这是一篇来自已证抗体库的有关人类 TUBB4B的综述,是根据31篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合TUBB4B 抗体。
TUBB4B 同义词: Beta2; LCAEOD; TUBB2; TUBB2C

西格玛奥德里奇
小鼠 单克隆(TUB 2.1)
  • 免疫细胞化学; 人类; 图 1a
西格玛奥德里奇 TUBB4B抗体(Sigma, T4026)被用于被用于免疫细胞化学在人类样本上 (图 1a). Cells (2020) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫印迹; 人类; 1:5000; 图 s1-1c
西格玛奥德里奇 TUBB4B抗体(Sigma, T4026)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s1-1c). elife (2020) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫细胞化学; 人类; 1:600; 图 2f
西格玛奥德里奇 TUBB4B抗体(Sigma, T4026)被用于被用于免疫细胞化学在人类样本上浓度为1:600 (图 2f). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 小鼠; 1:2000; 图 1c
西格玛奥德里奇 TUBB4B抗体(Sigma, T0198)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). Sci Rep (2017) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; great pond snail; 1:2000; 图 2
西格玛奥德里奇 TUBB4B抗体(Sigma, T0198)被用于被用于免疫印迹在great pond snail样本上浓度为1:2000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 TUBB4B抗体(Sigma, T0198)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 TUBB4B抗体(Sigma, T0198)被用于被用于免疫印迹在小鼠样本上 (图 1). J Neurosci (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBB4B抗体(Sigma, T0198)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 大鼠; 1:5000; 图 2
西格玛奥德里奇 TUBB4B抗体(Sigma, T0198)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 大鼠; 图 s2
西格玛奥德里奇 TUBB4B抗体(Sigma, T0198)被用于被用于免疫印迹在大鼠样本上 (图 s2). Autophagy (2015) ncbi
小鼠 单克隆(D66)
  • 免疫沉淀; 人类
西格玛奥德里奇 TUBB4B抗体(Sigma-Aldrich, T0198)被用于被用于免疫沉淀在人类样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(D66)
  • 免疫细胞化学; 大鼠; 1:1000
西格玛奥德里奇 TUBB4B抗体(Sigma, T0198)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 大鼠; 1:10000
西格玛奥德里奇 TUBB4B抗体(Sigma, T0198)被用于被用于免疫印迹在大鼠样本上浓度为1:10000. J Cell Physiol (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBB4B抗体(Sigma, T0198)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 人类; 图 7
西格玛奥德里奇 TUBB4B抗体(Sigma, T0198)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫组化; 小鼠; 1:200; 图 3b
西格玛奥德里奇 TUBB4B抗体(Sigma, C4585)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3b). PLoS Genet (2015) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫印迹; 小鼠; 1:10000; 图 1
西格玛奥德里奇 TUBB4B抗体(Sigma-Aldrich, TUB 2.1)被用于被用于免疫印迹在小鼠样本上浓度为1:10000 (图 1). Neurotherapeutics (2015) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 人类; 图  3
西格玛奥德里奇 TUBB4B抗体(Sigma, T0198)被用于被用于免疫印迹在人类样本上 (图  3). Clin Exp Metastasis (2015) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫细胞化学; pigs ; 图 2
西格玛奥德里奇 TUBB4B抗体(Sigma-Aldrich, C4585)被用于被用于免疫细胞化学在pigs 样本上 (图 2). J Clin Invest (2014) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBB4B抗体(Sigma-Aldrich, TUB 2.1)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBB4B抗体(Sigma, TUB2.1)被用于被用于免疫印迹在小鼠样本上. J Cell Sci (2014) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBB4B抗体(Sigma-Aldrich, TUB2.1)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Lung Cell Mol Physiol (2014) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 小鼠; 1:4000
西格玛奥德里奇 TUBB4B抗体(Sigma, T-0198)被用于被用于免疫印迹在小鼠样本上浓度为1:4000. Free Radic Biol Med (2014) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 TUBB4B抗体(Sigma-Aldrich, Tub2.1)被用于被用于免疫印迹在人类样本上 (图 3). Mol Biol Cell (2014) ncbi
小鼠 单克隆(D66)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBB4B抗体(Sigma-Aldrich, D66)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Biol Open (2014) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBB4B抗体(Sigma-Aldrich, TUB2.1)被用于被用于免疫印迹在人类样本上. Hum Mol Genet (2014) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫印迹; 大鼠
西格玛奥德里奇 TUBB4B抗体(Sigma, TUB2.1)被用于被用于免疫印迹在大鼠样本上. Neuroscience (2014) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 TUBB4B抗体(Sigma-Aldrich, TUB 2.1)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBB4B抗体(Sigma-Aldrich, C4585)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 大鼠
西格玛奥德里奇 TUBB4B抗体(Sigma, T0198)被用于被用于免疫印迹在大鼠样本上. Physiol Behav (2014) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫细胞化学; 人类; 1:200
西格玛奥德里奇 TUBB4B抗体(Sigma, C4585)被用于被用于免疫细胞化学在人类样本上浓度为1:200. J Biol Chem (2013) ncbi
文章列表
  1. Peta C, Tsirimonaki E, Samouil D, Georgiadou K, Mangoura D. Nuclear Isoforms of Neurofibromin Are Required for Proper Spindle Organization and Chromosome Segregation. Cells. 2020;9: pubmed 出版商
  2. Oliemuller E, Newman R, Tsang S, Foo S, Muirhead G, Noor F, et al. SOX11 promotes epithelial/mesenchymal hybrid state and alters tropism of invasive breast cancer cells. elife. 2020;9: pubmed 出版商
  3. Nielsen C, Zhang T, Barisic M, Kalitsis P, Hudson D. Topoisomerase IIα is essential for maintenance of mitotic chromosome structure. Proc Natl Acad Sci U S A. 2020;117:12131-12142 pubmed 出版商
  4. Getz A, Xu F, Visser F, Persson R, Syed N. Tumor suppressor menin is required for subunit-specific nAChR α5 transcription and nAChR-dependent presynaptic facilitation in cultured mouse hippocampal neurons. Sci Rep. 2017;7:1768 pubmed 出版商
  5. Getz A, Visser F, Bell E, Xu F, Flynn N, Zaidi W, et al. Two proteolytic fragments of menin coordinate the nuclear transcription and postsynaptic clustering of neurotransmitter receptors during synaptogenesis between Lymnaea neurons. Sci Rep. 2016;6:31779 pubmed 出版商
  6. Li S, Qu Z, Haas M, Ngo L, Heo Y, Kang H, et al. The HSA21 gene EURL/C21ORF91 controls neurogenesis within the cerebral cortex and is implicated in the pathogenesis of Down Syndrome. Sci Rep. 2016;6:29514 pubmed 出版商
  7. Wahl S, Magupalli V, Dembla M, Katiyar R, Schwarz K, Köblitz L, et al. The Disease Protein Tulp1 Is Essential for Periactive Zone Endocytosis in Photoreceptor Ribbon Synapses. J Neurosci. 2016;36:2473-93 pubmed 出版商
  8. Le Pen J, Maillet L, Sarosiek K, Vuillier C, Gautier F, Montessuit S, et al. Constitutive p53 heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors of BCL-xL. Cell Death Dis. 2016;7:e2083 pubmed 出版商
  9. Torres G, Morales P, García Miguel M, Norambuena Soto I, Cartes Saavedra B, Vidal Peña G, et al. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation. Biochem Pharmacol. 2016;104:52-61 pubmed 出版商
  10. Wang J, Cao Y, Li Q, Yang Y, Jin M, Chen D, et al. A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation. Autophagy. 2015;11:2057-2073 pubmed 出版商
  11. Jamieson C, Lui C, Brocardo M, Martino Echarri E, Henderson B. Rac1 augments Wnt signaling by stimulating β-catenin-lymphoid enhancer factor-1 complex assembly independent of β-catenin nuclear import. J Cell Sci. 2015;128:3933-46 pubmed 出版商
  12. Zajkowski T, Nieznanska H, Nieznanski K. Stabilization of microtubular cytoskeleton protects neurons from toxicity of N-terminal fragment of cytosolic prion protein. Biochim Biophys Acta. 2015;1853:2228-39 pubmed 出版商
  13. Tang N, Lyu D, Liu T, Chen F, Jing S, Hao T, et al. Different Effects of p52SHC1 and p52SHC3 on the Cell Cycle of Neurons and Neural Stem Cells. J Cell Physiol. 2016;231:172-80 pubmed 出版商
  14. Duvall Noelle N, Karwandyar A, Richmond A, Raman D. LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex. Oncogene. 2016;35:1122-33 pubmed 出版商
  15. Giehl K, Keller C, Muehlich S, Goppelt Struebe M. Actin-mediated gene expression depends on RhoA and Rac1 signaling in proximal tubular epithelial cells. PLoS ONE. 2015;10:e0121589 pubmed 出版商
  16. Raju D, Schonauer S, Hamzeh H, FLYNN K, Bradke F, Vom Dorp K, et al. Accumulation of glucosylceramide in the absence of the beta-glucosidase GBA2 alters cytoskeletal dynamics. PLoS Genet. 2015;11:e1005063 pubmed 出版商
  17. Tokuda E, Watanabe S, Okawa E, Ono S. Regulation of Intracellular Copper by Induction of Endogenous Metallothioneins Improves the Disease Course in a Mouse Model of Amyotrophic Lateral Sclerosis. Neurotherapeutics. 2015;12:461-76 pubmed 出版商
  18. Bi Q, Ranjan A, Fan R, Agarwal N, Welch D, Weinman S, et al. MTBP inhibits migration and metastasis of hepatocellular carcinoma. Clin Exp Metastasis. 2015;32:301-11 pubmed 出版商
  19. Cai Y, Fedeles S, Dong K, Anyatonwu G, Onoe T, Mitobe M, et al. Altered trafficking and stability of polycystins underlie polycystic kidney disease. J Clin Invest. 2014;124:5129-44 pubmed 出版商
  20. Srinivasan S, Romagnoli M, Bohm A, Sonenshein G. N-glycosylation regulates ADAM8 processing and activation. J Biol Chem. 2014;289:33676-88 pubmed 出版商
  21. De Rossi G, Evans A, Kay E, Woodfin A, McKay T, Nourshargh S, et al. Shed syndecan-2 inhibits angiogenesis. J Cell Sci. 2014;127:4788-99 pubmed 出版商
  22. McGowan S, McCoy D. Regulation of fibroblast lipid storage and myofibroblast phenotypes during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol. 2014;307:L618-31 pubmed 出版商
  23. Tanti G, Goswami S. SG2NA recruits DJ-1 and Akt into the mitochondria and membrane to protect cells from oxidative damage. Free Radic Biol Med. 2014;75:1-13 pubmed 出版商
  24. McEwen A, Maher M, Mo R, Gottardi C. E-cadherin phosphorylation occurs during its biosynthesis to promote its cell surface stability and adhesion. Mol Biol Cell. 2014;25:2365-74 pubmed 出版商
  25. Asano S, Nemoto T, Kitayama T, Harada K, Zhang J, Harada K, et al. Phospholipase C-related catalytically inactive protein (PRIP) controls KIF5B-mediated insulin secretion. Biol Open. 2014;3:463-74 pubmed 出版商
  26. Tsika E, Glauser L, Moser R, Fiser A, Daniel G, Sheerin U, et al. Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration. Hum Mol Genet. 2014;23:4621-38 pubmed 出版商
  27. Han X, Cheng D, Song F, Zeng T, An L, Xie K. Decelerated transport and its mechanism of 2,5-hexanedione on middle-molecular-weight neurofilament in rat dorsal root ganglia cells. Neuroscience. 2014;269:192-8 pubmed 出版商
  28. Jung H, Song K, Chang J, Doh J. Geometrically controlled asymmetric division of CD4+ T cells studied by immunological synapse arrays. PLoS ONE. 2014;9:e91926 pubmed 出版商
  29. Yim D, Ghosh S, Guy G, Virshup D. Casein kinase 1 regulates Sprouty2 in FGF-ERK signaling. Oncogene. 2015;34:474-84 pubmed 出版商
  30. Heydendael W, Sengupta A, Beck S, Bhatnagar S. Optogenetic examination identifies a context-specific role for orexins/hypocretins in anxiety-related behavior. Physiol Behav. 2014;130:182-90 pubmed 出版商
  31. Körschen H, Yildiz Y, Raju D, Schonauer S, Bönigk W, Jansen V, et al. The non-lysosomal ?-glucosidase GBA2 is a non-integral membrane-associated protein at the endoplasmic reticulum (ER) and Golgi. J Biol Chem. 2013;288:3381-93 pubmed 出版商