这是一篇来自已证抗体库的有关人类 Tak1的综述,是根据40篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Tak1 抗体。
Tak1 同义词: CSCF; FMD2; MEKK7; TAK1; TGF1a

圣克鲁斯生物技术
小鼠 单克隆(H-5)
  • 免疫印迹; 小鼠; 1:300; 图 6a
圣克鲁斯生物技术 Tak1抗体(Santa Cruz Biotechnology, sc-166562)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 6a). elife (2019) ncbi
小鼠 单克隆(C-9)
圣克鲁斯生物技术 Tak1抗体(Santa, sc-7967)被用于. Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(C-9)
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术 Tak1抗体(SantaCruz, sc-7967)被用于被用于免疫印迹在人类样本上 (图 7a). J Immunol (2017) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Tak1抗体(Santa Cruz, sc-166562)被用于被用于免疫印迹在人类样本上 (图 3). BMC Cancer (2016) ncbi
小鼠 单克隆(C-9)
  • 免疫印迹; 人类; 1:2000; 图 1B
圣克鲁斯生物技术 Tak1抗体(Santa Cruz, sc-7967)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1B). Mol Med Rep (2016) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Tak1抗体(Santa Cruz, sc-166562)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(C-9)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Tak1抗体(Santa Cruz Biotechnology, sc-7967)被用于被用于免疫印迹在人类样本上. Int J Cancer (2016) ncbi
小鼠 单克隆(C-9)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Tak1抗体(Santa Cruz, Sc-7967)被用于被用于免疫印迹在人类样本上. Mol Endocrinol (2006) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR2863)
  • 免疫印迹; brown rat; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 Tak1抗体(Abcam, ab109404)被用于被用于免疫印迹在brown rat样本上浓度为1:1000 (图 5c). Stroke (2018) ncbi
安迪生物R&D
小鼠 单克隆(491840)
  • 免疫印迹; 小鼠; 1:1000
安迪生物R&D Tak1抗体(R&D systems, MAB5307)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Med (2014) ncbi
赛默飞世尔
domestic rabbit 单克隆(K.846.3)
  • 流式细胞仪; 小鼠; 1:50; 图 1
赛默飞世尔 Tak1抗体(Thermo Scientific, MA5-15073)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 1). Nat Commun (2015) ncbi
西格玛奥德里奇
小鼠 单克隆
  • 免疫印迹; 人类; 图 7b
西格玛奥德里奇 Tak1抗体(Sigma, SAB1406506)被用于被用于免疫印迹在人类样本上 (图 7b). Mol Cancer (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling, 4505)被用于被用于免疫印迹在小鼠样本上 (图 3a). EMBO J (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell signaling technology, 4505)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell signaling technology, 9339)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D94D7)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling Technologies, 5206)被用于被用于免疫印迹在人类样本上 (图 6d). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(D94D7)
  • 免疫印迹; 小鼠; 1:500; 图 s2
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling Technology, 5206)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2). Nat Commun (2018) ncbi
domestic rabbit 单克隆(90C7)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling, 4508)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Biol (2018) ncbi
domestic rabbit 单克隆(D94D7)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling, 5206)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Biol (2018) ncbi
domestic rabbit 单克隆(90C7)
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling, 4508)被用于被用于免疫印迹在人类样本上 (图 s3a). Theranostics (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; brown rat; 1:100; 图 2d
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling, 4536)被用于被用于免疫印迹在brown rat样本上浓度为1:100 (图 2d). Mol Cell Endocrinol (2018) ncbi
domestic rabbit 单克隆(D94D7)
  • 免疫印迹; brown rat; 1:100; 图 2d
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling, 5206)被用于被用于免疫印迹在brown rat样本上浓度为1:100 (图 2d). Mol Cell Endocrinol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling, 4536)被用于被用于免疫印迹在人类样本上 (图 1c). Biochem J (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling, 4505)被用于被用于免疫印迹在人类样本上 (图 1c). Biochem J (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 s1b
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling, 4505)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 s1b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 Tak1抗体(cell signalling, 4505)被用于被用于免疫印迹在小鼠样本上 (图 2d). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 Tak1抗体(cell signalling, 4531)被用于被用于免疫印迹在小鼠样本上 (图 2d). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 EV4c
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling, 4505)被用于被用于免疫印迹在小鼠样本上 (图 EV4c). EMBO Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 EV4c
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling, 4531)被用于被用于免疫印迹在小鼠样本上 (图 EV4c). EMBO Mol Med (2017) ncbi
domestic rabbit 单克隆(D94D7)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling, 5206)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(90C7)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling, 4508)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 5B
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling, 4505)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 5B). Biochem J (2017) ncbi
domestic rabbit 单克隆(90C7)
  • 免疫印迹; 猪; 图 2a
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling, 45085)被用于被用于免疫印迹在猪样本上 (图 2a). Arthritis Rheumatol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell signaling, 4531)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D94D7)
  • 免疫印迹; 人类; 1:1000; 图 s11b
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell signaling, 5206)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s11b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 st1
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling, 4505)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Tak1抗体(CST, 4505)被用于被用于免疫印迹在人类样本上 (图 4b). Nat Microbiol (2016) ncbi
domestic rabbit 单克隆(D94D7)
  • 免疫印迹; 人类; 1:800; 图 4
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling, 5206)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:50; 图 6
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling, 9339)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 6). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 小鼠; 图 9
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling, 4505)被用于被用于免疫沉淀在小鼠样本上 (图 9) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D94D7)
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling Technology, 5206S)被用于被用于免疫印迹在小鼠样本上 (图 s1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(90C7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling, 4508)被用于被用于免疫印迹在人类样本上. PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(90C7)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell signaling, 4508)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D94D7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling Technology, D94D7)被用于被用于免疫印迹在人类样本上. Arthritis Rheumatol (2015) ncbi
domestic rabbit 单克隆(90C7)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling, 4508)被用于被用于免疫印迹在小鼠样本上 (图 5). EMBO J (2014) ncbi
domestic rabbit 单克隆(90C7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Tak1抗体(Cell Signaling Technology, 4508)被用于被用于免疫印迹在人类样本上. J Invest Dermatol (2015) ncbi
碧迪BD
brown rat 单克隆(A75-3)
  • 酶联免疫吸附测定; 小鼠; 图 5a
碧迪BD Tak1抗体(BD Biosciences, 555053)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 5a). Oncol Rep (2017) ncbi
brown rat 单克隆(A75-2)
  • 酶联免疫吸附测定; 小鼠; 图 5a
碧迪BD Tak1抗体(BD Biosciences, 555052)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 5a). Oncol Rep (2017) ncbi
brown rat 单克隆(A75-2)
  • 免疫印迹; 人类; 图 6
碧迪BD Tak1抗体(BD Biosciences, 555052)被用于被用于免疫印迹在人类样本上 (图 6). J Biol Chem (2015) ncbi
文章列表
  1. Cibi D, Mia M, Guna Shekeran S, Yun L, Sandireddy R, Gupta P, et al. Neural crest-specific deletion of Rbfox2 in mice leads to craniofacial abnormalities including cleft palate. elife. 2019;8: pubmed 出版商
  2. Guo M, Hartlova A, Gierlinski M, Prescott A, Castellvi J, Losa J, et al. Triggering MSR1 promotes JNK-mediated inflammation in IL-4-activated macrophages. EMBO J. 2019;38: pubmed 出版商
  3. Panda S, Gekara N. The deubiquitinase MYSM1 dampens NOD2-mediated inflammation and tissue damage by inactivating the RIP2 complex. Nat Commun. 2018;9:4654 pubmed 出版商
  4. Lee S, North K, Kim E, Jang E, Obeng E, Lu S, et al. Synthetic Lethal and Convergent Biological Effects of Cancer-Associated Spliceosomal Gene Mutations. Cancer Cell. 2018;34:225-241.e8 pubmed 出版商
  5. Lam J, van den Bosch M, Wegrzyn J, Parker J, Ibrahim R, Slowski K, et al. miR-143/145 differentially regulate hematopoietic stem and progenitor activity through suppression of canonical TGFβ signaling. Nat Commun. 2018;9:2418 pubmed 出版商
  6. Castanotto D, Zhang X, Alluin J, Zhang X, Rüger J, Armstrong B, et al. A stress-induced response complex (SIRC) shuttles miRNAs, siRNAs, and oligonucleotides to the nucleus. Proc Natl Acad Sci U S A. 2018;115:E5756-E5765 pubmed 出版商
  7. Yurchenko M, Skjesol A, Ryan L, Richard G, Kandasamy R, Wang N, et al. SLAMF1 is required for TLR4-mediated TRAM-TRIF-dependent signaling in human macrophages. J Cell Biol. 2018;217:1411-1429 pubmed 出版商
  8. Zeng J, Liu W, Fan Y, He D, Li L. PrLZ increases prostate cancer docetaxel resistance by inhibiting LKB1/AMPK-mediated autophagy. Theranostics. 2018;8:109-123 pubmed 出版商
  9. Zhou K, Enkhjargal B, Xie Z, Sun C, Wu L, Malaguit J, et al. Dihydrolipoic Acid Inhibits Lysosomal Rupture and NLRP3 Through Lysosome-Associated Membrane Protein-1/Calcium/Calmodulin-Dependent Protein Kinase II/TAK1 Pathways After Subarachnoid Hemorrhage in Rat. Stroke. 2018;49:175-183 pubmed 出版商
  10. Hoa N, Ge L, Korach K, Levin E. Estrogen receptor beta maintains expression of KLF15 to prevent cardiac myocyte hypertrophy in female rodents. Mol Cell Endocrinol. 2018;470:240-250 pubmed 出版商
  11. Zhang J, MacArtney T, Peggie M, Cohen P. Interleukin-1 and TRAF6-dependent activation of TAK1 in the absence of TAB2 and TAB3. Biochem J. 2017;474:2235-2248 pubmed 出版商
  12. Strickson S, Emmerich C, Goh E, Zhang J, Kelsall I, MacArtney T, et al. Roles of the TRAF6 and Pellino E3 ligases in MyD88 and RANKL signaling. Proc Natl Acad Sci U S A. 2017;114:E3481-E3489 pubmed 出版商
  13. Cong Q, Jia H, Li P, Qiu S, Yeh J, Wang Y, et al. p38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner. Sci Rep. 2017;7:45964 pubmed 出版商
  14. Xia Z, Xu G, Yang X, Peng N, Zuo Q, Zhu S, et al. Inducible TAP1 Negatively Regulates the Antiviral Innate Immune Response by Targeting the TAK1 Complex. J Immunol. 2017;198:3690-3704 pubmed 出版商
  15. Hammers D, Merscham Banda M, Hsiao J, ENGST S, Hartman J, Sweeney H. Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med. 2017;9:531-544 pubmed 出版商
  16. Ju H, Ying H, Tian T, Ling J, Fu J, Lu Y, et al. Mutant Kras- and p16-regulated NOX4 activation overcomes metabolic checkpoints in development of pancreatic ductal adenocarcinoma. Nat Commun. 2017;8:14437 pubmed 出版商
  17. Bakshi S, Taylor J, Strickson S, McCartney T, Cohen P. Identification of TBK1 complexes required for the phosphorylation of IRF3 and the production of interferon ?. Biochem J. 2017;474:1163-1174 pubmed 出版商
  18. Okuyama H, Tominaga A, Fukuoka S, Taguchi T, Kusumoto Y, Ono S. Spirulina lipopolysaccharides inhibit tumor growth in a Toll-like receptor 4-dependent manner by altering the cytokine milieu from interleukin-17/interleukin-23 to interferon-?. Oncol Rep. 2017;37:684-694 pubmed 出版商
  19. Ismail H, Didangelos A, Vincent T, Saklatvala J. Rapid Activation of Transforming Growth Factor ?-Activated Kinase 1 in Chondrocytes by Phosphorylation and K63 -Linked Polyubiquitination Upon Injury to Animal Articular Cartilage. Arthritis Rheumatol. 2017;69:565-575 pubmed 出版商
  20. Huang T, Alvarez A, Pangeni R, Horbinski C, Lu S, Kim S, et al. A regulatory circuit of miR-125b/miR-20b and Wnt signalling controls glioblastoma phenotypes through FZD6-modulated pathways. Nat Commun. 2016;7:12885 pubmed 出版商
  21. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  22. de Jong M, Liu Z, Chen D, Alto N. Shigella flexneri suppresses NF-?B activation by inhibiting linear ubiquitin chain ligation. Nat Microbiol. 2016;1:16084 pubmed 出版商
  23. Kim M, Caplen N, Chakka S, Hernandez L, House C, Pongas G, et al. Identification of therapeutic targets applicable to clinical strategies in ovarian cancer. BMC Cancer. 2016;16:678 pubmed 出版商
  24. He M, Wang M, Huang Y, Peng W, Zheng Z, Xia N, et al. The ORF3 Protein of Genotype 1 Hepatitis E Virus Suppresses TLR3-induced NF-κB Signaling via TRADD and RIP1. Sci Rep. 2016;6:27597 pubmed 出版商
  25. Chen Z, Mei Y, Lei H, Tian R, Ni N, Han F, et al. LYTAK1, a TAK1 inhibitor, suppresses proliferation and epithelial?mesenchymal transition in retinal pigment epithelium cells. Mol Med Rep. 2016;14:145-50 pubmed 出版商
  26. Ren S, Wang J, Chen T, Li H, Wan Y, Peng N, et al. Hepatitis B Virus Stimulated Fibronectin Facilitates Viral Maintenance and Replication through Two Distinct Mechanisms. PLoS ONE. 2016;11:e0152721 pubmed 出版商
  27. Seip K, Fleten K, Barkovskaya A, Nygaard V, Haugen M, Engesæter B, et al. Fibroblast-induced switching to the mesenchymal-like phenotype and PI3K/mTOR signaling protects melanoma cells from BRAF inhibitors. Oncotarget. 2016;7:19997-20015 pubmed 出版商
  28. Wang P, Zhang X, Luo P, Jiang X, Zhang P, Guo J, et al. Hepatocyte TRAF3 promotes liver steatosis and systemic insulin resistance through targeting TAK1-dependent signalling. Nat Commun. 2016;7:10592 pubmed 出版商
  29. Yu Y, Cui Y, Zhao Y, Liu S, Song G, Jiao P, et al. The binding capability of plasma phospholipid transfer protein, but not HDL pool size, is critical to repress LPS induced inflammation. Sci Rep. 2016;6:20845 pubmed 出版商
  30. Ogura Y, Hindi S, Sato S, Xiong G, Akira S, Kumar A. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nat Commun. 2015;6:10123 pubmed 出版商
  31. Kim H, Lim J, Kim J, Kim Y, Park S, Sohn J. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models. Int J Cancer. 2016;138:1432-41 pubmed 出版商
  32. Huygens C, Liénart S, Dedobbeleer O, Stockis J, Gauthy E, Coulie P, et al. Lysosomal-associated Transmembrane Protein 4B (LAPTM4B) Decreases Transforming Growth Factor β1 (TGF-β1) Production in Human Regulatory T Cells. J Biol Chem. 2015;290:20105-16 pubmed 出版商
  33. Greenfeld H, Takasaki K, Walsh M, Ersing I, Bernhardt K, Ma Y, et al. TRAF1 Coordinates Polyubiquitin Signaling to Enhance Epstein-Barr Virus LMP1-Mediated Growth and Survival Pathway Activation. PLoS Pathog. 2015;11:e1004890 pubmed 出版商
  34. Zehavi L, Schayek H, Jacob Hirsch J, Sidi Y, Leibowitz Amit R, Avni D. MiR-377 targets E2F3 and alters the NF-kB signaling pathway through MAP3K7 in malignant melanoma. Mol Cancer. 2015;14:68 pubmed 出版商
  35. Guo C, Hao C, Shao R, Fang B, Correa A, Hofstetter W, et al. RNA-dependent protein kinase (PKR) depletes nutrients, inducing phosphorylation of AMP-activated kinase in lung cancer. Oncotarget. 2015;6:11114-24 pubmed
  36. Ismail H, Yamamoto K, Vincent T, Nagase H, Troeberg L, Saklatvala J. Interleukin-1 Acts via the JNK-2 Signaling Pathway to Induce Aggrecan Degradation by Human Chondrocytes. Arthritis Rheumatol. 2015;67:1826-36 pubmed 出版商
  37. Charlaftis N, Suddason T, Wu X, Anwar S, Karin M, Gallagher E. The MEKK1 PHD ubiquitinates TAB1 to activate MAPKs in response to cytokines. EMBO J. 2014;33:2581-96 pubmed 出版商
  38. Wu N, Huang D, Tsou H, Lin Y, Lin W. Syk mediates IL-17-induced CCL20 expression by targeting Act1-dependent K63-linked ubiquitination of TRAF6. J Invest Dermatol. 2015;135:490-498 pubmed 出版商
  39. Yu B, Chang J, Liu Y, Li J, Kevork K, Al Hezaimi K, et al. Wnt4 signaling prevents skeletal aging and inflammation by inhibiting nuclear factor-?B. Nat Med. 2014;20:1009-17 pubmed 出版商
  40. Frobøse H, Rønn S, Heding P, Mendoza H, Cohen P, Mandrup Poulsen T, et al. Suppressor of cytokine Signaling-3 inhibits interleukin-1 signaling by targeting the TRAF-6/TAK1 complex. Mol Endocrinol. 2006;20:1587-96 pubmed