这是一篇来自已证抗体库的有关人类 TUBG2的综述,是根据94篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合TUBG2 抗体。
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 图 4d
西格玛奥德里奇 TUBG2抗体(Sigma, T3320)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4d). Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3i
西格玛奥德里奇 TUBG2抗体(Sigma, T5192)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3i). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 s2d
西格玛奥德里奇 TUBG2抗体(Sigma, T5192)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s2d). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1d
西格玛奥德里奇 TUBG2抗体(Sigma, T3559)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1d). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 6a
西格玛奥德里奇 TUBG2抗体(Sigma-Aldrich, T3559)被用于被用于免疫细胞化学在人类样本上 (图 6a). Mol Biol Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 s2o
  • 免疫细胞化学; 人类; 1:200; 图 7d
西格玛奥德里奇 TUBG2抗体(Sigma, T5192)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s2o) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 7d). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 1i
西格玛奥德里奇 TUBG2抗体(Sigma, T3559)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1i). J Cell Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 5b
  • 免疫组化; 人类; 1:200; 图 3
西格玛奥德里奇 TUBG2抗体(Sigma-Aldrich, C7604)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5b) 和 被用于免疫组化在人类样本上浓度为1:200 (图 3). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:300; 图 s10a
西格玛奥德里奇 TUBG2抗体(Sigma-Aldrich, T5192)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 s10a). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:2000; 图 5B
西格玛奥德里奇 TUBG2抗体(Sigma-Aldrich, T5192)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 5B). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 犬; 1:2000; 图 1c
西格玛奥德里奇 TUBG2抗体(Sigma, T3559)被用于被用于免疫细胞化学在犬样本上浓度为1:2000 (图 1c). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2
西格玛奥德里奇 TUBG2抗体(Sigma, T5192)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 斑马鱼; 表 4
西格玛奥德里奇 TUBG2抗体(Sigma, T-3559)被用于被用于免疫细胞化学在斑马鱼样本上 (表 4). Methods Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 1
西格玛奥德里奇 TUBG2抗体(Sigma, T3559)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3b
西格玛奥德里奇 TUBG2抗体(Sigma-Aldrich, T3559)被用于被用于免疫细胞化学在人类样本上 (图 3b). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 s5
西格玛奥德里奇 TUBG2抗体(Sigma-Aldrich, T3559)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 1
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBG2抗体(Sigma, T5192)被用于被用于免疫沉淀在人类样本上 (图 1), 被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 1
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBG2抗体(Sigma, T3559)被用于被用于免疫沉淀在人类样本上 (图 1), 被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 3
西格玛奥德里奇 TUBG2抗体(Sigma-Aldrich, T3320)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 s3
西格玛奥德里奇 TUBG2抗体(Sigma-Aldrich, T5192)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 2f
西格玛奥德里奇 TUBG2抗体(Sigma, T3559)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2f). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
西格玛奥德里奇 TUBG2抗体(Sigma, T5192)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3c
西格玛奥德里奇 TUBG2抗体(Sigma-Aldrich, T5192)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3c). EMBO J (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 2b
西格玛奥德里奇 TUBG2抗体(Sigma, T3320)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 牛; 1:2000; 图 4
西格玛奥德里奇 TUBG2抗体(Sigma, T3559)被用于被用于免疫印迹在牛样本上浓度为1:2000 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:250; 图 3
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 TUBG2抗体(Sigma-Aldrich, T5192)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:5000. EMBO Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2
西格玛奥德里奇 TUBG2抗体(Sigma, T3559)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 TUBG2抗体(Sigma Aldrich, T5192)被用于. PLoS Genet (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 TUBG2抗体(Sigma-Aldrich, T5192)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5g
西格玛奥德里奇 TUBG2抗体(Sigma, T3559)被用于被用于免疫细胞化学在小鼠样本上 (图 5g). Cell Tissue Res (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 TUBG2抗体(Sigma-Aldrich, T5192)被用于. elife (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:550; 图 2c
  • 免疫印迹; 人类; 1:2000; 图 1b
西格玛奥德里奇 TUBG2抗体(Sigma Aldrich, T3559)被用于被用于免疫细胞化学在人类样本上浓度为1:550 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Oncogene (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 TUBG2抗体(Sigma, T3559)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 TUBG2抗体(Sigma-Aldrich, T5192)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 TUBG2抗体(Sigma-Aldrich, T5192)被用于. J Neurosci (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 3a
西格玛奥德里奇 TUBG2抗体(Sigma, T3559)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 3a). J Cell Biochem (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 TUBG2抗体(Sigma, T5192)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 TUBG2抗体(Sigma, T3559)被用于. Cell Biol Int (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 TUBG2抗体(Sigma, T5192)被用于. Nucleic Acids Res (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 TUBG2抗体(SIGMA, T3320)被用于. Dev Dyn (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 TUBG2抗体(Sigma, T5192)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 TUBG2抗体(Sigma, T3559)被用于. J Cell Sci (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 TUBG2抗体(Sigma, T5192)被用于. BMC Biol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 TUBG2抗体(Sigma, T5192)被用于. Mol Biol Cell (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 TUBG2抗体(Sigma, T5192)被用于. Dev Cell (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 TUBG2抗体(Sigma-Aldrich, T3559)被用于. J Cell Biol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 TUBG2抗体(Sigma, T5192)被用于. Blood (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 TUBG2抗体(Sigma, T3559)被用于. Cell Cycle (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 TUBG2抗体(Sigma, T5192)被用于. Nat Cell Biol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 TUBG2抗体(Sigma, T5192)被用于. Mol Biol Cell (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500
西格玛奥德里奇 TUBG2抗体(Sigma Aldrich, T3320)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Methods Mol Biol (2016) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:500; 图 1b
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab11316)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1b). Science (2020) ncbi
小鼠 单克隆(TU-30)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 1b
  • 免疫细胞化学; 人类; 1:2000; 图 5d
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab27074)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 1b) 和 被用于免疫细胞化学在人类样本上浓度为1:2000 (图 5d). elife (2019) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 图 s3f
  • 免疫印迹; 人类; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab11316)被用于被用于免疫细胞化学在人类样本上 (图 s3f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). J Cell Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab11317)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). J Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 5d
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab11317)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5d). Cell Rep (2018) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:400; 图 3c
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, GTU-88)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 3c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Nat Microbiol (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 4a
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab11317)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4a). J Cell Sci (2018) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:200; 图 2d
  • 免疫印迹; 人类; 1:1000; 图 5d
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab11316)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1a
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab93867)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1a). J Cell Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1a
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab11317)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1a). J Cell Sci (2017) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 1:1000; 图 s5
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab11316)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab11317)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:2000; 图 s2
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, Ab11317)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 图 2
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab11316)被用于被用于免疫印迹在小鼠样本上 (图 2). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 5c
艾博抗(上海)贸易有限公司 TUBG2抗体(abcam, ab11317)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5c). Nat Cell Biol (2016) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 图 s9
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab11316)被用于被用于免疫细胞化学在人类样本上 (图 s9). Oncotarget (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:250; 图 3f
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, GTU-88)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 3f). Autophagy (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:250; 图 3f
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, GTU-88)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 3f). J Cell Biol (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类; 1:5000; 图 7
艾博抗(上海)贸易有限公司 TUBG2抗体(AbCam, ab11316)被用于被用于免疫细胞化学在人类样本上浓度为1:5000 (图 7). Nat Commun (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 图 7
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab11316)被用于被用于免疫印迹在人类样本上 (图 7). Nat Commun (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 小鼠; 1:500; 图 s7a,b
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab11316)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s7a,b). Development (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 人类; 1:10,000; 图 2
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab11316)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). Mol Biol Cell (2015) ncbi
小鼠 单克隆(GTU-88)
  • 免疫印迹; 小鼠; 1:5000; 图 6
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab11316)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6). Nat Commun (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化-冰冻切片; 小鼠; 图 3
  • 免疫印迹; 人类; 图 9
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab11316)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 9). elife (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab11316)被用于被用于免疫细胞化学在人类样本上. Stem Cell Res (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab11316)被用于被用于免疫细胞化学在人类样本上. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(GTU-88)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab11316)被用于被用于免疫细胞化学在人类样本上. Mol Oncol (2013) ncbi
小鼠 单克隆(GTU-88)
  • 免疫组化; 大鼠; 1:500
艾博抗(上海)贸易有限公司 TUBG2抗体(Abcam, ab11316)被用于被用于免疫组化在大鼠样本上浓度为1:500. J Comp Neurol (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C-11)
  • 免疫印迹; 人类; 1:2000; 图 1f
圣克鲁斯生物技术 TUBG2抗体(Santa Cruz, sc-17787)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1f). J Exp Med (2020) ncbi
小鼠 单克隆(TU-30)
  • 免疫印迹; 人类; 图 2i
圣克鲁斯生物技术 TUBG2抗体(Santa Cruz, sc-51715)被用于被用于免疫印迹在人类样本上 (图 2i). Cell Rep (2019) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4c
圣克鲁斯生物技术 TUBG2抗体(Santa Cruz, sc-17787)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4c). PLoS Genet (2018) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术 TUBG2抗体(Santa, sc-17787)被用于被用于免疫印迹在小鼠样本上 (图 3a). PLoS Genet (2018) ncbi
小鼠 单克隆(TU-30)
  • 免疫印迹; 人类; 1:100; 图 1
圣克鲁斯生物技术 TUBG2抗体(Santa Cruz, sc-51715)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(TU-30)
  • 免疫细胞化学; 人类; 1:500; 图 1s1
圣克鲁斯生物技术 TUBG2抗体(Santa Cruz Biotechology, sc-51715)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1s1). elife (2016) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 人类; 图 5
圣克鲁斯生物技术 TUBG2抗体(Santa Cruz, sc-17787)被用于被用于免疫细胞化学在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 TUBG2抗体(santa Cruz, sc-17787)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 TUBG2抗体(Santa Cruz, sc-17787)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(C-11)
  • 流式细胞仪; 人类
圣克鲁斯生物技术 TUBG2抗体(Santa Cruz Biotechnology, sc-17787)被用于被用于流式细胞仪在人类样本上. Tumour Biol (2014) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 人类; 1:1000; 图 1
圣克鲁斯生物技术 TUBG2抗体(Santa Cruz Biotechnology, C-11)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). J Cell Sci (2014) ncbi
小鼠 单克隆(TU-30)
  • 免疫细胞化学; 人类; 1:200
圣克鲁斯生物技术 TUBG2抗体(Santa, sc-51715)被用于被用于免疫细胞化学在人类样本上浓度为1:200. J Cell Physiol (2014) ncbi
赛默飞世尔
小鼠 单克隆(4D11)
  • 免疫印迹; 人类; 图 8a
赛默飞世尔 TUBG2抗体(Thermo Scientific, 4D11)被用于被用于免疫印迹在人类样本上 (图 8a). Circulation (2017) ncbi
小鼠 单克隆(4D11)
  • 免疫印迹; 人类; 图 1c
赛默飞世尔 TUBG2抗体(Thermo Fisher, MA1-850)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2016) ncbi
小鼠 单克隆(4D11)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 TUBG2抗体(Thermo Scientific, 4D11)被用于被用于免疫细胞化学在人类样本上 (图 2). J Negat Results Biomed (2015) ncbi
小鼠 单克隆(4D11)
  • 免疫印迹; 小鼠
赛默飞世尔 TUBG2抗体(Thermo, MA1-850)被用于被用于免疫印迹在小鼠样本上. J Endocrinol Diabetes (2015) ncbi
小鼠 单克隆(4D11)
  • 免疫印迹; 人类
赛默飞世尔 TUBG2抗体(Thermo Scientific, 4D11)被用于被用于免疫印迹在人类样本上. Platelets (2015) ncbi
小鼠 单克隆(4D11)
  • 免疫印迹; 人类
赛默飞世尔 TUBG2抗体(Thermo Scientific, 4D11)被用于被用于免疫印迹在人类样本上. Nutrients (2014) ncbi
文章列表
  1. Magupalli V, Negro R, Tian Y, Hauenstein A, Di Caprio G, Skillern W, et al. HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation. Science. 2020;369: pubmed 出版商
  2. Barnat M, Capizzi M, Aparicio E, Boluda S, Wennagel D, Kacher R, et al. Huntington's disease alters human neurodevelopment. Science. 2020;369:787-793 pubmed 出版商
  3. An L, Nie P, Chen M, Tang Y, Zhang H, Guan J, et al. MST4 kinase suppresses gastric tumorigenesis by limiting YAP activation via a non-canonical pathway. J Exp Med. 2020;217: pubmed 出版商
  4. Eom T, Han S, Kim J, Blundon J, Wang Y, Yu J, et al. Schizophrenia-related microdeletion causes defective ciliary motility and brain ventricle enlargement via microRNA-dependent mechanisms in mice. Nat Commun. 2020;11:912 pubmed 出版商
  5. Boukhalfa A, Nascimbeni A, Ramel D, Dupont N, Hirsch E, Gayral S, et al. PI3KC2α-dependent and VPS34-independent generation of PI3P controls primary cilium-mediated autophagy in response to shear stress. Nat Commun. 2020;11:294 pubmed 出版商
  6. Bendriem R, Singh S, Aleem A, Antonetti D, Ross M. Tight junction protein occludin regulates progenitor Self-Renewal and survival in developing cortex. elife. 2019;8: pubmed 出版商
  7. Douanne T, André Grégoire G, Thys A, Trillet K, Gavard J, Bidere N. CYLD Regulates Centriolar Satellites Proteostasis by Counteracting the E3 Ligase MIB1. Cell Rep. 2019;27:1657-1665.e4 pubmed 出版商
  8. Rangel L, Bernabé Rubio M, Fernández Barrera J, Casares Arias J, Millan J, Alonso M, et al. Caveolin-1α regulates primary cilium length by controlling RhoA GTPase activity. Sci Rep. 2019;9:1116 pubmed 出版商
  9. Song K, Gras C, Capin G, Gimber N, Lehmann M, Mohd S, et al. A SEPT1-based scaffold is required for Golgi integrity and function. J Cell Sci. 2019;132: pubmed 出版商
  10. Malaby H, Dumas M, Ohi R, Stumpff J. Kinesin-binding protein ensures accurate chromosome segregation by buffering KIF18A and KIF15. J Cell Biol. 2019;218:1218-1234 pubmed 出版商
  11. Obino D, Fetler L, Soza A, Malbec O, Saez J, Labarca M, et al. Galectin-8 Favors the Presentation of Surface-Tethered Antigens by Stabilizing the B Cell Immune Synapse. Cell Rep. 2018;25:3110-3122.e6 pubmed 出版商
  12. Konjikusic M, Yeetong P, Boswell C, Lee C, Roberson E, Ittiwut R, et al. Mutations in Kinesin family member 6 reveal specific role in ependymal cell ciliogenesis and human neurological development. PLoS Genet. 2018;14:e1007817 pubmed 出版商
  13. Full F, van Gent M, Sparrer K, Chiang C, Zurenski M, Scherer M, et al. Centrosomal protein TRIM43 restricts herpesvirus infection by regulating nuclear lamina integrity. Nat Microbiol. 2019;4:164-176 pubmed 出版商
  14. Tan Z, Chan Y, Chua Y, Rutledge S, Pavelka N, Cimini D, et al. Environmental stresses induce karyotypic instability in colorectal cancer cells. Mol Biol Cell. 2019;30:42-55 pubmed 出版商
  15. Huang N, Zhang D, Li F, Chai P, Wang S, Teng J, et al. M-Phase Phosphoprotein 9 regulates ciliogenesis by modulating CP110-CEP97 complex localization at the mother centriole. Nat Commun. 2018;9:4511 pubmed 出版商
  16. Singh V, Erady C, Balasubramanian N. Cell-matrix adhesion controls Golgi organization and function through Arf1 activation in anchorage-dependent cells. J Cell Sci. 2018;131: pubmed 出版商
  17. Wu X, Tommasi di Vignano A, Zhou Q, Michel Dziunycz P, Bai F, Mi J, et al. The ARE-binding protein Tristetraprolin (TTP) is a novel target and mediator of calcineurin tumor suppressing function in the skin. PLoS Genet. 2018;14:e1007366 pubmed 出版商
  18. Morris E, Kawamura E, Gillespie J, Balgi A, Kannan N, Muller W, et al. Stat3 regulates centrosome clustering in cancer cells via Stathmin/PLK1. Nat Commun. 2017;8:15289 pubmed 出版商
  19. Dong C, Xu H, Zhang R, Tanaka N, Takeichi M, Meng W. CAMSAP3 accumulates in the pericentrosomal area and accompanies microtubule release from the centrosome via katanin. J Cell Sci. 2017;130:1709-1715 pubmed 出版商
  20. Baumann C, Wang X, Yang L, Viveiros M. Error-prone meiotic division and subfertility in mice with oocyte-conditional knockdown of pericentrin. J Cell Sci. 2017;130:1251-1262 pubmed 出版商
  21. Grzelak C, Sigglekow N, Tirnitz Parker J, Hamson E, Warren A, Maneck B, et al. Widespread GLI expression but limited canonical hedgehog signaling restricted to the ductular reaction in human chronic liver disease. PLoS ONE. 2017;12:e0171480 pubmed 出版商
  22. Abu Taha I, Heijman J, Hippe H, Wolf N, El Armouche A, Nikolaev V, et al. Nucleoside Diphosphate Kinase-C Suppresses cAMP Formation in Human Heart Failure. Circulation. 2017;135:881-897 pubmed 出版商
  23. Kanakkanthara A, Jeganathan K, Limzerwala J, Baker D, Hamada M, Nam H, et al. Cyclin A2 is an RNA binding protein that controls Mre11 mRNA translation. Science. 2016;353:1549-1552 pubmed
  24. Uematsu K, Okumura F, Tonogai S, Joo Okumura A, Alemayehu D, Nishikimi A, et al. ASB7 regulates spindle dynamics and genome integrity by targeting DDA3 for proteasomal degradation. J Cell Biol. 2016;215:95-106 pubmed
  25. Maina P, Shao P, Liu Q, Fazli L, Tyler S, Nasir M, et al. c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer. Oncotarget. 2016;7:75585-75602 pubmed 出版商
  26. Feringa F, Krenning L, Koch A, van den Berg J, van den Broek B, Jalink K, et al. Hypersensitivity to DNA damage in antephase as a safeguard for genome stability. Nat Commun. 2016;7:12618 pubmed 出版商
  27. Bernabé Rubio M, Andrés G, Casares Arias J, Fernández Barrera J, Rangel L, Reglero Real N, et al. Novel role for the midbody in primary ciliogenesis by polarized epithelial cells. J Cell Biol. 2016;214:259-73 pubmed 出版商
  28. Gao J, Liu D, Li J, Song Q, Wang Q. Effect of STK17A on the sensitivity of ovarian cancer cells to paclitaxel and carboplatin. Oncol Lett. 2016;12:1107-1112 pubmed
  29. Fong C, Mazo G, Das T, Goodman J, Kim M, O Rourke B, et al. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. elife. 2016;5: pubmed 出版商
  30. Campos Y, Qiu X, Gomero E, Wakefield R, Horner L, Brutkowski W, et al. Alix-mediated assembly of the actomyosin-tight junction polarity complex preserves epithelial polarity and epithelial barrier. Nat Commun. 2016;7:11876 pubmed 出版商
  31. Venero Galanternik M, Navajas Acedo J, Romero Carvajal A, Piotrowski T. Imaging collective cell migration and hair cell regeneration in the sensory lateral line. Methods Cell Biol. 2016;134:211-56 pubmed 出版商
  32. Mukhopadhyay A, Sehgal L, Bose A, Gulvady A, Senapati P, Thorat R, et al. 14-3-3? Prevents Centrosome Amplification and Neoplastic Progression. Sci Rep. 2016;6:26580 pubmed 出版商
  33. Brunk K, Zhu M, Bärenz F, Kratz A, Haselmann Weiss U, Antony C, et al. Cep78 is a new centriolar protein involved in Plk4-induced centriole overduplication. J Cell Sci. 2016;129:2713-8 pubmed 出版商
  34. Barretta M, Spano D, D Ambrosio C, Cervigni R, Scaloni A, Corda D, et al. Aurora-A recruitment and centrosomal maturation are regulated by a Golgi-activated pool of Src during G2. Nat Commun. 2016;7:11727 pubmed 出版商
  35. Kurkinen K, Marttinen M, Turner L, Natunen T, Mäkinen P, Haapalinna F, et al. SEPT8 modulates ?-amyloidogenic processing of APP by affecting the sorting and accumulation of BACE1. J Cell Sci. 2016;129:2224-38 pubmed 出版商
  36. Zhao W, Liu J, Zhang X, Deng L. MLL5 maintains spindle bipolarity by preventing aberrant cytosolic aggregation of PLK1. J Cell Biol. 2016;212:829-43 pubmed 出版商
  37. Yuan X, Cao J, He X, Serra R, Qu J, Cao X, et al. Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation. Nat Commun. 2016;7:11024 pubmed 出版商
  38. Yen T, Yang A, Chiu W, Li T, Wang L, Wu Y, et al. Hepatitis B virus PreS2-mutant large surface antigen activates store-operated calcium entry and promotes chromosome instability. Oncotarget. 2016;7:23346-60 pubmed 出版商
  39. Kamiyama D, Sekine S, Barsi Rhyne B, Hu J, Chen B, Gilbert L, et al. Versatile protein tagging in cells with split fluorescent protein. Nat Commun. 2016;7:11046 pubmed 出版商
  40. Obino D, Farina F, Malbec O, Sáez P, Maurin M, Gaillard J, et al. Actin nucleation at the centrosome controls lymphocyte polarity. Nat Commun. 2016;7:10969 pubmed 出版商
  41. Daly O, Gaboriau D, Karakaya K, King S, Dantas T, Lalor P, et al. CEP164-null cells generated by genome editing show a ciliation defect with intact DNA repair capacity. J Cell Sci. 2016;129:1769-74 pubmed 出版商
  42. Myers S, Peddada S, Chatterjee N, Friedrich T, Tomoda K, Krings G, et al. SOX2 O-GlcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells. elife. 2016;5:e10647 pubmed 出版商
  43. Beyaz S, Mana M, Roper J, Kedrin D, Saadatpour A, Hong S, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature. 2016;531:53-8 pubmed 出版商
  44. Terré B, Piergiovanni G, Segura Bayona S, Gil Gómez G, Youssef S, Attolini C, et al. GEMC1 is a critical regulator of multiciliated cell differentiation. EMBO J. 2016;35:942-60 pubmed 出版商
  45. Lopes C, Aubert S, Bourgois Rocha F, Barnat M, Rego A, Déglon N, et al. Dominant-Negative Effects of Adult-Onset Huntingtin Mutations Alter the Division of Human Embryonic Stem Cells-Derived Neural Cells. PLoS ONE. 2016;11:e0148680 pubmed 出版商
  46. Lampi M, Faber C, Huynh J, Bordeleau F, Zanotelli M, Reinhart King C. Simvastatin Ameliorates Matrix Stiffness-Mediated Endothelial Monolayer Disruption. PLoS ONE. 2016;11:e0147033 pubmed 出版商
  47. Hori A, Barnouin K, Snijders A, Toda T. A non-canonical function of Plk4 in centriolar satellite integrity and ciliogenesis through PCM1 phosphorylation. EMBO Rep. 2016;17:326-37 pubmed 出版商
  48. Zhou H, Wang T, Zheng T, Teng J, Chen J. Cep57 is a Mis12-interacting kinetochore protein involved in kinetochore targeting of Mad1-Mad2. Nat Commun. 2016;7:10151 pubmed 出版商
  49. Acevedo Acevedo S, Crone W. Substrate stiffness effect and chromosome missegregation in hIPS cells. J Negat Results Biomed. 2015;14:22 pubmed 出版商
  50. Farina F, Gaillard J, Guérin C, Couté Y, Sillibourne J, Blanchoin L, et al. The centrosome is an actin-organizing centre. Nat Cell Biol. 2016;18:65-75 pubmed 出版商
  51. Isbel L, Srivastava R, Oey H, Spurling A, Daxinger L, Puthalakath H, et al. Trim33 Binds and Silences a Class of Young Endogenous Retroviruses in the Mouse Testis; a Novel Component of the Arms Race between Retrotransposons and the Host Genome. PLoS Genet. 2015;11:e1005693 pubmed 出版商
  52. Etemad B, Kuijt T, Kops G. Kinetochore-microtubule attachment is sufficient to satisfy the human spindle assembly checkpoint. Nat Commun. 2015;6:8987 pubmed 出版商
  53. Yoshie S, Imaizumi M, Nakamura R, Otsuki K, Ikeda M, Nomoto Y, et al. Generation of airway epithelial cells with native characteristics from mouse induced pluripotent stem cells. Cell Tissue Res. 2016;364:319-30 pubmed 出版商
  54. Munkley J, Oltean S, Vodák D, Wilson B, Livermore K, Zhou Y, et al. The androgen receptor controls expression of the cancer-associated sTn antigen and cell adhesion through induction of ST6GalNAc1 in prostate cancer. Oncotarget. 2015;6:34358-74 pubmed 出版商
  55. Stephen L, Tawamie H, Davis G, Tebbe L, Nurnberg P, Nurnberg G, et al. TALPID3 controls centrosome and cell polarity and the human ortholog KIAA0586 is mutated in Joubert syndrome (JBTS23). elife. 2015;4: pubmed 出版商
  56. Lüddecke S, Ertych N, Stenzinger A, Weichert W, Beissbarth T, Dyczkowski J, et al. The putative oncogene CEP72 inhibits the mitotic function of BRCA1 and induces chromosomal instability. Oncogene. 2016;35:2398-406 pubmed 出版商
  57. Shukla A, Kong D, Sharma M, Magidson V, Loncarek J. Plk1 relieves centriole block to reduplication by promoting daughter centriole maturation. Nat Commun. 2015;6:8077 pubmed 出版商
  58. Cochran R, Cidado J, Kim M, Zabransky D, Croessmann S, Chu D, et al. Functional isogenic modeling of BRCA1 alleles reveals distinct carrier phenotypes. Oncotarget. 2015;6:25240-51 pubmed 出版商
  59. Ohata S, Herranz Pérez V, Nakatani J, Boletta A, García Verdugo J, Álvarez Buylla A. Mechanosensory Genes Pkd1 and Pkd2 Contribute to the Planar Polarization of Brain Ventricular Epithelium. J Neurosci. 2015;35:11153-68 pubmed 出版商
  60. Patrick P, Price T, Diogo A, Sheibani N, Banks W, Shah G. Topiramate Protects Pericytes from Glucotoxicity: Role for Mitochondrial CA VA in Cerebromicrovascular Disease in Diabetes. J Endocrinol Diabetes. 2015;2: pubmed
  61. Pitari M, Rossi M, Amodio N, Botta C, Morelli E, Federico C, et al. Inhibition of miR-21 restores RANKL/OPG ratio in multiple myeloma-derived bone marrow stromal cells and impairs the resorbing activity of mature osteoclasts. Oncotarget. 2015;6:27343-58 pubmed 出版商
  62. Rivas S, Armisén R, Rojas D, Maldonado E, Huerta H, Tapia J, et al. The Ski Protein is Involved in the Transformation Pathway of Aurora Kinase A. J Cell Biochem. 2016;117:334-43 pubmed 出版商
  63. Meissner C, Lorenz H, Hehn B, Lemberg M. Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy. Autophagy. 2015;11:1484-98 pubmed 出版商
  64. Moyer T, Clutario K, Lambrus B, Daggubati V, Holland A. Binding of STIL to Plk4 activates kinase activity to promote centriole assembly. J Cell Biol. 2015;209:863-78 pubmed 出版商
  65. Whalley H, Porter A, Diamantopoulou Z, White G, Castañeda Saucedo E, Malliri A. Cdk1 phosphorylates the Rac activator Tiam1 to activate centrosomal Pak and promote mitotic spindle formation. Nat Commun. 2015;6:7437 pubmed 出版商
  66. Taylor S, Dantas T, Durán I, Wu S, Lachman R, Nelson S, et al. Mutations in DYNC2LI1 disrupt cilia function and cause short rib polydactyly syndrome. Nat Commun. 2015;6:7092 pubmed 出版商
  67. Kowal T, Falk M. Primary cilia found on HeLa and other cancer cells. Cell Biol Int. 2015;39:1341-7 pubmed 出版商
  68. Orlando S, Gallastegui E, Besson A, Abril G, Aligué R, Pujol M, et al. p27Kip1 and p21Cip1 collaborate in the regulation of transcription by recruiting cyclin-Cdk complexes on the promoters of target genes. Nucleic Acids Res. 2015;43:6860-73 pubmed 出版商
  69. Yang N, Li L, Eguether T, Sundberg J, Pazour G, Chen J. Intraflagellar transport 27 is essential for hedgehog signaling but dispensable for ciliogenesis during hair follicle morphogenesis. Development. 2015;142:2194-202 pubmed 出版商
  70. Sánchez R, Sánchez S. Paraxis is required for somite morphogenesis and differentiation in Xenopus laevis. Dev Dyn. 2015;244:973-87 pubmed 出版商
  71. Napier C, Huschtscha L, Harvey A, Bower K, Noble J, Hendrickson E, et al. ATRX represses alternative lengthening of telomeres. Oncotarget. 2015;6:16543-58 pubmed
  72. Reales E, Bernabé Rubio M, Casares Arias J, Rentero C, Fernández Barrera J, Rangel L, et al. The MAL protein is crucial for proper membrane condensation at the ciliary base, which is required for primary cilium elongation. J Cell Sci. 2015;128:2261-70 pubmed 出版商
  73. Morchoisne Bolhy S, Geoffroy M, Bouhlel I, Alves A, Audugé N, Baudin X, et al. Intranuclear dynamics of the Nup107-160 complex. Mol Biol Cell. 2015;26:2343-56 pubmed 出版商
  74. Harten S, Oey H, Bourke L, Bharti V, Isbel L, Daxinger L, et al. The recently identified modifier of murine metastable epialleles, Rearranged L-Myc Fusion, is involved in maintaining epigenetic marks at CpG island shores and enhancers. BMC Biol. 2015;13:21 pubmed 出版商
  75. Hori A, Peddie C, Collinson L, Toda T. Centriolar satellite- and hMsd1/SSX2IP-dependent microtubule anchoring is critical for centriole assembly. Mol Biol Cell. 2015;26:2005-19 pubmed 出版商
  76. Eisner A, Pazyra Murphy M, Durresi E, Zhou P, Zhao X, Chadwick E, et al. The Eya1 phosphatase promotes Shh signaling during hindbrain development and oncogenesis. Dev Cell. 2015;33:22-35 pubmed 出版商
  77. Prosser S, Morrison C. Centrin2 regulates CP110 removal in primary cilium formation. J Cell Biol. 2015;208:693-701 pubmed 出版商
  78. Di Savino A, Panuzzo C, Rocca S, Familiari U, Piazza R, Crivellaro S, et al. Morgana acts as an oncosuppressor in chronic myeloid leukemia. Blood. 2015;125:2245-53 pubmed 出版商
  79. Chiappetta G, Valentino T, Vitiello M, Pasquinelli R, Monaco M, Palma G, et al. PATZ1 acts as a tumor suppressor in thyroid cancer via targeting p53-dependent genes involved in EMT and cell migration. Oncotarget. 2015;6:5310-23 pubmed
  80. Stolz A, Ertych N, Bastians H. A phenotypic screen identifies microtubule plus end assembly regulators that can function in mitotic spindle orientation. Cell Cycle. 2015;14:827-37 pubmed 出版商
  81. Fuentes E, Forero Doria O, Alarcón M, Palomo I. Inhibitory effects of Cyperus digitatus extract on human platelet function in vitro. Platelets. 2015;26:764-70 pubmed 出版商
  82. Fuentes E, Alarcón M, Fuentes M, Carrasco G, Palomo I. A novel role of Eruca sativa Mill. (rocket) extract: antiplatelet (NF-κB inhibition) and antithrombotic activities. Nutrients. 2014;6:5839-52 pubmed 出版商
  83. Pagan J, Marzio A, Jones M, Saraf A, Jallepalli P, Florens L, et al. Degradation of Cep68 and PCNT cleavage mediate Cep215 removal from the PCM to allow centriole separation, disengagement and licensing. Nat Cell Biol. 2015;17:31-43 pubmed 出版商
  84. Liu C, Yu Y, Liu F, Wei X, Wrobel J, Gunawardena H, et al. A chromatin activity-based chemoproteomic approach reveals a transcriptional repressome for gene-specific silencing. Nat Commun. 2014;5:5733 pubmed 出版商
  85. Umberger N, Caspary T. Ciliary transport regulates PDGF-AA/αα signaling via elevated mammalian target of rapamycin signaling and diminished PP2A activity. Mol Biol Cell. 2015;26:350-8 pubmed 出版商
  86. Vestergaard M, Awan A, Warzecha C, Christensen S, Andersen C. Immunofluorescence Microscopy and mRNA Analysis of Human Embryonic Stem Cells (hESCs) Including Primary Cilia Associated Signaling Pathways. Methods Mol Biol. 2016;1307:123-40 pubmed 出版商
  87. Gegg M, Böttcher A, Burtscher I, Hasenoeder S, Van Campenhout C, Aichler M, et al. Flattop regulates basal body docking and positioning in mono- and multiciliated cells. elife. 2014;3: pubmed 出版商
  88. Mannino M, Gomez Roman N, Hochegger H, Chalmers A. Differential sensitivity of Glioma stem cells to Aurora kinase A inhibitors: implications for stem cell mitosis and centrosome dynamics. Stem Cell Res. 2014;13:135-43 pubmed 出版商
  89. Dai H, Ye M, Peng M, Zhou W, Bai H, Xiao X, et al. Aptamer TY04 inhibits the growth of multiple myeloma cells via cell cycle arrest. Tumour Biol. 2014;35:7561-8 pubmed 出版商
  90. Mäki Jouppila J, Laine L, Rehnberg J, Narvi E, Tiikkainen P, Hukasova E, et al. Centmitor-1, a novel acridinyl-acetohydrazide, possesses similar molecular interaction field and antimitotic cellular phenotype as rigosertib, on 01910.Na. Mol Cancer Ther. 2014;13:1054-66 pubmed 出版商
  91. Fang G, Zhang D, Yin H, Zheng L, Bi X, Yuan L. Centlein mediates an interaction between C-Nap1 and Cep68 to maintain centrosome cohesion. J Cell Sci. 2014;127:1631-9 pubmed 出版商
  92. Douthwright S, Sluder G. Link between DNA damage and centriole disengagement/reduplication in untransformed human cells. J Cell Physiol. 2014;229:1427-36 pubmed 出版商
  93. Li L, Yang G, Ren C, Tanimoto R, Hirayama T, Wang J, et al. Glioma pathogenesis-related protein 1 induces prostate cancer cell death through Hsc70-mediated suppression of AURKA and TPX2. Mol Oncol. 2013;7:484-96 pubmed 出版商
  94. Garcia Ovejero D, Arevalo Martin A, Paniagua Torija B, Sierra Palomares Y, Molina Holgado E. A cell population that strongly expresses the CB1 cannabinoid receptor in the ependyma of the rat spinal cord. J Comp Neurol. 2013;521:233-51 pubmed 出版商