nat Chem Biol. 2015;11:472-80 pubmed 出版商
  183. Campia I, Buondonno I, Castella B, Rolando B, Kopecka J, Gazzano E, et al. An Autocrine Cytokine/JAK/STAT-Signaling Induces Kynurenine Synthesis in Multidrug Resistant Human Cancer Cells. PLoS ONE. 2015;10:e0126159 pubmed 出版商
  184. Carrigan I, Croll R, Wyeth R. Morphology, innervation, and peripheral sensory cells of the siphon of aplysia californica. J Comp Neurol. 2015;523:2409-25 pubmed 出版商
  185. Thierry M, Pasquis B, Buteau B, Fourgeux C, Dembele D, Leclère L, et al. Early adaptive response of the retina to a pro-diabetogenic diet: Impairment of cone response and gene expression changes in high-fructose fed rats. Exp Eye Res. 2015;135:37-46 pubmed 出版商
  186. Song W, Cho Y, Watt D, Cavalli V. Tubulin-tyrosine Ligase (TTL)-mediated Increase in Tyrosinated α-Tubulin in Injured Axons Is Required for Retrograde Injury Signaling and Axon Regeneration. J Biol Chem. 2015;290:14765-75 pubmed 出版商
  187. Bettaieb A, Jiang J, Sasaki Y, Chao T, Kiss Z, Chen X, et al. Hepatocyte Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 4 Regulates Stress Signaling, Fibrosis, and Insulin Sensitivity During Development of Steatohepatitis in Mice. Gastroenterology. 2015;149:468-80.e10 pubmed 出版商
  188. Ross J, Huh D, Noble L, Tavazoie S. Identification of molecular determinants of primary and metastatic tumour re-initiation in breast cancer. Nat Cell Biol. 2015;17:651-64 pubmed 出版商
  189. Figeac N, Zammit P. Coordinated action of Axin1 and Axin2 suppresses β-catenin to regulate muscle stem cell function. Cell Signal. 2015;27:1652-65 pubmed 出版商
  190. Alpay M, Backman L, Cheng X, Dukel M, Kim W, Ai L, et al. Oxidative stress shapes breast cancer phenotype through chronic activation of ATM-dependent signaling. Breast Cancer Res Treat. 2015;151:75-87 pubmed 出版商
  191. Milan G, Romanello V, Pescatore F, Armani A, Paik J, Frasson L, et al. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun. 2015;6:6670 pubmed 出版商
  192. Rajan S, Dickson L, Mathew E, Orr C, Ellenbroek J, Philipson L, et al. Chronic hyperglycemia downregulates GLP-1 receptor signaling in pancreatic β-cells via protein kinase A. Mol Metab. 2015;4:265-76 pubmed 出版商
  193. Ding Y, Xu Y, Shuai X, Shi X, Chen X, Huang W, et al. Reg3? Overexpression Protects Pancreatic ? Cells from Cytokine-Induced Damage and Improves Islet Transplant Outcome. Mol Med. 2015;20:548-558 pubmed 出版商
  194. Yokoi F, Chen H, Dang M, Cheetham C, Campbell S, Roper S, et al. Behavioral and electrophysiological characterization of Dyt1 heterozygous knockout mice. PLoS ONE. 2015;10:e0120916 pubmed 出版商
  195. Liu Y, Lee J, Ackerman S. Mutations in the microtubule-associated protein 1A (Map1a) gene cause Purkinje cell degeneration. J Neurosci. 2015;35:4587-98 pubmed 出版商
  196. Balboula A, Stein P, Schultz R, Schindler K. RBBP4 regulates histone deacetylation and bipolar spindle assembly during oocyte maturation in the mouse. Biol Reprod. 2015;92:105 pubmed 出版商
  197. Frickenhaus M, Wagner M, Mallik M, Catinozzi M, Storkebaum E. Highly efficient cell-type-specific gene inactivation reveals a key function for the Drosophila FUS homolog cabeza in neurons. Sci Rep. 2015;5:9107 pubmed 出版商
  198. Bi Q, Ranjan A, Fan R, Agarwal N, Welch D, Weinman S, et al. MTBP inhibits migration and metastasis of hepatocellular carcinoma. Clin Exp Metastasis. 2015;32:301-11 pubmed 出版商
  199. Hue C, Cho F, Cao S, Dale Bass C, Meaney D, Morrison B. Dexamethasone potentiates in vitro blood-brain barrier recovery after primary blast injury by glucocorticoid receptor-mediated upregulation of ZO-1 tight junction protein. J Cereb Blood Flow Metab. 2015;35:1191-8 pubmed 出版商
  200. Bahn J, Ahn J, Lin X, Zhang Q, Lee J, Civelek M, et al. Genomic analysis of ADAR1 binding and its involvement in multiple RNA processing pathways. Nat Commun. 2015;6:6355 pubmed 出版商
  201. Kim S, Ka S, Lee Y, Park B, Fei X, Jung J, et al. The new 4-O-methylhonokiol analog GS12021 inhibits inflammation and macrophage chemotaxis: role of AMP-activated protein kinase α activation. PLoS ONE. 2015;10:e0117120 pubmed 出版商
  202. Jabir M, Hopkins L, Ritchie N, Ullah I, Bayes H, Li D, et al. Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy. Autophagy. 2015;11:166-82 pubmed 出版商
  203. Yu L, Reynaud F, Falk J, Spencer A, Ding Y, Baumlé V, et al. Highly efficient method for gene delivery into mouse dorsal root ganglia neurons. Front Mol Neurosci. 2015;8:2 pubmed 出版商
  204. Feeney S, McGrath M, Sriratana A, Gehrig S, Lynch G, D Arcy C, et al. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1). PLoS ONE. 2015;10:e0117665 pubmed 出版商
  205. Salzano G, Navarro G, Trivedi M, De Rosa G, Torchilin V. Multifunctional Polymeric Micelles Co-loaded with Anti-Survivin siRNA and Paclitaxel Overcome Drug Resistance in an Animal Model of Ovarian Cancer. Mol Cancer Ther. 2015;14:1075-84 pubmed 出版商
  206. Escobar D, Desai R, Ishiyama N, Folmsbee S, Novak M, Flozak A, et al. α-Catenin phosphorylation promotes intercellular adhesion through a dual-kinase mechanism. J Cell Sci. 2015;128:1150-65 pubmed 出版商
  207. Nagai J, Kitamura Y, Owada K, Yamashita N, Takei K, Goshima Y, et al. Crmp4 deletion promotes recovery from spinal cord injury by neuroprotection and limited scar formation. Sci Rep. 2015;5:8269 pubmed 出版商
  208. Suganya R, Chakraborty A, Miriyala S, Hazra T, Izumi T. Suppression of oxidative phosphorylation in mouse embryonic fibroblast cells deficient in apurinic/apyrimidinic endonuclease. DNA Repair (Amst). 2015;27:40-8 pubmed 出版商
  209. Vosper J, Masuccio A, Kullmann M, Ploner C, Geley S, Hengst L. Statin-induced depletion of geranylgeranyl pyrophosphate inhibits cell proliferation by a novel pathway of Skp2 degradation. Oncotarget. 2015;6:2889-902 pubmed
  210. Pflanz R, Voigt A, Yakulov T, Jäckle H. Drosophila gene tao-1 encodes proteins with and without a Ste20 kinase domain that affect cytoskeletal architecture and cell migration differently. Open Biol. 2015;5:140161 pubmed 出版商
  211. Liang K, Gao X, Gilmore J, Florens L, Washburn M, Smith E, et al. Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-terminal domain phosphorylation, gene transcription, and RNA processing. Mol Cell Biol. 2015;35:928-38 pubmed 出版商
  212. Ray Chaudhuri A, Ahuja A, Herrador R, Lopes M. Poly(ADP-ribosyl) glycohydrolase prevents the accumulation of unusual replication structures during unperturbed S phase. Mol Cell Biol. 2015;35:856-65 pubmed 出版商
  213. Liedmann S, Hrincius E, Guy C, Anhlan D, Dierkes R, Carter R, et al. Viral suppressors of the RIG-I-mediated interferon response are pre-packaged in influenza virions. Nat Commun. 2014;5:5645 pubmed 出版商
  214. Crane J, Palanivel R, Mottillo E, Bujak A, Wang H, Ford R, et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat Med. 2015;21:166-72 pubmed 出版商
  215. Renoux A, Carducci N, Ahmady A, Todd P. Fragile X mental retardation protein expression in Alzheimer's disease. Front Genet. 2014;5:360 pubmed 出版商
  216. Wu H, Rong Y, Correia K, Min J, Morgan J. Comparison of the enzymatic and functional properties of three cytosolic carboxypeptidase family members. J Biol Chem. 2015;290:1222-32 pubmed 出版商
  217. Hanson K, March S, Ng S, Bhatia S, Mota M. In vitro alterations do not reflect a requirement for host cell cycle progression during Plasmodium liver stage infection. Eukaryot Cell. 2015;14:96-103 pubmed 出版商
  218. Saini M, Selokar N, Agrawal H, Singla S, Chauhan M, Manik R, et al. Treatment of buffalo (Bubalus bubalis) donor cells with trichostatin A and 5-aza-2'-deoxycytidine alters their growth characteristics, gene expression and epigenetic status and improves the in vitro developmental competence, quality and epigenetic st. Reprod Fertil Dev. 2016;28:824-37 pubmed 出版商
  219. Moutaoufik M, El Fatimy R, Nassour H, Gareau C, Lang J, Tanguay R, et al. UVC-induced stress granules in mammalian cells. PLoS ONE. 2014;9:e112742 pubmed 出版商
  220. Arredondo Zamarripa D, Díaz Lezama N, Meléndez García R, Chávez Balderas J, Adán N, Ledesma Colunga M, et al. Vasoinhibins regulate the inner and outer blood-retinal barrier and limit retinal oxidative stress. Front Cell Neurosci. 2014;8:333 pubmed 出版商
  221. Tello Velasquez J, Watts M, Todorovic M, Nazareth L, Pastrana E, Diaz Nido J, et al. Low-dose curcumin stimulates proliferation, migration and phagocytic activity of olfactory ensheathing cells. PLoS ONE. 2014;9:e111787 pubmed 出版商
  222. Dowdle W, Nyfeler B, Nagel J, Elling R, Liu S, Triantafellow E, et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol. 2014;16:1069-79 pubmed 出版商
  223. Lei Q, Qiang F, Chao D, Di W, Guoqian Z, Bo Y, et al. Amelioration of hypoxia and LPS-induced intestinal epithelial barrier dysfunction by emodin through the suppression of the NF-κB and HIF-1α signaling pathways. Int J Mol Med. 2014;34:1629-39 pubmed 出版商
  224. Gao X, Hannoush R. Single-cell in situ imaging of palmitoylation in fatty-acylated proteins. Nat Protoc. 2014;9:2607-23 pubmed 出版商
  225. Raman N, Nayak A, Muller S. mTOR signaling regulates nucleolar targeting of the SUMO-specific isopeptidase SENP3. Mol Cell Biol. 2014;34:4474-84 pubmed 出版商
  226. Provenzano G, Pangrazzi L, Poli A, Pernigo M, Sgadò P, Genovesi S, et al. Hippocampal dysregulation of neurofibromin-dependent pathways is associated with impaired spatial learning in engrailed 2 knock-out mice. J Neurosci. 2014;34:13281-8 pubmed 出版商
  227. Kannike K, Sepp M, Zuccato C, Cattaneo E, Timmusk T. Forkhead transcription factor FOXO3a levels are increased in Huntington disease because of overactivated positive autofeedback loop. J Biol Chem. 2014;289:32845-57 pubmed 出版商
  228. Cottle D, Ursino G, Ip S, Jones L, DiTommaso T, Hacking D, et al. Fetal inhibition of inflammation improves disease phenotypes in harlequin ichthyosis. Hum Mol Genet. 2015;24:436-49 pubmed 出版商
  229. Han M, Hu Z, Chen C, Chen Y, Gucek M, Li Z, et al. Dysbindin-associated proteome in the p2 synaptosome fraction of mouse brain. J Proteome Res. 2014;13:4567-80 pubmed 出版商
  230. García E, Machesky L, Jones G, Antón I. WIP is necessary for matrix invasion by breast cancer cells. Eur J Cell Biol. 2014;93:413-23 pubmed 出版商
  231. Radonjić N, Memi F, Ortega J, Glidden N, Zhan H, Zecevic N. The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro. Cereb Cortex. 2016;26:131-43 pubmed 出版商
  232. Jacobshagen M, Niquille M, Chaumont Dubel S, Marin P, Dayer A. The serotonin 6 receptor controls neuronal migration during corticogenesis via a ligand-independent Cdk5-dependent mechanism. Development. 2014;141:3370-7 pubmed 出版商
  233. Senturk S, Yao Z, Camiolo M, Stiles B, Rathod T, Walsh A, et al. p53? is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state. Proc Natl Acad Sci U S A. 2014;111:E3287-96 pubmed 出版商
  234. Can T, Faas L, Ashford D, Dowle A, Thomas J, O Toole P, et al. Proteomic analysis of laser capture microscopy purified myotendinous junction regions from muscle sections. Proteome Sci. 2014;12:25 pubmed 出版商
  235. Schneppenheim J, Hüttl S, Kruchen A, Fluhrer R, Müller I, Saftig P, et al. Signal-peptide-peptidase-like 2a is required for CD74 intramembrane proteolysis in human B cells. Biochem Biophys Res Commun. 2014;451:48-53 pubmed 出版商
  236. Ding Y, Qu Y, Feng J, Wang M, Han Q, So K, et al. Functional motor recovery from motoneuron axotomy is compromised in mice with defective corticospinal projections. PLoS ONE. 2014;9:e101918 pubmed 出版商
  237. Lodato S, Molyneaux B, Zuccaro E, Goff L, Chen H, Yuan W, et al. Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons. Nat Neurosci. 2014;17:1046-54 pubmed 出版商
  238. Spadaro D, Tapia R, Jond L, Sudol M, Fanning A, Citi S. ZO proteins redundantly regulate the transcription factor DbpA/ZONAB. J Biol Chem. 2014;289:22500-11 pubmed 出版商
  239. Li L, Tian X, Zhu M, Bulgari D, Böhme M, Goettfert F, et al. Drosophila Syd-1, liprin-α, and protein phosphatase 2A B' subunit Wrd function in a linear pathway to prevent ectopic accumulation of synaptic materials in distal axons. J Neurosci. 2014;34:8474-87 pubmed 出版商
  240. Trolle C, König N, Abrahamsson N, Vasylovska S, Kozlova E. Boundary cap neural crest stem cells homotopically implanted to the injured dorsal root transitional zone give rise to different types of neurons and glia in adult rodents. BMC Neurosci. 2014;15:60 pubmed 出版商
  241. Kielar M, Tuy F, Bizzotto S, Lebrand C, de Juan Romero C, Poirier K, et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci. 2014;17:923-33 pubmed 出版商
  242. Li R, Tan J, Chen L, Feng J, Liang W, Guo X, et al. Iqcg is essential for sperm flagellum formation in mice. PLoS ONE. 2014;9:e98053 pubmed 出版商
  243. Liu J, Ye J, Zou X, Xu Z, Feng Y, Zou X, et al. CRL4A(CRBN) E3 ubiquitin ligase restricts BK channel activity and prevents epileptogenesis. Nat Commun. 2014;5:3924 pubmed 出版商
  244. Wu M, Li C, Zhu G, Wang Y, Jules J, Lu Y, et al. Deletion of core-binding factor β (Cbfβ) in mesenchymal progenitor cells provides new insights into Cbfβ/Runxs complex function in cartilage and bone development. Bone. 2014;65:49-59 pubmed 出版商
  245. Bejarano E, Yuste A, Patel B, Stout R, Spray D, Cuervo A. Connexins modulate autophagosome biogenesis. Nat Cell Biol. 2014;16:401-14 pubmed 出版商
  246. Lamprecht M, Morrison B. GPR30 activation is neither necessary nor sufficient for acute neuroprotection by 17?-estradiol after an ischemic injury in organotypic hippocampal slice cultures. Brain Res. 2014;1563:131-7 pubmed 出版商
  247. Davis B, Wang X, Rohret J, Struzynski J, Merricks E, Bellinger D, et al. Targeted disruption of LDLR causes hypercholesterolemia and atherosclerosis in Yucatan miniature pigs. PLoS ONE. 2014;9:e93457 pubmed 出版商
  248. Smith I, Godinez G, Singh B, McCaughey K, Alcantara R, Gururaja T, et al. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction. FASEB J. 2014;28:2790-803 pubmed 出版商
  249. Kim A, Zamora Martinez E, Edwards S, Mandyam C. Structural reorganization of pyramidal neurons in the medial prefrontal cortex of alcohol dependent rats is associated with altered glial plasticity. Brain Struct Funct. 2015;220:1705-20 pubmed 出版商
  250. Verslegers M, Van Hove I, Dekeyster E, Gantois I, Hu T, D Hooge R, et al. MMP-2 mediates Purkinje cell morphogenesis and spine development in the mouse cerebellum. Brain Struct Funct. 2015;220:1601-17 pubmed 出版商
  251. Haldar M, Kohyama M, So A, Kc W, Wu X, Briseño C, et al. Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages. Cell. 2014;156:1223-1234 pubmed 出版商
  252. Zhang L, Chen X, Sharma P, Moon M, Sheftel A, Dawood F, et al. HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress. Nat Commun. 2014;5:3430 pubmed 出版商
  253. Bang C, Choung S. Enzogenol improves diabetes-related metabolic change in C57BL/KsJ-db/db mice, a model of type 2 diabetes mellitus. J Pharm Pharmacol. 2014;66:875-85 pubmed 出版商
  254. Sun J, Han Z, Shao Y, Cao Z, Kong X, Liu S. Comparative proteome analysis of tracheal tissues in response to infectious bronchitis coronavirus, Newcastle disease virus, and avian influenza virus H9 subtype virus infection. Proteomics. 2014;14:1403-23 pubmed 出版商
  255. Ballak D, van Essen P, van Diepen J, Jansen H, Hijmans A, Matsuguchi T, et al. MAP3K8 (TPL2/COT) affects obesity-induced adipose tissue inflammation without systemic effects in humans and in mice. PLoS ONE. 2014;9:e89615 pubmed 出版商
  256. Endesfelder U, Malkusch S, Fricke F, Heilemann M. A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment. Histochem Cell Biol. 2014;141:629-38 pubmed 出版商
  257. Severi I, Perugini J, Mondini E, Smorlesi A, Frontini A, Cinti S, et al. Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signaling in the mouse hypothalamus. Front Neurosci. 2013;7:263 pubmed 出版商
  258. Zhu G, Liang L, Li L, Dang Q, Song W, Yeh S, et al. The expression and evaluation of androgen receptor in human renal cell carcinoma. Urology. 2014;83:510.e19-24 pubmed 出版商
  259. Newman A, Selkoe D, Dettmer U. A new method for quantitative immunoblotting of endogenous ?-synuclein. PLoS ONE. 2013;8:e81314 pubmed 出版商
  260. Wakatsuki S, Araki T, Sehara Fujisawa A. Neuregulin-1/glial growth factor stimulates Schwann cell migration by inducing ?5 ?1 integrin-ErbB2-focal adhesion kinase complex formation. Genes Cells. 2014;19:66-77 pubmed 出版商
  261. Coria A, Masseroni M, Díaz Añel A. Regulation of PKD1-mediated Golgi to cell surface trafficking by G?q subunits. Biol Cell. 2014;106:30-43 pubmed 出版商
  262. Persson D, Halberg K, Jørgensen A, Møbjerg N, Kristensen R. Brain anatomy of the marine tardigrade Actinarctus doryphorus (Arthrotardigrada). J Morphol. 2014;275:173-90 pubmed 出版商
  263. Zeidán Chuliá F, Gelain D, Kolling E, Rybarczyk Filho J, Ambrosi P, Terra S, et al. Major components of energy drinks (caffeine, taurine, and guarana) exert cytotoxic effects on human neuronal SH-SY5Y cells by decreasing reactive oxygen species production. Oxid Med Cell Longev. 2013;2013:791795 pubmed 出版商
  264. Dettmer U, Newman A, Luth E, Bartels T, Selkoe D. In vivo cross-linking reveals principally oligomeric forms of ?-synuclein and ?-synuclein in neurons and non-neural cells. J Biol Chem. 2013;288:6371-85 pubmed 出版商
  265. Siebert A, Ma Z, Grevet J, Demuro A, Parker I, Foskett J. Structural and functional similarities of calcium homeostasis modulator 1 (CALHM1) ion channel with connexins, pannexins, and innexins. J Biol Chem. 2013;288:6140-53 pubmed 出版商
  266. Schrama D, Hesbacher S, Becker J, Houben R. Survivin downregulation is not required for T antigen knockdown mediated cell growth inhibition in MCV infected merkel cell carcinoma cells. Int J Cancer. 2013;132:2980-2 pubmed 出版商
  267. Koppen T, Weckmann A, Muller S, Staubach S, Bloch W, Dohmen R, et al. Proteomics analyses of microvesicles released by Drosophila Kc167 and S2 cells. Proteomics. 2011;11:4397-410 pubmed 出版商
  268. Coso S, Zeng Y, Sooraj D, Williams E. Conserved signaling through vascular endothelial growth (VEGF) receptor family members in murine lymphatic endothelial cells. Exp Cell Res. 2011;317:2397-407 pubmed 出版商
  269. Gursel D, Connell Albert Y, Tuskan R, Anastassiadis T, Walrath J, Hawes J, et al. Control of proliferation in astrocytoma cells by the receptor tyrosine kinase/PI3K/AKT signaling axis and the use of PI-103 and TCN as potential anti-astrocytoma therapies. Neuro Oncol. 2011;13:610-21 pubmed 出版商
  270. Yang G, Chang B, Yang F, Guo X, Cai K, Xiao X, et al. Aurora kinase A promotes ovarian tumorigenesis through dysregulation of the cell cycle and suppression of BRCA2. Clin Cancer Res. 2010;16:3171-81 pubmed 出版商
  271. Levendusky M, Basle J, Chang S, Mandalaywala N, Voigt J, DEARBORN R. Expression and regulation of vitamin D3 upregulated protein 1 (VDUP1) is conserved in mammalian and insect brain. J Comp Neurol. 2009;517:581-600 pubmed 出版商
  272. Liang H, Ran Q, Jang Y, Holstein D, Lechleiter J, McDonald Marsh T, et al. Glutathione peroxidase 4 differentially regulates the release of apoptogenic proteins from mitochondria. Free Radic Biol Med. 2009;47:312-20 pubmed 出版商
  273. Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl. 2008;47:6172-6 pubmed 出版商
  274. Kawagoe T, Sato S, Matsushita K, Kato H, Matsui K, Kumagai Y, et al. Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat Immunol. 2008;9:684-91 pubmed 出版商
  275. Howell M, Fairchild H, Kim B, Bin L, Boguniewicz M, Redzic J, et al. Th2 cytokines act on S100/A11 to downregulate keratinocyte differentiation. J Invest Dermatol. 2008;128:2248-58 pubmed 出版商
  276. Talmadge R, Paalani M. Sarco(endo)plasmic reticulum calcium pump isoforms in paralyzed rat slow muscle. Biochim Biophys Acta. 2007;1770:1187-93 pubmed
  277. Li C, Capan E, Zhao Y, Zhao J, Stolz D, Watkins S, et al. Autophagy is induced in CD4+ T cells and important for the growth factor-withdrawal cell death. J Immunol. 2006;177:5163-8 pubmed
  278. Larsen L, Størling J, Darville M, Eizirik D, Bonny C, Billestrup N, et al. Extracellular signal-regulated kinase is essential for interleukin-1-induced and nuclear factor kappaB-mediated gene expression in insulin-producing INS-1E cells. Diabetologia. 2005;48:2582-90 pubmed
  279. Li Q, Ching A, Chan B, Chow S, Lim P, Ho T, et al. A death receptor-associated anti-apoptotic protein, BRE, inhibits mitochondrial apoptotic pathway. J Biol Chem. 2004;279:52106-16 pubmed